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Is Exclusive Small Airway Asthma a Possibility?
Russell J. Hopp
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Center and Children’s Hospital and Medical Center, Omaha, NE 68198, USA; rhopp@childrensomaha.org

Abstract: Although the small airway component of chronic asthma is becoming a more important
topic, its impact in the daily assessment of pediatric asthma is limited. The intrinsic airway autonomic
control in asthma suggests some potential mechanisms by which more distal obstruction may
dominate in some situations. We suggest theoretical possibilities for small airway dominance and
present clinical data supporting this possibility.
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1. Introduction

Older studies of methacholine (and histamine) responsiveness in asthmatic patients in
the previous century provide a framework for a newer paradigm of small airway disease in
asthma. A review of the older data is paramount to considering what the possibility is that
an asthmatic patient has predominantly, or (possibly) exclusively, small airway obstruction.
Considering this possibility, we review data of the methodologies used to find the location
of direct airway responsiveness largely used in the previous century and compare this with
current thoughts on small airway disease in pediatric asthma.

2. Assessing the Small Airway Compartment in Pediatric Asthma: The Conundrum!

The bottom line is that standard spirometry, including the forced vital capacity (FVC),
the forced vital capacity during one second (FEV1), and the forced expiratory flow rate from
25 to 75% of the FVC (FEF25–75), with their corresponding percent predicted and z scores,
provides immense information as a snapshot of lung health in children. What is continuously
argued is if any spirometry measure provides information on the smaller and small airways.
It is interesting that the investigations described in virtually all recent publications on small
airways in adult asthma immediately utilize radiological procedures. Recent examples include
segmental CT analysis [1], while a review has mentioned radiological procedures, nitrogen
washout, and impulse oscillometry [2]. A significant question remains, however, is how
available, or reasonable, are these procedures for pediatric asthma management?

During an initial pediatric asthma evaluation, therapy should be initiated if an FEV1
% change after a bronchodilator of 10% or higher is obtained on a well-performed spirom-
etry [3]. However, the presence of an isolated large FEF25–75 change alone is minimized
or ignored in most clinical practice [4]. Is that reasonable? Does it suggest a different
compartment of asthma for that child? A different type of asthma? Cough variant asthma?
An evolving asthmatic?

This perspective is not meant to be a refutation of these other important and evolving
methodologies to determine small airway disease in an asthmatic, but to raise an issue for
respiratory specialists and to provide perspective on a neglected topic of pediatric asthma care.

3. Direct Airway Hyperresponsiveness and Location of Obstruction

Comprehensive reviews of muscarinic receptor location and muscarinic antagonist
responses and function are beyond the scope of this perspective but can be found in refer-
ences [5–7]. In brief, muscarinic activity in airways is regulated by M3 muscarinic receptors
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more than M2 muscarinic receptors. Both receptor types are found in tertiary bronchi, small
bronchi, bronchioles, and respiratory bronchioles. A review of this information is available
in publications by Cazzola et al. [6] and Ikeda et al. [5]. Methacholine, a muscarinic agonist,
when inhaled by asthmatics in a challenge protocol, can cause proximal (large) and distal
(small) airway obstruction [8]. The challenge end point is generally expressed as the change
in the post-saline baseline FEV1, and a 20% drop is considered positive [9]. Various other
measures of small airway changes during a methacholine challenge occur and exceed the
magnitude of the 20% FEV1 in the large airways [9]. This includes information obtained
using impulse oscillometry and body plethysmography, and smaller airway changes on
spirometry (e.g., FEF25–75) [9].

What possibilities exist, using receptor density and function concepts, to explain
distal, rather than proximal and distal, airway responsiveness? In vitro studies have shown
greater central muscarinic activity and more distal airway beta2 adrenergic activity, which
generally does not translate to a differentiated benefit of adrenergic agonists or muscarinic
antagonists in humans [10,11]. If, however, proximal airway cholinergic control was
more dominant than distal cholinergic control, then beta2 responsiveness might lag in the
proximal airway. Or if beta2 receptor density or post-receptor activity is more dominant
in the distal airway, then inhaled beta agonists might exert a greater distal response, and
greatly exceed the proximal airway response. These options are likely uncommon but may
have selective or occasional occurrence, or a presence in less defined asthma phenotypes,
such as cough variant asthma (CVA) [12–14].

The level of methacholine responsiveness might provide information as to more cen-
tral versus peripheral cholinergic activity in an asthmatic. If there is a greater cholinergic
response peripherally, then a beta2 agonist may preferentially dilate more peripherally, or
vice versa. A recent review by Donovan and Noble summarizes that in animal models,
both proximal or distal arguments can be made; while studies in humans have shown
preferential small airway constriction, but other studies have shown medium and large
airway responsiveness [15]. If an individual has more distal beta2 receptors, then is it
possible to have a greater distal beta2 response [16–18]? If there is more balanced up-
per/lower methacholine hyperresponsiveness, then equal beta2 upper and lower airway
bronchodilation responsiveness should occur. This possibility ignores short-term “global”
hyperresponsiveness changes (i.e., viral illness) [19], or long-term global or segmental
inflammatory-induced obstruction/hyperresponsiveness (i.e., allergen) [20].

4. Beta2 Receptor Density in Central and Peripheral Airways

Beta2 receptors are distributed throughout the airway but increase in density with
serial passages down the airways and are higher in distal airways and highest in the alve-
oli [16]. Indirect challenge studies in infants show salbutamol blocks challenge with water
or histamine bronchoconstriction [21,22]. The issue in question is the relative density of
upper and lower airway beta2 receptors and the acquisition of the density of beta2 receptors
in children versus adults. Is there person-to-person variability in lower vs. higher beta2
receptor density, or in children versus adults? Is the observation of exaggerated/exclusive
small airway bronchodilation with beta2 agonists more a pediatric oddity? Is there a ge-
netic difference in lower vs. higher beta2 receptor density, so that a particular person has a
greater distal density versus proximal density counts, making distal overresponsiveness
the exception in some individuals? Are distal airways more responsive in unique asthma
phenotypes, such as CVA [12–14]? If any or some of these propositions are true, then
selective individuals have long-term or permanent distal responsiveness to beta2 agonists,
and this makes more exclusive small airway asthma a possibility. The signaling pathways
for beta-adrenergic signaling are complex, and distal up-regulatory functionality for the
beta2 agonist response could be possible.

It is also possible that spare beta2 receptors are different in the upper and lower
airways, either developmentally or selectively.
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5. Potential Processes That May Result in Exclusive (Dominant) Small Airway Asthma

Any allergen load deposited in the respiratory tract should have nasal clearance due to
particle size and adequate nasal function. This may not be totally true in nasally obstructed
subjects, allowing for downstream (i.e., lung) deposition [23]. Depending on the native
allergen size, or the individual allergenicity, regular downstream lung deposition may allow
for chronic enhanced distal hyperresponsiveness and which may also include complex
nasal–bronchial and/or systemic processes [24]. This has been recently seen in young chil-
dren, with exaggerated airway hyperresponsiveness due to allergy to house dust mites [25].
Small airway changes were not measured in that report, but bronchoconstriction indued
by methacholine will also induce small airway constriction. With continued deposition of
small particle allergens, more distal obstruction may dominate, although the population of
individuals with exaggerated or isolated small airway “asthma” may be minimal.

In every type of asthma in children, either highly allergic or non-allergic, a new
viral illness is the major exacerbation trigger. A seminal discussion of this phenomenon
was published in 1998 [19], while small airway dysfunction is a hallmark of prolonged
COVID-19 lung disease [26].

A recent study looking at lower airway inflammation in recurrent wheezing children
using bronchoalveolar lavage revealed both infectious and atopic phenotypes [27], while a
review of modern data approaches to pre-school wheezing phenotypes revealed the massive
complexity of the terminology of recurrent childhood wheezing, and vast differences in
etiological findings across populations [28]. Genetic differences are evident, as pointed
out by Custovic et al., with Group 2 innate lymphocytes playing an unexpected role [28].
It is very possible that the bulk of the genetic and acquired response to environmental
and/or infectious impacts can target distal (small airway) changes, resulting in small airway
asthma (possibly exclusively).

A CT study of adult asthma in 2016 showed small airway disease is a common finding
in all asthma severity groups and may have absent proximal airway changes [29]. CT
findings in children with asthma have been severely limited, but the potential for small
airway change dominance likely exists.

6. Clinical Examples

At the onset of the preparation of this commentary, the author requested the respiratory
therapy team at his center to provide print-outs of examples of small airway reversibility
without significant proximal (FEV1) airway reversibility (Table 1). The percentage of total
tests was not determined, but over a 12-month period, representative children were found.
These are presented in tabular form, although longitudinal data or clinical circumstances
were not collected in parallel.

Table 1. Clinical examples of disproportionate FEF25–75 improvement.

Pre- and Post-Albuterol Results in Selected Children Presenting with Asthma-like Symptoms

Age FVC Post FVC FEV1 Post FEV1 FEF25–75 Post FEF25–75

Example 1 8 96% 93% 109% 107% 129% 167%

Example 2 5 79% 73% 84% 78% 83% 123%

Example 3 8 85% 88% 85% 93% 81% 134%

Example 4 6 98% 94% 93% 100% 78% 136%

Example 5 10 88% 82% 86% 86% 80% 99%

Example 6 6 114% 114% 126% 127% 138% 170%

Example 7 5 112% 107% 121% 116% 111% 157%

Example 8 6 97% 92% 104% 92% 117% 165%

Example 9 10 112% 113% 113% 117% 108% 143%
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Table 1. Cont.

Pre- and Post-Albuterol Results in Selected Children Presenting with Asthma-like Symptoms

Age FVC Post FVC FEV1 Post FEV1 FEF25–75 Post FEF25–75

Example 10 5 100% 102% 100% 106% 87% 127%

Example 11 5 98% 99% 106% 109% 127% 152%

Example 12 9 81% 81% 78% 82% 66% 116%

7. Clinical Considerations

A child presents or is referred to a pediatric respiratory specialist for a chronic cough, or
other asthma-like symptoms. The outcome of the pre–post albuterol response on standard
spirometry is often used to characterize symptoms into a diagnosis and a treatment plan.
Very likely, a chest X-ray, possibly a sinus X-ray, and an allergy test are also performed. It
is less likely that body plethysmography, fractional exhaled nitric oxide (FeNO), impulse
oscillometry, nitrogen wash-out, or chest CT are performed. So, if the decision to treat for
likely asthma occurs, is the smaller (small) airway component appreciated?

Table 2 provides the potential outcomes for the above clinical scenario, which also
includes the FEF25–75 results.

Table 2. Clinical scenarios for spirometry interpretation.

FVC %
Improvement [30]

FEV1 %
Improvement [3,31]

FEF25–75 %
Improvement

[12–14,32]
Reasonable Clinical Outcome

Scenario 1 ≥10% ≥10% ≥30% Daily asthma care

Scenario 2 <10% ≥10% ≥30% Daily asthma care

Scenario 3 <10% <10% ≥30%
Follow longitudinally [33] or

consider cough variant
asthma [12–14]

Scenario 4 <10% <10% <30% Consider alternative cough
etiologies

8. Clinical Recommendations

1. Consider the FEF25–75 improvement especially when there is more than 2 s of expira-
tory time. A disproportionate improvement in the FEF25–75 as compared to the FEV1
after albuterol should not be ignored [34].

2. Companion pre–post albuterol spirometry with simultaneous impulse oscillometry
can assist with differences in upper and lower airway bronchodilatation [33,35].

3. Figure 1 delineates the opportunities for determining large, smaller, and small airway
disability in pediatric asthma.
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Figure 1. Schematic of the position of large, smaller, and small airways in pulmonary function
testing [35].

9. Conclusions

Asthma is a disease of the airways [36]. Much has been made of the small airway
asthma concept in this decade, largely because radiological determination of small air-
ways is now possible, as imaging of the small airways conclusively demonstrates distal
disease in asthma [37]. However, small airway disease in clinical practice is largely under-
appreciated/ignored. This commentary was not made to “localize” asthma to large or
small airways, but rather to raise a theoretical question, as was carried out recently by
Donovan [15]. The possibility that very selective subjects have the majority of their ob-
struction, either temporally or longitudinally, in the distal airways does lower the bar as to
whom a diagnosis of asthma is attributed, but until the individual demonstrates more cen-
tral/proximal obstruction, the diagnosis maintains less definition. This commentary raises
the possibility of a spectrum of asthma not yet totally definable or recognized, points out
clinical examples, and provides several suggestions for the clinical assessment of selective,
but clinically relevant, small airway obstruction in children.
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