Effects of 7-Day Ketone Ingestion and a Physiological Workload on Postural Stability, Cognitive, and Muscular Exertion Measures in Professional Firefighters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Experimental Procedures
2.4. Data Analyses
2.5. Statistical Analysis
3. Results
3.1. Electromyography MVIC
3.2. Postural Stability
3.3. Electromyography during Postural Stability
3.4. Cognitive Task
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cloutier, E.; Champoux, D. Injury risk profile and aging among Quebec firefighters. Int. J. Ind. Ergon. 2000, 25, 513–523. [Google Scholar] [CrossRef]
- Kong, P.W.; Suyama, J.; Cham, R.; Hostler, D. The relationship between physical activity and thermal protective clothing on functional balance in firefighters. Res. Q. Exerc. Sport 2012, 83, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Bureau of Labors Statistics. Fatal and Non-Fatal Occupational Injuries by Industry, Event, or Exposure. US Department of Labor, 2017. Available online: https://www.bls.gov/iif/oshcdnew2017.htm (accessed on 28 January 2019).
- Kincl, L.D.; Bhattacharya, A.; Succop, P.A.; Clark, C.S. Postural sway measurements: A potential safety monitoring technique for workers wearing personal protective equipment. Appl. Occup. Environ. Hyg. 2002, 17, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Punakallio, A. Balance abilities of workers in physically demanding jobs: With special reference to firefighters of different ages. J. Sports Sci. Med. 2005, 4, 1–47. [Google Scholar]
- Punakallio, A.; Lusa, S.; Luukkonen, R. Protective equipment affects balance abilities differently in younger and older firefighters. Aviat. Space Environ. Med. 2003, 74, 1151–1156. [Google Scholar]
- Garner, J.C.; Wade, C.; Garten, R.; Chander, H.; Acevedo, E. The influence of firefighter boot type on balance. Int. J. Ind. Ergon. 2013, 43, 77–81. [Google Scholar] [CrossRef]
- Chander, H.; Garner, J.C.; Wade, C. Impact on balance while walking in occupational footwear. Footwear Sci. 2014, 6, 59–66. [Google Scholar] [CrossRef]
- Chander, H.; Morris, C.E.; Wilson, S.J.; Garner, J.C.; Wade, C. Impact of alternative footwear on human balance. Footwear Sci. 2016, 8, 165–174. [Google Scholar] [CrossRef]
- DeBusk, H.; Hill, C.M.; Chander, H.; Knight, A.C.; Babski-Reeves, K. Influence of military workload and footwear on static and dynamic balance performance. Int. J. Ind. Ergon. 2018, 64, 51–58. [Google Scholar] [CrossRef]
- Perroni, F.; Guidetti, L.; Cignitti, L.; Baldari, C. Psychophysiological responses of firefighters to emergencies: A review. Open Sports Sci. J. 2014, 7 (Suppl. 1), 8–15. [Google Scholar] [CrossRef]
- Krikorian, R.; Shidler, M.D.; Dangelo, K.; Couch, S.C.; Benoit, S.C.; Clegg, D.J. Dietary ketosis enhances memory in mild cognitive impairment. Neurobiol. Aging 2012, 33, 425.e19–425.e27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, A.J.; Knight, N.S.; Cole, M.A.; Cochlin, L.E.; Carter, E.; Tchabanenko, K.; Pichulik, T.; Gulston, M.K.; Atherton, H.J.; Schroeder, M.A.; et al. Novel ketone diet enhances physical and cognitive performance. FASEB J. 2016, 30, 4021–4032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reger, M.A.; Henderson, S.T.; Hale, C.; Cholerton, B.; Baker, L.D.; Watson, G.S.; Hyde, K.; Chapman, D.; Craft, S. Effects of β-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol. Aging 2004, 25, 311–314. [Google Scholar] [CrossRef]
- Henderson, S.T.; Vogel, J.L.; Barr, L.J.; Garvin, F.; Jones, J.J.; Costantini, L.C. Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: A randomized, double-blind, placebo-controlled, multicenter trial. Nutr. Metab. 2009, 6, 31. [Google Scholar] [CrossRef] [PubMed]
- Meeusen, R.; Decroix, L. Nutritional Supplements and the Brain. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Waldman, H.S.; Basham, S.A.; Price, F.G.; Smith, J.W.; Chander, H.; Knight, A.C.; Krings, B.M.; McAllister, M.J. Exogenous ketone salts do not improve cognitive responses after a high-intensity exercise protocol in healthy college-aged males. Appl. Physiol. Nutr. Metab. 2018, 43, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Rodger, S.; Plews, D.; Laursen, P.; Driller, M. The effects of an oral β-hydroxybutyrate supplement on exercise metabolism and cycling performance. J. Sci. Cycl. 2017, 6, 26–31. [Google Scholar]
- O’Malley, T.; Myette-Cote, E.; Durrer, C.; Little, J.P. Nutritional ketone salts increase fat oxidation but impair high-intensity exercise performance in healthy adult males. Appl. Physiol. Nutr. Metab. 2017, 42, 1031–1035. [Google Scholar] [CrossRef]
- Stubbs, B.J.; Cox, P.J.; Evans, R.D.; Santer, P.; Miller, J.J.; Faull, O.K.; Magor-Elliott, S.; Hiyama, S.; Stirling, M.; Clarke, K. On the metabolism of exogenous ketones in humans. Front. Physiol. 2017, 8, 848. [Google Scholar] [CrossRef]
- Maalouf, M.; Sullivan, P.G.; Davis, L.; Kim, D.Y.; Rho, J.M. Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation. Neuroscience 2007, 145, 256–264. [Google Scholar] [CrossRef] [Green Version]
- Maalouf, M.; Rho, J.M.; Mattson, M.P. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res. Rev. 2009, 59, 293–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, A.J.; Swain, J.C.; McWhirter, K.L.; Knight, A.C.; Carruth, D.W.; Chander, H. Impact of occupational footwear and workload on lower extremity muscular exertion. Int. J. Exerc. Sci. 2018, 11, 331–341. [Google Scholar]
- Hill, C.M.; DeBusk, H.; Knight, A.C.; Chander, H. Influence of military-type workload and footwear on muscle exertion during static standing. Footwear Sci. 2017, 9, 169–180. [Google Scholar] [CrossRef]
- DiDomenico, A.; Nussbaum, M.A. Effects of different physical workload parameters on mental workload and performance. Int. J. Ind. Ergon. 2011, 41, 255–260. [Google Scholar] [CrossRef]
- Morris, C.E.; Winchester, L.J.; Jackson, A.J.; Tomes, A.S.; Neal, W.A.; Wilcoxen, D.M.; Chander, H.; Arnett, S.W. Effect of a simulated tactical occupation task on physiological strain index, stress and inflammation. Int. J. Occup. Saf. Ergon. 2018. [Google Scholar] [CrossRef] [PubMed]
- Morris, C.E.; Winchester, L.J.; Jackson, A.J.; Tomes, A.S.; Neal, W.A.; Wilcoxen, D.M.; Chander, H.; Arnett, S.W. Effect of a simulated tactical occupation stressor and task complexity on mental focus and related physiological parameters. Int. J. Ind. Ergon. 2018, 66, 200–205. [Google Scholar] [CrossRef]
Body Mass (kg) | Height (cm) | Body Mass Index (BMI) (kg/m2) | Gear Mass (kg) | Total Mass with Gear (kg) | VO2peak (L/min) | 60% VO2peak (L/min) |
---|---|---|---|---|---|---|
84.1 ± 13.4 | 177.1 ± 5.3 | 26.7 ± 3.5 | 18.6 ± 1.0 | 102.7 ± 13.5 | 4.11 ± 0.6 | 2.47 ± 0.4 |
Postural Stability COP Variables | PLA | KS | ||
---|---|---|---|---|
PRE | POST | PRE | POST | |
EC Condition | ||||
DISP-ML (cm) | 0.218 ± 0.08 | 0.228 ± 0.08 * | 0.209 ± 0.09 | 0.247 ± 0.09 * |
DISP-AP (cm) | 0.508 ± 0.12 | 0.500 ± 0.17 | 0.443 ± 0.09 | 0.540 ± 0.18 # |
EA (cm2) | 3.42 ± 2.11 | 3.43 ± 2.04 * | 3.22 ± 1.52 | 4.39 ± 2.34 * |
EOT Condition | ||||
EA (cm2) | 30.4 ± 9.66 | 39.10 ± 19.87 * | 33.47 ± 15.26 | 37.19 ± 16 * |
EMG during MVIC | ||||
Mean TA (mV) | 396.27 ± 145 | 293.4 ± 123 * | 385.72 ± 149 * | 279.10 ± 113 * |
Mean MG (mV) | 326.79 ± 114 | 264.42 ± 99 * | 292.64 ± 94 | 245.7 ± 121 * |
Mean VM (mV) | 360.6 ± 212 | 283.22 ± 159 * | 418.8 ± 156 | 333.10 ± 129 * |
Peak TA (mV) | 2492.3 ± 887 | 1707.9 ± 673 * | 2165.7 ± 762 | 1651.9 ± 651 * |
Peak MG (mV) | 2229.3 ± 688 | 1796.3 ± 718 * | 2018.9 ± 611 | 1683.1 ± 837 * |
Peak VM (mV) | 2123 ± 1033 | 1621 ± 697 * | 2316.7 ± 816 | 1802.4 ± 594 * |
EMG during Postural Stability | ||||
EC Condition | ||||
%MVIC BF | 6.18 ± 4.5 | 3.35 ± 2.5 * | 7.30 ± 6.1 | 5.84 ± 5.5 * |
EOT Condition | ||||
%MVIC BF | 17.345 ± 8.0 | 13.17 ± 6.0 * | 21.67 ± 12.2 | 17.51 ± 16.6 * |
Cognitive Performance | ||||
Slowest Response Times (s) | 0.72 ± 0.12 * | 0.67 ± 0.12 * | 0.67 ± 0.08 | 0.65 ± 0.11 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chander, H.; McAllister, M.J.; Holland, A.M.; Waldman, H.S.; Krings, B.M.; Swain, J.C.; Turner, A.J.; Basham, S.A.; Smith, J.W.; Knight, A.C. Effects of 7-Day Ketone Ingestion and a Physiological Workload on Postural Stability, Cognitive, and Muscular Exertion Measures in Professional Firefighters. Safety 2019, 5, 15. https://doi.org/10.3390/safety5010015
Chander H, McAllister MJ, Holland AM, Waldman HS, Krings BM, Swain JC, Turner AJ, Basham SA, Smith JW, Knight AC. Effects of 7-Day Ketone Ingestion and a Physiological Workload on Postural Stability, Cognitive, and Muscular Exertion Measures in Professional Firefighters. Safety. 2019; 5(1):15. https://doi.org/10.3390/safety5010015
Chicago/Turabian StyleChander, Harish, Matthew J. McAllister, Angelia M. Holland, Hunter S. Waldman, Benjamin M. Krings, Jonathan C. Swain, Alana J. Turner, Steven A. Basham, JohnEric W. Smith, and Adam C. Knight. 2019. "Effects of 7-Day Ketone Ingestion and a Physiological Workload on Postural Stability, Cognitive, and Muscular Exertion Measures in Professional Firefighters" Safety 5, no. 1: 15. https://doi.org/10.3390/safety5010015
APA StyleChander, H., McAllister, M. J., Holland, A. M., Waldman, H. S., Krings, B. M., Swain, J. C., Turner, A. J., Basham, S. A., Smith, J. W., & Knight, A. C. (2019). Effects of 7-Day Ketone Ingestion and a Physiological Workload on Postural Stability, Cognitive, and Muscular Exertion Measures in Professional Firefighters. Safety, 5(1), 15. https://doi.org/10.3390/safety5010015