Relationship between Butyrylcholinesterase Activity and Cognitive Ability in Workers Exposed to Chlorpyrifos
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Population and Sample Study
2.3. Techniques and Procedures
2.4. Statistical Analysis
2.5. Ethical Considerations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Front. Public Health 2016, 4, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, R.; Huang, X.; Huang, J.; Li, Y.; Zhang, C.; Yin, Y.; Chen, Z.; Jin, Y.; Cai, J.; Cui, F. Long- and short-term health effects of pesticide exposure: A cohort study from China. PLoS ONE 2015, 10, e0128766. [Google Scholar] [CrossRef] [PubMed]
- Saunders, M.; Magnanti, B.L.; Correia Carreira, S.; Yang, A.; Alamo-Hernández, U.; Riojas-Rodriguez, H.; Calamandrei, G.; Koppe, J.G.; Krayer von Krauss, M.; Keune, H.; et al. Chlorpyrifos and neurodevelopmental effects: A literature review and expert elicitation on research and policy. Environ. Health 2012, 11, S5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker. , E.L.R.M.B. Organophosphate Toxicity; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- Delgado-Zegarra, J.; Alvarez-Risco, A.; Yáñez, J.A. Indiscriminate use of pesticides and lack of sanitary control in the domestic market in PeruUso indiscriminado de pesticidas e falta de controle sanitário do mercado interno no Peru. Rev. Panam. De Salud Publica Pan Am. J. Public Health 2018, 42, e3. [Google Scholar] [CrossRef] [Green Version]
- European Comission. Chlorpyrifos & Chlorpyrifos-Methyl. Available online: https://food.ec.europa.eu/plants/pesticides/approval-active-substances/renewal-approval/chlorpyrifos-chlorpyrifos-methyl_en (accessed on 29 October 2022).
- CDC. Intoxicaciones Agudas Por Plaguicidas Por Semanas Epidemiológicas. Perú 2016-2018; Centro Nacional de Epidemiología, Prevención y Control de Enfermedades: Lima, Peru, 2019. [Google Scholar]
- Lee, Y.S.; Lewis, J.A.; Ippolito, D.L.; Hussainzada, N.; Lein, P.J.; Jackson, D.A.; Stallings, J.D. Repeated exposure to neurotoxic levels of chlorpyrifos alters hippocampal expression of neurotrophins and neuropeptides. Toxicology 2016, 340, 53–62. [Google Scholar] [CrossRef]
- Ispas, D.; Borman, W.C. Personnel Selection, Psychology of. In International Encyclopedia of the Social & Behavioral Sciences, 2nd ed.; Wright, J.D., Ed.; Elsevier: Oxford, UK, 2015; pp. 936–940. [Google Scholar] [CrossRef]
- Aloizou, A.M.; Siokas, V.; Vogiatzi, C.; Peristeri, E.; Docea, A.O.; Petrakis, D.; Provatas, A.; Folia, V.; Chalkia, C.; Vinceti, M.; et al. Pesticides, cognitive functions and dementia: A review. Toxicol. Lett. 2020, 326, 31–51. [Google Scholar] [CrossRef]
- Gunnarsson, L.G.; Bodin, L. Occupational Exposures and Neurodegenerative Diseases-A Systematic Literature Review and Meta-Analyses. Int. J. Environ. Res. Public Health 2019, 16, 337. [Google Scholar] [CrossRef] [Green Version]
- Gonzales, M.M.; Garbarino, V.R.; Pollet, E.; Palavicini, J.P.; Kellogg, D.L., Jr.; Kraig, E.; Orr, M.E. Biological aging processes underlying cognitive decline and neurodegenerative disease. J. Clin. investigation 2022, 132, e158413. [Google Scholar] [CrossRef]
- Dalmolin, S.P.; Dreon, D.B.; Thiesen, F.V.; Dallegrave, E. Biomarkers of occupational exposure to pesticides: Systematic review of insecticides. Environ. Toxicol. Pharmacol. 2020, 75, 103304. [Google Scholar] [CrossRef]
- Jokanović, M.; Maksimović, M. Abnormal cholinesterase activity: Understanding and interpretation. Eur. J. Clin. Chem. Clin. Biochem. J. Forum Eur. Clin. Chem. Soc. 1997, 35, 11–16. [Google Scholar]
- Lockridge, O. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol. Ther. 2015, 148, 34–46. [Google Scholar] [CrossRef]
- Strelitz, J.; Engel, L.S.; Keifer, M.C. Blood acetylcholinesterase and butyrylcholinesterase as biomarkers of cholinesterase depression among pesticide handlers. Occup. Environ. Med. 2014, 71, 842–847. [Google Scholar] [CrossRef] [Green Version]
- Rosales, J. Uso de marcadores genotoxicológicos para la evaluación de agricultores expuestos a plaguicldas organofosforados. An. De La Fac. De Med. 2015, 76, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Cataño, H.C.; Carranza, E.; Huamaní, C.; Hernández, A.F. Plasma cholinesterase levels and health symptoms in peruvian farm workers exposed to organophosphate pesticides. Arch. Environ. Contam. Toxicol. 2008, 55, 153–159. [Google Scholar] [CrossRef]
- Corral, S.A.; de Angel, V.; Salas, N.; Zúñiga-Venegas, L.; Gaspar, P.A.; Pancetti, F. Cognitive impairment in agricultural workers and nearby residents exposed to pesticides in the Coquimbo Region of Chile. Neurotoxicology Teratol. 2017, 62, 13–19. [Google Scholar] [CrossRef]
- Ramírez-Santana, M.; Zúñiga-Venegas, L.; Corral, S.; Roeleveld, N.; Groenewoud, H.; Van der Velden, K.; Scheepers, P.T.J.; Pancetti, F. Reduced neurobehavioral functioning in agricultural workers and rural inhabitants exposed to pesticides in northern Chile and its association with blood biomarkers inhibition. Environ. Health 2020, 19, 84. [Google Scholar] [CrossRef]
- Dobbins, D.L.; Chen, H.; Cepeda, M.J.; Berenson, L.; Talton, J.W.; Anderson, K.A.; Burdette, J.H.; Quandt, S.A.; Arcury, T.A.; Laurienti, P.J. Comparing impact of pesticide exposure on cognitive abilities of Latinx children from rural farmworker and urban non-farmworker families in North Carolina. Neurotoxicology Teratol. 2022, 92, 107106. [Google Scholar] [CrossRef]
- Benavides-Piracón, J.A.; Hernández-Bonilla, D.; Menezes-Filho, J.A.; van Wendel de Joode, B.; Lozada, Y.A.V.; Bahia, T.C.; Cortes, M.A.Q.; Achury, N.J.M.; Muñoz, I.A.M.; Pardo, M.A.H. Prenatal and postnatal exposure to pesticides and school-age children’s cognitive ability in rural Bogotá, Colombia. Neurotoxicology 2022, 90, 112–120. [Google Scholar] [CrossRef]
- Kalloo, G.; Wellenius, G.A.; McCandless, L.; Calafat, A.M.; Sjodin, A.; Sullivan, A.J.; Romano, M.E.; Karagas, M.R.; Chen, A.; Yolton, K.; et al. Chemical mixture exposures during pregnancy and cognitive abilities in school-aged children. Environ. Res. 2021, 197, 111027. [Google Scholar] [CrossRef]
- van Wendel de Joode, B.; Mora, A.M.; Lindh, C.H.; Hernández-Bonilla, D.; Córdoba, L.; Wesseling, C.; Hoppin, J.A.; Mergler, D. Pesticide exposure and neurodevelopment in children aged 6-9 years from Talamanca, Costa Rica. Cortex A J. Devoted Study Nerv. Syst. Behav. 2016, 85, 137–150. [Google Scholar] [CrossRef] [Green Version]
- Munoz-Quezada, M.T.; Lucero, B.A.; Iglesias, V.P.; Munoz, M.P.; Cornejo, C.A.; Achu, E.; Baumert, B.; Hanchey, A.; Concha, C.; Brito, A.M.; et al. Chronic exposure to organophosphate (OP) pesticides and neuropsychological functioning in farm workers: A review. Int. J. Occup. Environ. Health 2016, 22, 68–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanc-Lapierre, A.; Bouvier, G.; Gruber, A.; Leffondre, K.; Lebailly, P.; Fabrigoule, C.; Baldi, I. Cognitive disorders and occupational exposure to organophosphates: Results from the PHYTONER study. Am. J. Epidemiol. 2013, 177, 1086–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kell, H.J.; Lang, J.W.B. Specific Abilities in the Workplace: More Important Than g? J. Intell. 2017, 5, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Lobo, A.; Saz, P.; Marcos, G.; Día, J.L.; de la Cámara, C.; Ventura, T.; Morales Asín, F.; Fernando Pascual, L.; Montañés, J.A.; Aznar, S. Revalidation and standardization of the cognition mini-exam (first Spanish version of the Mini-Mental Status Examination) in the general geriatric population. Med. Clin. 1999, 112, 767–774. [Google Scholar]
- Custodio, n.; García, A.; Montesinos, R.; Lira, D.; Bendezú, L. Validación de la prueba de dibujo del reloj—versión de Manos—como prueba de cribado para detectar demencia en una población adulta mayor de Lima, Perú. Rev. Peru. De Med. Exp. Y Salud Publica 2011, 28, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Custodio, n.; Lira, D. Adaptación peruana del Minimental State Examination (MMSE). An. De La Fac. De Med. 2014, 75, 69. [Google Scholar] [CrossRef] [Green Version]
- Plassman, B.L.; Williams, J.W., Jr.; Burke, J.R.; Holsinger, T.; Benjamin, S. Systematic review: Factors associated with risk for and possible prevention of cognitive decline in later life. Ann. Intern. Med. 2010, 153, 182–193. [Google Scholar] [CrossRef] [Green Version]
- Ziem, G. Pesticide spraying and health effects. Environ. Health Perspect. 2005, 113, A150–A151. [Google Scholar] [CrossRef] [Green Version]
- Baharuddin, M.R.; Sahid, I.B.; Noor, M.A.; Sulaiman, N.; Othman, F. Pesticide risk assessment: A study on inhalation and dermal exposure to 2,4-D and paraquat among Malaysian paddy farmers. J. Environ. Sci. Health. B Pestic. Food Contam. Agric. Wastes 2011, 46, 600–607. [Google Scholar] [CrossRef]
- Rastogi, S.K.; Singh, V.K.; Kesavachandran, C.; Jyoti; Siddiqui, M.K.J.; Mathur, N.; Bharti, R.S. Monitoring of plasma butyrylcholinesterase activity and hematological parameters in pesticide sprayers. Indian J. Occup. Environ. Med. 2008, 12, 29–32. [Google Scholar] [CrossRef]
- Krenz, J.E.; Hofmann, J.N.; Smith, T.R.; Cunningham, R.N.; Fenske, R.A.; Simpson, C.D.; Keifer, M. Determinants of butyrylcholinesterase inhibition among agricultural pesticide handlers in Washington State: An update. Ann. Occup. Hyg. 2015, 59, 25–40. [Google Scholar] [CrossRef] [Green Version]
- Peter, J.V.; Sudarsan, T.I.; Moran, J.L. Clinical features of organophosphate poisoning: A review of different classification systems and approaches. Indian J. Crit. Care Med. Peer Rev. Off. Publ. Indian Soc. Crit. Care Med. 2014, 18, 735–745. [Google Scholar] [CrossRef] [Green Version]
- Franco, R.; Li, S.; Rodriguez-Rocha, H.; Burns, M.; Panayiotidis, M.I. Molecular mechanisms of pesticide-induced neurotoxicity: Relevance to Parkinson’s disease. Chem. Biol. Interact. 2010, 188, 289–300. [Google Scholar] [CrossRef] [Green Version]
- Barrett, J.R. More Concerns for Farmers: Neurologic Effects of Chronic Pesticide Exposure. Environ. Health Perspect. 2005, 113, A472. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, n.; Hashizume, M. A systematic review of the influence of occupational organophosphate pesticides exposure on neurological impairment. BMJ Open 2014, 4, e004798. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Chong, E.; Hilal, S.; Ikram, M.K.; Venketasubramanian, N.; Chen, C. Beyond Screening: Can the Mini-Mental State Examination be Used as an Exclusion Tool in a Memory Clinic? Diagnostics 2015, 5, 475–486. [Google Scholar] [CrossRef] [Green Version]
- Bertolucci, P.H.; Brucki, S.M.; Campacci, S.R.; Juliano, Y. The Mini-Mental State Examination in a general population: Impact of educational status. Arq. De Neuro-Psiquiatr. 1994, 52, 1–7. [Google Scholar] [CrossRef]
- Zúñiga-Venegas, L.A.; Hyland, C.; Muñoz-Quezada, M.T.; Quirós-Alcalá, L.; Butinof, M.; Buralli, R.; Cardenas, A.; Fernandez, R.A.; Foerster, C.; Gouveia, N. Health Effects of Pesticide Exposure in Latin American and the Caribbean Populations: A Scoping Review. Environ. Health Perspect. 2022, 130, 096002. [Google Scholar] [CrossRef]
- Akhoundzardeini, M.; Zare Sakhvidi, M.J.; Teimouri, F.; Mokhtari, M. Association between Exposure to Pesticides and Cognitive Function in Greenhouse Workers (Case Study: Ahmadabad Village of Yazd Province). J. Environ. Health Sustain. Dev. 2021, 6, 1388–1398. [Google Scholar] [CrossRef]
- Fiedler, n.; Rohitrattana, J.; Siriwong, W.; Suttiwan, P.; Ohman Strickland, P.; Ryan, P.B.; Rohlman, D.S.; Panuwet, P.; Barr, D.B.; Robson, M.G. Neurobehavioral effects of exposure to organophosphates and pyrethroid pesticides among Thai children. Neurotoxicology 2015, 48, 90–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jett, D.A.; Navoa, R.V.; Beckles, R.A.; McLemore, G.L. Cognitive Function and Cholinergic Neurochemistry in Weanling Rats Exposed to Chlorpyrifos. Toxicol. Appl. Pharmacol. 2001, 174, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.C.R.; Hawkins, E.; Jahr, F.M.; McClay, J.L.; Deshpande, L.S. Repeated exposure to chlorpyrifos is associated with a dose-dependent chronic neurobehavioral deficit in adult rats. Neurotoxicology 2022, 90, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Mora, A.M.; Baker, J.M.; Hyland, C.; Rodríguez-Zamora, M.G.; Rojas-Valverde, D.; Winkler, M.S.; Staudacher, P.; Palzes, V.A.; Gutiérrez-Vargas, R.; Lindh, C.; et al. Pesticide exposure and cortical brain activation among farmworkers in Costa Rica. Neurotoxicology 2022, 93, 200–210. [Google Scholar] [CrossRef]
- Saraji, M.; Talebi, K.; Balali-Mood, M.; Imani, S. Urinary metabolites of diazinon and chlorpyrifos in sprayer operators and farm workers of a potato farm. J. Environ. Sci. Health B. 2022, 57, 745–755. [Google Scholar] [CrossRef]
- CDC. Chemicals in CDC’s National Report on Human Exposure to Environmental Chemicals. Center for Disease, Control and Prevention of United States. 2022. Available online: https://www.cdc.gov/exposurereport/pdf/Report_Chemical_List-508.pdf (accessed on 30 October 2022).
Characteristics | n | % |
---|---|---|
Age, years a | 31.9 ± 8.5 (21–59) | |
Working time, years b | 3.0 (1–15) | |
Sex | ||
Male | 110 | 91.67 |
Female | 10 | 8.33 |
Type of job | ||
Harvest | 1 | 0.83 |
Warehouse | 19 | 15.83 |
Fumigation | 100 | 83.33 |
Academic level | ||
Elementary School | 6 | 5.00 |
Incomplete High School | 5 | 4.17 |
Completed High School | 93 | 77.50 |
Non University Education | 10 | 8.33 |
University | 6 | 5.00 |
System used for spraying | ||
Manual back pump | 12 | 10.00 |
Pump with back motor | 60 | 50.00 |
Tractor with nebulizer | 28 | 23.33 |
No fumigation job | 20 | 16.67 |
BChE activity, IU/L b | 5802 (4351–8355) | |
BChE inhibition (<5500 IU/L) | ||
No | 65 | 54.17 |
Yes | 55 | 45.83 |
MMSE score, points b | 28 (26.5–31.5) |
Characteristics | MMSE Score | p-Value | |
---|---|---|---|
Median | IQR | ||
Sex | 0.239 a | ||
Male | 30 | 29–33 | |
Female | 28 | 26–31 | |
Age group (years) | 0.901 a | ||
18–29 | 28 | 27–32 | |
30–59 | 29 | 26–31 | |
Working time | 0.008 a | ||
<3 years | 30 | 27–33 | |
≥3 years | 28 | 26–29 | |
Type of job | 0.641 b | ||
Harvest | 29 | 29–29 | |
Warehouse | 30 | 26–33 | |
Fumigation | 28 | 26.5–31 | |
Academic level | 0.348 b | ||
Elementary School | 27 | 27–29 | |
Incomplete High School | 30 | 27–30 | |
Completed High School | 28 | 26–32 | |
Non University Education | 29 | 27–30 | |
University | 33 | 29–33 | |
BChE inhibition | <0.001 a | ||
No | 30 | 27–33 | |
Yes | 27 | 26–30 |
MMSE Score | Crude Model | Adjusted Model a | p-Value | ||
---|---|---|---|---|---|
Coef. | CI95 | Coef. | CI95 | ||
No BChE inhibition | 1.00 | 1.00 | |||
BChE inhibition | −0.059 | −0.097 to −0.022 | −0.071 | −0.108 to −0.025 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosales-Rimache, J.; Machado-Pereyra, P.; Bendezu-Quispe, G. Relationship between Butyrylcholinesterase Activity and Cognitive Ability in Workers Exposed to Chlorpyrifos. Safety 2023, 9, 12. https://doi.org/10.3390/safety9010012
Rosales-Rimache J, Machado-Pereyra P, Bendezu-Quispe G. Relationship between Butyrylcholinesterase Activity and Cognitive Ability in Workers Exposed to Chlorpyrifos. Safety. 2023; 9(1):12. https://doi.org/10.3390/safety9010012
Chicago/Turabian StyleRosales-Rimache, Jaime, Paola Machado-Pereyra, and Guido Bendezu-Quispe. 2023. "Relationship between Butyrylcholinesterase Activity and Cognitive Ability in Workers Exposed to Chlorpyrifos" Safety 9, no. 1: 12. https://doi.org/10.3390/safety9010012
APA StyleRosales-Rimache, J., Machado-Pereyra, P., & Bendezu-Quispe, G. (2023). Relationship between Butyrylcholinesterase Activity and Cognitive Ability in Workers Exposed to Chlorpyrifos. Safety, 9(1), 12. https://doi.org/10.3390/safety9010012