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Abstract: The number of women choosing agriculture as an occupation is increasing.
Agriculture is dangerous work, and women are at risk of serious injury, but the research
on injuries in females is sparse. Women perform different types of farmwork and have
different exposures than men. Studies have not assessed injury in a large group of female
agricultural operators. In this study, we used XGBoost, a machine learning algorithm,
and logistic regression to examine 17 factors hypothesized to be associated with injury
in 1529 farm and ranch women. The sample was split into a training group of 1070, and
the results were replicated in a test group of 459. The model accuracy was 88%. We
compared the results of XGBoost to those of the logistic regression models and computed
odds ratios to estimate effect sizes. We found that the two methods generally agreed.
XGBoost identified the total number of musculoskeletal symptoms, age, sleep deprivation,
high work-related stress, and exposure to respiratory irritants as being important to injury.
The multivariate logistic regression model identified higher income, higher stress, younger
age, and number of musculoskeletal symptoms as being significantly associated with injury.
The analysis highlights the importance of musculoskeletal disorders and work strain to
injury in women.

Keywords: agriculture; women; agricultural injuries; XGBoost; injury risk factors;
machine learning

1. Introduction
An increasing number of women have become primary agricultural operators on

farms and ranches in the United States over the past several decades. The number of farms
with female producers increased by 23% between 2012 and 2017, and the number of farms
and ranches whose primary operator was female grew by 27% [1]. As of 2017, there were
1.2 million female operators, which is 36% of the 3.4 million agricultural operators in the
U.S. [1]. Between 2017 and 2022, the number of female producers in the Midwest grew by
4%, and the trend is likely to continue [2]. However, it is necessary to consider the changes
the USDA made to the 2017 Census of Agriculture that extends the number of reported
farm operators from three to four but does not distinguish between principal operator and
other operator on the farm [3]. This change may add to the number of reported women
working in agriculture.

A 2004 study in Kansas identified three reasons for the increased number of women in
agriculture after 1997: (1) increased demand for organic and local products; (2) growth in
the number of smaller farms; and (3) a greater acceptance of women as principal opera-
tors [4]. Although there may be a weakening of the stereotypes for female farmers, women
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are moving into what remains a male-dominated occupation where they often feel like
outsiders [5,6].

The increase in the number of women involved in food production is changing the
agricultural landscape, and economists have been working to understand how. Female op-
erators approach farming differently than males. They show a greater interest in sustainable
farming [7], sell products more locally [8], are more likely to be involved in agritourism [9],
and earn 40% less in farm income than their male counterparts [10]. A recent study using a
Bayesian spatial analysis at the county level showed that a greater number of female farm
operators in a county translated to more small business creation, improved life expectancy,
and a reduction in the poverty rate [11].

As more women move into agriculture as an occupation, they, too, will be at an
increased risk of work-related injuries. Injuries in female agricultural operators are un-
derstudied. Most reports focus on male operators because they are the majority of those
working in agriculture [12]. A 2004 report found that gender is an important factor in both
fatal and non-fatal agricultural injury [13]. Men were eleven times more likely to experience
a fatality compared to women and were more likely to be injured by machinery or struck
by an object, whereas women were more likely to be injured by an animal. However, a
report using five years of Finish insurance data comparing males and females in agricul-
tural occupations found that different work exposures and characteristics partly explain
differences in reported injury rates [14]. Comparing male injury rates to female injury rates
might be uninformative, and it may be best to study female operators without comparing
them to their male counterparts.

To our knowledge, no studies have examined farm characteristics and work exposures
in a large sample of agricultural female operators. Injury and risk factor data are nearly
always collected using a cross-sectional methodology and are used to make decisions about
safety and health priorities. Traditional statistical methods and newer machine learning
methods each have their strengths and weaknesses. Using both methods together might
provide greater information when exploring the data used to set prevention priorities.

This report examined the factors associated with injury in females working on a farm
or ranch. We used two approaches. First, we used Extreme Gradient Boosting (XGBoost),
a recent machine learning decision tree approach which has been shown to outperform
other machine learning methods, including Random Forests and neural networks [15–17].
XGBoost makes no assumptions about the data such as the independence of the obser-
vations, handles missing values, and is unaffected by high correlations among variables
while capturing non-linear relationships [18]. We have previously seen that several of our
variables show non-linearity across age [19]. Machine learning methods are exploratory;
the solution suggested by the method cannot be shown by mathematics to be optimal, but it
can help identify patterns in the data and motivate hypotheses using the ability to reliably
make predictions using new data. The goal of these algorithms is to calculate the error in
the model as each variable is selected from the other variables. Variables that improve the
accuracy of the prediction are considered the most important. Second, we used logistic
regression to analyze the same set of data, compare the results to XGBoost, and estimate
effect sizes. A drawback of methods such as XGBoost is that they do not provide effect
estimates or p-values. Recent studies have shown that machine learning methods such
as XGBoost outperform logistic regression in predicting the mortality of traumatic brain
injury (Wang et al., 2022 [20]), injuries in hockey players (Luu et al., 2020 [21]), cardiovas-
cular disease risk (Xi et al., 2022 [22]), non-specific neck pain (Liew et al., 2022 [23]), and
next-season baseball player injuries (Karnuta et al., 2020 [24]), although a meta-analysis
of studies predicting acute kidney injury found that they performed similarly (Song et al.,
2021 [25]). A systematic review of 71 studies showed no performance improvement by
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machine learning methods compared to logistic regression for clinical prediction [26]). It
likely depends on the number of variables in the model, the linearity of the relationships
between them, and other mathematical relationships in the data that determine whether
machine learning models outperform logistic regression models.

In previous analyses of both men and women, important factors in experiencing a
work-related agricultural injury included high work-related stress and musculoskeletal
symptoms [19]. In a report using a classification tree, injury was an important classifier
in musculoskeletal symptoms, sleep deprivation, high work-related stress, and exhaus-
tion [27]. The causal relationships between these characteristics of agricultural work cannot
be established in cross-sectional data, but they are likely to be complex. In this study, we
examine only women agricultural operators and use an algorithm published in 2016 that
outperforms other machine learning methods to compare the features that distinguish
women who have reported a work-related injury from those who have not [18]. We expect
that the same factors we have seen before will again be important. High work-related stress,
exhaustion, sleep deprivation, and musculoskeletal symptoms will be primary contributors
to injury in agricultural women. We expected to see differences after comparing the results
of XGBoost and logistic regression due to differences in the algorithms.

2. Materials and Methods
2.1. Sample

The sample derives from three cross-sectional surveys administered in the spring
and summer of 2018, 2020, and 2023 to farm and ranch operators in a seven-state region
(Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, and South Dakota). Each
was an unduplicated sample such that no operators were included in more than one survey.
The paper-based survey was distributed to a random sample of approximately 2500 farm
and ranch operations in each of the seven states in each of the three years. The Farm and
Ranch Health and Safety Survey (FRHSS), consisting of 29 questions, was created by the
Central States Center for Agricultural Safety and Health (CS-CASH). The survey focused
on injuries, chronic health outcomes, work-related exposures, and the use of personal
protective equipment for up to three main operators working on a farm or ranch. All
responses were received by mail and the data were entered into the Research Electronic
Data Capture (REDCap 14.9.6) software. The study was determined to be exempt from
human subject research by the University of Nebraska Medical Center Institutional Review
Board (No. 452-11-EX).

The sampling frame was provided by Farm Market iD (FMiD) (2018 and 2020 surveys)
and US Farm Data (2023 survey), each using a stratified random sample. FMiD and
US Farm Data are for-profit organizations that create farm databases from the United
States Department of Agriculture (USDA) annual surveys, remote sensing data, and other
public and private sources. The FMiD/US Farm Data databases cover approximately
95% of agricultural operations in the United States. Farm and ranch operators with an
email address and an estimated gross farm income of at least USD 5000 were eligible
to participate. Operators were those who ran a farm or ranch business and were not
considered farm workers. The 2018 random sample was sent out in May 2018 with one
follow-up request in June and resulted in a response rate of 19%, including 3268 farms
and ranches and 4423 individual operators. Similarly, the 2020 survey was sent out in
March and the follow-up request was mailed out in June. The 2736 farms that responded
represented 3492 individual farmers and ranchers (response rate of 16%). In the 2023 survey,
1770 farms responded out of 17,497, representing 2367 operators, for a response rate of
10.1%. We included only females who reported being a primary, secondary, or tertiary
operator on a farm or ranch and were 18 years of age or older.
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2.2. Measures

We included 17 measures that were hypothesized to be associated with experiencing
an injury. We included age because it has been shown to be a factor in injury risk [19,28,29].
Work characteristics included whether a woman worked on a farm, ranch, or both; whether
her primary occupation was an agricultural operator or other occupation; and whether she
was a principal, secondary, or tertiary operator on the operation. The percentage of time
spent working on the farm or ranch was a categorical variable (100, 75–99, 50–74, 25–49, 0–24).
These four variables assessed the work responsibilities on the farm and the time available
to accomplish the tasks. We included two diagnosed medical conditions that might inhibit
work productivity, namely respiratory and skin disorders (yes or no). We summed up nine
possible regions of the body (neck, shoulder, upper back, elbows, wrists/hands, low back,
hips/thighs, knees, ankle/feet) that might experience musculoskeletal discomfort based on
the hypothesis that the more discomfort in the body, the greater the impairment an operator
might experience, and impairment could increase the risk of injury. We also added binary
variables (yes/no) for respiratory exposures, exposure to noise, chemical exposures to skin,
and musculoskeletal exposures (working in awkward positions causing strain). We included
a protective factor asking about engaging in prevention exercises to prevent musculoskeletal
disorders (yes/no). Lastly, we included measures of work strain, including work-related sleep
deprivation, high work-related stress, and exhaustion, all of which were binary variables.

The outcome variable, the supervisor in machine learning language, was asked using
the question “How many farm-related injuries occurred to each operator during the past
12 months?”, with potential responses of none, one, two, or three or more. The responses
were categorized into a binary variable, where 0 was coded as not having any injury and 1
was coded when respondents reported at least one injury.

2.3. Statistical Analysis
2.3.1. Sample

Descriptive summary measures were calculated for the entire sample and for the
training data and test data separately. Chi-square tests were used to assure that there were
no statistically significant differences after randomly dividing the sample data into training
and test datasets.

2.3.2. XGBoost

To conduct the machine learning analysis, the three sets of survey data were combined
into a single data file, and the data were randomly shuffled to introduce randomness
into the order of the observations and randomly split into 70% to be used for training
and 30% for testing. XGBoost was used to estimate a model with two boosting iterations,
regularization, and three early stopping rounds to reduce overfitting, and a logistic objective
function with injury (0 = no, 1 = yes) as the supervisor. We applied the specified model to
the training data and then used the trained model with the new test data to estimate the
misclassification rate. The accuracy rate was calculated by comparing how often the actual
outcome in the testing data matched the outcome value predicted by the model with the
new test data. The XGBoost model was subsequently tuned by setting the maximum depth
of each decision tree to three with ten boosting rounds. Variable importance was calculated
using the improvement in model accuracy with each selected variable.

2.3.3. Logistic Regression

In the next step, we tested all 17 variables in univariable and multivariable logistic
regression models to assess their association with injury. We calculated the variance
inflation factor to check for multicollinearity and estimated a final set of variables that
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explained injury as measured by the odds ratios and 95% confidence intervals. To compare
the logistic regression results to the XGBoost results, the variables which were shown
to be important in the tree-based model were used in the univariable and multivariable
logistic regression models, and effect sizes were obtained. The results of the two models
were compared based on the variables selected and their odds ratios and 95% confidence
intervals. Comparisons were also made between the original logistic regression model with
all 17 variables and the XGBoost results.

3. Results
3.1. Sample

The mean age of the 1529 women was 59.7 (SD = 12.2). Most of them were secondary
operators (79.7%), indicating they were the spouse of the primary operator. Further, 56.1%
reported that farming/ranching was their primary occupation and that they spent at least
half of their work time on the operation. The majority reported working primarily on a
farming operation (61%), and about a quarter were both farmers and ranchers. The gross
farm incomes of their operations covered a wide range, with 16% being under USD 50,000
per year and 30% earning at least USD 500,000. Table 1 shows the detailed characteristics of
the sample.

Table 1. Demographics and farm characteristics of sample used in XGBoost analysis.

Variable
Total Sample

n = 1529
n (%)

Training Sample
n = 1070

n (%)

Test Sample
n = 459
n (%)

Injury (outcome)
Yes 156 (10.2) 107 (10.0) 49 (10.7)
No 1373 (89.8) 963 (90.0) 410 (89.3)

Operator
Primary 202 (13.2) 147 (13.7) 55 (12.0)
Secondary 1218 (79.7) 849 (79.4) 369 (80.4)
Tertiary 109 (7.13) 74 (6.92) 35 (7.63)

Primary occupation
Farm/ranch work 847 (56.1) 589 (55.8) 258 (57.0)
Other 662 (43.9) 467 (44.2) 195 (43.0)

Percentage time working on
operation

100% 385 (25.9) 269 (25.9) 116 (26.1)
75–99% 227 (15.3) 158 (15.2) 69 (15.5)
50–74% 223 (15.0) 150 (14.4) 73 (16.4)
25–49% 332 (22.4) 234 (22.5) 98 (22.0)
0–24% 318 (21.4) 229 (22.0) 89 (20.0)

Farm or ranch
Farm 926 (60.6) 654 (61.1) 272 (59.3)
Ranch 231 (15.1) 158 (14.8) 73 (15.9)
Both 372 (24.3) 258 (24.1) 114 (24.8)

Estimated revenue
<50,000 245 (16.1) 179 (16.8) 66 (14.5)
50,000–100,000 143 (9.41) 105 (9.87) 38 (8.33)
100,000–200,000 233 (15.3) 155 (14.6) 78 (17.1)
200,000–300,000 172 (11.3) 127 (11.9) 45 (9.87)
300,000–400,000 150 (9.87) 99 (9.30) 51 (11.2)
400,000–500,000 118 (7.76) 82 (7.71) 36 (7.89)
500,000–1,000,000 287 (18.9) 193 (18.1) 94 (20.6)
1,000,000–2,000,000 128 (8.42) 92 (8.65) 36 (7.89)
2,000,000–3,000,000 27 (1.78) 19 (1.79) 8 (1.75)
3,000,000–5,000,000 12 (0.79) 10 (0.94) 2 (0.44)
>5,000,000 5 (0.33) 3 (0.28) 2 (0.44)
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Table 1. Cont.

Variable
Total Sample

n = 1529
n (%)

Training Sample
n = 1070

n (%)

Test Sample
n = 459
n (%)

Respiratory condition
Yes 417 (27.3) 282 (26.4) 135 (29.4)
No 1112 (72.7) 788 (73.6) 324 (70.6)

Skin disorder
Yes 294 (19.2) 217 (20.3) 77 (16.8)
No 1235 (80.8) 853 (79.7) 382 (83.2)

High work-related stress
Yes 338 (22.1) 226 (21.1) 112 (24.4)
No 1191 (77.9) 844 (78.9) 347 (75.6)

Sleep deprivation
Yes 293 (19.2) 192 (17.9) 101 (22.0)
No 1236 (80.8) 878 (82.1) 358 (78.0)

Exhaustion
Yes 345 (22.6) 230 (21.5) 115 (25.1)
No 1184 (77.4) 840 (78.5) 344 (74.9)

Musculoskeletal discomfort
exposure

Yes 1070 (70.0) 747 (69.8) 323 (70.4)
No 459 (30.0) 323 (30.2) 136 (29.6)

Noise exposure *
Yes 990 (64.7) 675 (63.1) 315 (68.6)
No 539 (35.3) 395 (36.9) 144 (31.4)

Respiratory exposures
Yes 786 (51.4) 548 (51.2) 238 (51.8)
No 743 (48.6) 522 (48.8) 221 (48.2)

Skin exposures
Yes 1042 (68.2) 717 (67.0) 325 (70.8)
No 487 (31.8) 353 (33.0) 134 (29.2)

Use MSD prevention techniques
Yes 1218 (79.7) 851 (79.5) 367 (80.0)
No 311 (20.3) 219 (20.5) 92 (20.0)

Continuous variables Mean (SD) Mean (SD) Mean (SD)

Age 59.7 (12.2) 60.1 (12.2) 58.9 (12.0)

Number of musculoskeletal
disorders 1.26 (1.61) 1.25 (1.62) 1.28 (1.59)

* p-value = 0.04 for differences in test and training samples.

About 20% of the women who responded reported high stress, sleep deprivation, and
exhaustion (Table 1). The majority reported being exposed to loud noise, respiratory and
skin irritants, and work postures that could result in musculoskeletal symptoms (MSSs).
Nearly 80% reported taking preventive measures to reduce their risk of musculoskeletal
discomfort, although the mean number of body areas where they experienced discomfort
was greater than one. Approximately 10% (n = 156) of the women reported having had
an injury. Of those who reported an injury, 105 (6.81%) sought care from a doctor and 16
(1.04%) sought care at a hospital. Although 65 (38%) did not lose time from work, 24 (14%)
lost at least 30 days from work.

3.2. XGBoost

The total sample of 1529 female agricultural operators was split into 1070 in the training
data and 459 in the testing data. With 17 variables, it would not be surprising to see a spuri-
ous statistical association in these groups, and this occurred with noise exposure (X2 = 4.32,
p = 0.04). None of the other comparisons between the training and testing groups were close to
statistically significant. The XGBoost results showed a misclassification rate of 12.85% before
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tuning the model and 11.55% after tuning the model. This represents an accuracy rate of
better than 88% after tuning the initial model. The most important contributors to explaining
injury as measured by the improvement in model accuracy were the total number of body
areas affected by MSSs (0.60), age (0.29), sleep deprivation (0.05), high work-related stress
(0.04), and exposure to respiratory irritants (0.02). None of the other 12 variables contributed
to improving the classification of those with and without an injury.

3.3. Logistic Regression

Fifteen of the seventeen variables were significantly associated with injury in the
univariable logistic regression models (Table 2). The only exceptions were the role of the
operator (primary, secondary, tertiary) and whether the operation was a farm, ranch, or
both (p = 0.05). The criteria for selecting variables for the XGBoost model were shown to
be valid choices based on the univariable logistic regression models. In the multivariable
model, which included all 17 variables, higher incomes were associated with more reported
injuries, as were high work-related stress, younger age, and the number of MSSs. The
variance inflation factor for each variable was less than 2.5, so collinearity should not have
been a problem in the model. Only four of the seventeen variables remained statistically
significant in the final adjusted logistic regression model (Table 2).

Table 2. Odds ratios (95% confidence intervals) from logistic regression models of 17 variables
hypothesized to be associated with injury in 1529 female agricultural operators.

Variable Univariable
OR (95% CI)

Multivariable
OR (95% CI)

Operator
Primary Reference Reference
Secondary 0.91 (0.56, 1.47) 0.78 (0.45, 1.34)
Tertiary 1.01 (0.48, 2.13) 0.72 (0.31, 1.69)

Primary occupation
Farm/ranch work Reference Reference
Other 0.55 (0.38, 0.78) 0.68 (0.38, 1.22)

Percentage time working on operation
100% Reference Reference
75–99% 1.05 (0.64, 1.73) 1.09 (0.64, 1.85)
50–74% 1.03 (0.63, 1.70) 1.39 (0.78, 2.45)
25–49% 0.82 (0.51, 1.31) 1.50 (0.75, 3.00)
0–24% 0.33 (0.18, 0.61) 0.93 (0.40, 2.17)

Farm or ranch
Both Reference Reference
Farm 0.70 (0.48, 1.02) 0.70 (0.47, 1.06)
Ranch 0.94 (0.57, 1.56) 0.86 (0.49, 1.49)

Estimated revenue

1.11 (1.03, 1.18)
No Reference Reference
Yes 1.78 (1.26, 2.51) 1.24 (0.84, 1.84)

Diagnosed skin disorder
No Reference Reference
Yes 1.70 (1.17, 2.48) 1.45 (0.94, 2.22)

High work-related stress
No Reference Reference
Yes 2.97 (2.10, 4.19) 1.61 (1.03, 2.52)

Sleep deprivation
No Reference Reference
Yes 2.43 (1.70, 3.48) 1.06 (0.67, 1.68)

Exhaustion
No Reference Reference
Yes 2.54 (1.80, 3.59) 0.96 (0.60, 1.52)
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Table 2. Cont.

Variable Univariable
OR (95% CI)

Multivariable
OR (95% CI)

Work positions leading to musculoskeletal
discomfort

No Reference Reference
Yes 3.40 (2.08, 5.57) 1.80 (0.94, 3.42)

Noise exposure
No Reference Reference
Yes 1.85 (1.26, 2.72) 1.03 (0.64, 1.66)

Respiratory exposures
No Reference Reference
Yes 2.23 (1.57, 3.18) 0.97 (0.62, 1.52)

Skin exposures
No Reference Reference
Yes 2.19 (1.44, 3.33) 0.94 (0.56, 1.57)

Use MSD prevention techniques
No Reference Reference
Yes 2.80 (1.59, 4.92) 1.84 (0.93, 3.62)

Age 0.97 (0.96, 0.99) 0.98 (0.96, 0.99)

Number of musculoskeletal symptoms 1.39 (1.27, 1.51) 1.25 (1.13, 1.40)

3.4. Comparing XGBoost to Logistic Regression

Table 3 shows the four variables deemed important from the XGBoost model when
used in the univariable and multivariable logistic regression models. All variables were
statistically significant in the univariable analysis. Although the total number of MSSs was
of greatest importance in the XGBoost model, it was of secondary importance in the logistic
regression model. However, the 95% CI shows more certainty around the musculoskeletal
variable than it does around the stress variable. Respiratory exposure was not statistically
significant in the multivariable model, and it was the least important in the XGBoost model.
However, it had a strong association with injury in the univariable model, and it is not clear
which other variable in the model would have impacted this OR in a downward direction.

Table 3. Odds ratios and 95% confidence intervals (CIs) from logistic regression of variables identified
as important in XGBoost machine learning algorithm.

Variable Univariable
OR (95% CI)

Multivariable
OR (95% CI)

Musculoskeletal symptoms 1.39 (1.27, 1.51) 1.28 (1.17, 1.41)

Age 0.97 (0.96, 0.99) 0.98 (0.96, 0.99)

Sleep deprivation 2.43 (1.70, 3.48) 1.14 (0.74, 1.75)

High work-related stress 2.97 (2.10, 4.19) 1.57 (1.03, 2.39)

Respiratory exposures 2.23 (1.57, 3.18) 1.42 (0.97, 2.09)

XGBoost did not find income to be an important predictor, and the multivariable
logistic regression model did not find sleep deprivation or respiratory exposures to be
associated with injury. The models agree that stress, MSSs, and age separate injured women
from uninjured women.

4. Discussion
It is reassuring that traditional logistic regression models do not differ greatly from ma-

chine learning methodologies. Five of seventeen variables were identified by the XGBoost
algorithm, and four of seventeen were significant in the logistic regression model. XGBoost
and logistic regression agreed that high work-related stress and MSSs are related to experi-
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encing an agricultural injury in women, but there were differences in the results. XGBoost
identified the total number of MSSs in various body regions to be the most important factor
associated with injury. Since the method does not infer a causal direction, it might be that
MSSs are a result of an injury and therefore the model selected them as being the most
important determinant of injury. It might also be that MSSs create vulnerability to injury.
The relationship is possibly reciprocal. More work should be conducted to disentangle this
association.

The second most important feature of injury in the XGBoost model was younger
age, although this variable was not as important based on the odds ratio from the logistic
regression. Sleep deprivation, high work-related stress, and respiratory exposures were also
important in XGBoost, but the logistic regression retained only stress in the multivariable
model. The relationship between stress and sleep may be complicated and not captured in
traditional models of injury. This complexity may be best captured by machine learning
algorithms rather than maximum likelihood estimation.

Although both XGBoost and logistic regression are classification methods where
the outcome is a binary variable and the features are a set of explanatory variables, the
algorithms are completely different. Whereas maximum likelihood adjusts all variables
simultaneously to find the value of the parameters that maximize the function (regression
equation), gradient descent methods find a minimum function that reduces the error at each
iteration so it learns from the previous iterations. Gradient descent is used to iteratively
search a grid that will minimize the loss function. The result is that logistic regression
models are more likely to be influenced by other variables in the model and methods such
as XGBoost less so. This can create differing results, but both can be informative.

On any given agricultural operation, the possible set of factors will influence each
other in ways that are unique to a specific operation. This could make gradient descent
methods more useful because they are likely to look at each variable independent of every
other variable while iteratively correcting for classification errors that occur. The entire
approach is designed to increase the accuracy of prediction, which is important when trying
to understand how injuries happen. Knowledge of agricultural safety and health must be
employed to interpret the results when they may not appear causal but are reproducible.

Logistic regression models do not handle irregular patterns in the data, including
non-linearity, inconsistent interactions, and collinearity between variables. XGBoost does a
better job than other tree-based methods or even neural networks because of its ensemble
approach to building trees, removing uninformative features, and creating linear combi-
nations that better represent non-continuous data [16]. Tree-based methods adapt well to
tabular data with binary or ordinal variables.

The results highlight the important need for more work on musculoskeletal disorders
and their relationship to stress and sleep deprivation in terms of the risk of injury. The
frequency of women reporting any MSS was high in this sample (62.9%). The reported
frequency of women using preventive techniques to prevent musculoskeletal symptoms
showed that 32.9% of those who did not report any discomfort did not use any prevention
techniques; however, 56.2% of those with no discomfort did report using preventive
techniques. The 24% difference in these numbers suggests that, possibly, using prevention
techniques reduces musculoskeletal symptoms, or that the 32.2% will start performing
exercises to prevent symptoms should they begin developing symptoms.

Other interesting results that might be unique to women operators include the lack of
association between injury and their role in the operation; whether the operation was a farm,
ranch, or both; whether they worked off the farm or ranch; and time spent working on the
operation. A study of large-machinery-related injuries in 7420 male and female agricultural
operators in the Midwest found that a higher risk of injury was associated with being male,
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being older in age, having a history of a prior injury, and working an increasing number of
hours on the operation [30]. An older case–control study of strictly female operators found
only two significant risk factors for injury, namely working an increasing number of hours
and the presence of bulls on the operation [31]. Risk factors have possibly changed for women
working on farms and ranches since these studies were published, but a woman’s work
responsibilities and time spent working on the operation did not appear to be important
risk factors for injury. It is an interesting question whether a history of a prior injury creates
vulnerability to a subsequent injury due to having musculoskeletal discomfort.

The limitations of this study are several, including the limited number of risk factors
asked about, the self-selected nature of the survey data, and the potential biases present
when asking people to recall events over the past year. If an injury is serious, farmers
are likely to remember it. It is also possible that those with an injury are more likely to
be interested in responding to a survey about injuries. The number of important factors
associated with experiencing an injury was low in this study, and many others were not
examined due to not being asked about in our survey or being unknown. The cross-sectional
surveillance data do not allow us to draw causal inferences.

5. Conclusions
We found minor differences between the results from the machine learning method

used in XGBoost and traditional logistic regression. XGBoost identified a few additional
variables that logistic regression did not, but they were not highly important in the machine
learning model. The models agreed that work-related stress and musculoskeletal symptoms
were important modifiable variables that either are due to injury or might cause someone
to be more vulnerable to injury. Although it may be a difficult task to intervene to reduce
the stress that agricultural women are feeling, sleep is a modifiable target that would likely
impact both perceived stress and a person’s reaction to stress. Although we did not identify
any novel aspect of farmwork where we can intervene to reduce injury, we have more work
to carry out to understand how to reduce musculoskeletal pain and discomfort and how
this might reduce the stressors female operators are experiencing.
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