A Roadmap to Toxocariasis Infection Control: A Comprehensive Study on Its Impact, Seroprevalence, and Allergic Implications in Latin America
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Obtaining the Excretory–Secretory Antigens from T. canis Larvae (TES)
2.3. Obtaining A. lumbricoides Extract and Sera Absorption
2.4. Eosinophil Counting, Cytokine Quantification, Skin Prink Tests (SPTs), and sIgE Counting
2.5. IgG antibody to Toxocara spp. Detection from Indirect ELISA
2.6. Data Analysis
3. Results
3.1. Seroprevalence of Anti-Toxocara spp. IgG
3.2. Predictors of Toxocara spp. Infection Based on Sociodemographic Factors
3.3. Comparison of Risk and Protective Factors for Toxocara spp. Infection in Individuals with Persistent Anti-Toxocara spp. IgG Positivity over Time (IgG Positivity in 2005 and 2013)
3.4. Association Analysis of Toxocara spp. Infection, Atopic Markers, and Eosinophil Levels in the Studied Population
3.5. Effects of Toxocara spp. Infection on Immunological Features
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moreira, G.M.; Telmo Pde, L.; Mendonca, M.; Moreira, A.N.; McBride, A.J.; Scaini, C.J.; Conceicao, F.R. Human toxocariasis: Current advances in diagnostics, treatment, and interventions. Trends Parasitol. 2014, 30, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Holland, C.V.; Wang, T.; Hofmann, A.; Fan, C.K.; Maizels, R.M.; Hotez, P.J.; Gasser, R.B. Human toxocariasis. Lancet. Infect. Dis. 2018, 18, e14–e24. [Google Scholar] [CrossRef] [PubMed]
- Fillaux, J.; Magnaval, J.F. Laboratory diagnosis of human toxocariasis. Vet. Parasitol. 2013, 193, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Arefkhah, N.; Shadzi, M.R.; Mikaeili, F.; Sarkari, B.; Esfandiari, F.; Goudarzi, F. Seroprevalence and associated risk factors of toxocariasis among nomads in Boyer-Ahmad County, southwest Iran. Trans. R. Soc. Trop. Med. Hyg. 2020, 114, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.W.; Chastain, H.M.; Shin, S.H.; Wiegand, R.E.; Kruszon-Moran, D.; Handali, S.; Jones, J.L. Seroprevalence of Antibodies to Toxocara Species in the United States and Associated Risk Factors, 2011–2014. Clin. Infect. Dis. 2018, 66, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Rodolpho, J.M.A.; Camillo, L.; Araujo, M.S.S.; Speziali, E.; Coelho-Dos-Reis, J.G.; Correia, R.O.; Neris, D.M.; Martins-Filho, O.A.; Teixeira-Carvalho, A.; Anibal, F.F. Robust Phenotypic Activation of Eosinophils during Experimental Toxocara canis Infection. Front. Immunol. 2018, 9, 64. [Google Scholar] [CrossRef] [PubMed]
- Fica, A.; Jercic, M.I.; Navarrete, C. Brain lesions associated with eosinophilia. A useful clue for neurotoxocariasis. Report of one case. Rev. Medica Chile 2021, 149, 1673–1678. [Google Scholar] [CrossRef] [PubMed]
- Darlan, D.M.; Tala, Z.Z.; Amanta, C.; Warli, S.M.; Arrasyid, N.K. Correlation between Soil Transmitted Helminth Infection and Eosinophil Levels among Primary School Children in Medan. Open Access Maced. J. Med. Sci. 2017, 5, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Moreau, E.; Chauvin, A. Immunity against helminths: Interactions with the host and the intercurrent infections. J. Biomed. Biotechnol. 2010, 2010, 428593. [Google Scholar] [CrossRef]
- Figueiredo, C.A.; Barreto, M.L.; Rodrigues, L.C.; Cooper, P.J.; Silva, N.B.; Amorim, L.D.; Alcantara-Neves, N.M. Chronic intestinal helminth infections are associated with immune hyporesponsiveness and induction of a regulatory network. Infect. Immun. 2010, 78, 3160–3167. [Google Scholar] [CrossRef]
- Alcantara-Neves, N.M.; de S. G. Britto, G.; Veiga, R.V.; Figueiredo, C.A.; Fiaccone, R.L.; da Conceicao, J.S.; Cruz, A.A.; Rodrigues, L.C.; Cooper, P.J.; Pontes-de-Carvalho, L.C.; et al. Effects of helminth co-infections on atopy, asthma and cytokine production in children living in a poor urban area in Latin America. BMC Res. Notes 2014, 7, 817. [Google Scholar] [CrossRef]
- Mendonca, L.R.; Veiga, R.V.; Dattoli, V.C.; Figueiredo, C.A.; Fiaccone, R.; Santos, J.; Cruz, A.A.; Rodrigues, L.C.; Cooper, P.J.; Pontes-de-Carvalho, L.C.; et al. Toxocara seropositivity, atopy and wheezing in children living in poor neighbourhoods in urban Latin American. PLoS Neglected Trop. Dis. 2012, 6, e1886. [Google Scholar] [CrossRef] [PubMed]
- Macpherson, C.N. The epidemiology and public health importance of toxocariasis: A zoonosis of global importance. Int. J. Parasitol. 2013, 43, 999–1008. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.B.; Amor, A.L.M.; Santos, L.N.; Galvao, A.A.; Oviedo Vera, A.V.; Silva, E.S.; Barbosa, C.G.; Goncalves, M.S.; Cooper, P.J.; Figueiredo, C.A.; et al. Risk factors for Toxocara spp. seroprevalence and its association with atopy and asthma phenotypes in school-age children in a small town and semi-rural areas of Northeast Brazil. Acta Trop. 2017, 174, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Laguna, J.; Rodriguez-Garcia, M.; Molina, A.; Merino, A. Kimura disease as an uncommon cause of persistent hypereosinophilia: A diagnostic challenge. Biochem. Medica 2023, 33, 020801. [Google Scholar] [CrossRef]
- Ikotun, K.; Sowemimo, O.; Chou, C.M.; Ajenifuja, K.; Chuang, T.W.; Asaolu, S.; Akinwale, O.; Gyang, V.; Nwafor, T.; Henry, E.; et al. High seroprevalence of Toxocara antibodies in pregnant women attending an antenatal clinic at a university hospital in Ile-Ife, Nigeria. Trans. R. Soc. Trop. Med. Hyg. 2020, 114, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Matos, S.M.; Jesus, S.R.; Saldiva, S.R.; Prado, M.S.; D’Innocenzo, S.; Assis, A.M.; Rodrigues, L.C.; Alcantara-Neves, N.M.; Cruz, A.A.; Simoes Sde, M.; et al. Overweight, asthma symptoms, atopy and pulmonary function in children of 4–12 years of age: Findings from the SCAALA cohort in Salvador, Bahia, Brazil. Public Health Nutr. 2011, 14, 1270–1278. [Google Scholar] [CrossRef]
- Savigny, D.H. In vitro maintenance of Toxocara canis larvae and a simple method for the production of Toxocara ES antigen for use in serodiagnostic tests for visceral larva migrans. J. Parasitol. 1975, 61, 781–782. [Google Scholar] [CrossRef]
- Alcantara-Neves, N.M.; dos Santos, A.B.; Mendonca, L.R.; Figueiredo, C.A.; Pontes-de-Carvalho, L. An improved method to obtain antigen-excreting Toxocara canis larvae. Exp. Parasitol. 2008, 119, 349–351. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Barreto, M.L.; Cunha, S.S.; Alcantara-Neves, N.; Carvalho, L.P.; Cruz, A.A.; Stein, R.T.; Genser, B.; Cooper, P.J.; Rodrigues, L.C. Risk factors and immunological pathways for asthma and other allergic diseases in children: Background and methodology of a longitudinal study in a large urban center in Northeastern Brazil (Salvador-SCAALA study). BMC Pulm. Med. 2006, 6, 15. [Google Scholar] [CrossRef]
- Said, A.; Khattak, I.; Abbas, R.Z.; Khan, M.K.; Saleemi, M.K.; Budke, C.M.; Verocai, G.G. Toxocara canis seropositivity in different exposure groups in the Khyber Pakhtunkhwa province of Northwest Pakistan. Parasitol. Res. 2023, 122, 1159–1166. [Google Scholar] [CrossRef]
- Phuc, L.D.V.; Hai, T.X.; Loi, C.B.; Quang, H.H.; Vinh, L.D.; Le, T.A. The kinetic profile of clinical and laboratory findings and treatment outcome of patients with toxocariasis. Trop. Med. Int. Health 2021, 26, 1419–1426. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tao, Y. Clinical Features and Prognostic Factors in Northern Chinese Patients with Peripheral Granuloma Type of Ocular Toxocariasis: A Retrospective Cohort Study. Ocul. Immunol. Inflamm. 2021, 29, 1259–1264. [Google Scholar] [CrossRef] [PubMed]
- Farias, M.M.B.; Barreto, N.; Araujo, W.A.C.; Oliveira, C.L.; Goncalves, N.L.S.; Campagnollo, K.S.S.; Teixeira, M.C.A.; Galvao-Castro, B.; Soares, N.M.; Souza, J.N. Anthelmintic treatment follow up in a rural community in Camamu, Bahia, Brazil. Acad. Bras. Cienc. 2023, 95, e20230323. [Google Scholar] [CrossRef]
- Goncalves, A.Q.; Junqueira, A.C.; Abellana, R.; Barrio, P.C.; Terrazas, W.C.; Sodre, F.C.; Boia, M.N.; Ascaso, C. Prevalence of intestinal parasites and risk factors forspecific and multiple helminth infections in a remote city of the Brazilian Amazon. Rev. Soc. Bras. Med. Trop. 2016, 49, 119–124. [Google Scholar] [CrossRef]
- Gems, D.; Ferguson, C.J.; Robertson, B.D.; Nieves, R.; Page, A.P.; Blaxter, M.L.; Maizels, R.M. An abundant, trans-spliced mRNA from Toxocara canis infective larvae encodes a 26-kDa protein with homology to phosphatidylethanolamine-binding proteins. J. Biol. Chem. 1995, 270, 18517–18522. [Google Scholar] [CrossRef]
- da Silva, M.B.; Fernandes, A.M.S.; da Silva, E.S.; Urrego, J.R.; Santiago, L.F.; Garces, L.F.S.; Portela, R.D.; Pacheco, L.G.C.; Briza, P.; Ferreira, F.; et al. Proteomics and immunoblotting analyses reveal antigens that optimize the immunodiagnosis of the infection by Toxocara spp. Transbound. Emerg. Dis. 2022, 69, e2994–e3006. [Google Scholar] [CrossRef]
- Mendonca, L.R.; Figueiredo, C.A.; Esquivel, R.; Fiaccone, R.L.; Pontes-de-Carvalho, L.; Cooper, P.; Barreto, M.L.; Alcantara-Neves, N.M. Seroprevalence and risk factors for Toxocara infection in children from an urban large setting in Northeast Brazil. Acta Trop. 2013, 128, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.; Montero, J.; Pineda, A.; Mijares, V.; Lares, M.; Catalano, E.; Ferrer, E. Epidemiological, clinical and laboratory features of toxocariasis in school children from Aragua State, Venezuela. Trans. R. Soc. Trop. Med. Hyg. 2018, 112, 255–263. [Google Scholar] [CrossRef]
- Roldan, W.H.; Cavero, Y.A.; Espinoza, Y.A.; Jimenez, S.; Gutierrez, C.A. Human toxocariasis: A seroepidemiological survey in the Amazonian city of Yurimaguas, Peru. Rev. Inst. Med. Trop. Sao Paulo 2010, 52, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Flohr, C.; Tuyen, L.N.; Quinnell, R.J.; Lewis, S.; Minh, T.T.; Campbell, J.; Simmons, C.; Telford, G.; Brown, A.; Hien, T.T.; et al. Reduced helminth burden increases allergen skin sensitization but not clinical allergy: A randomized, double-blind, placebo-controlled trial in Vietnam. Clin. Exp. Allergy. 2010, 40, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Dana, D.; Vlaminck, J.; Ayana, M.; Tadege, B.; Mekonnen, Z.; Geldhof, P.; Levecke, B. Evaluation of copromicroscopy and serology to measure the exposure to Ascaris infections across age groups and to assess the impact of 3 years of biannual mass drug administration in Jimma Town, Ethiopia. PLoS Neglected Trop. Dis. 2020, 14, e0008037. [Google Scholar] [CrossRef]
- Jogi, N.O.; Svanes, C.; Siiak, S.P.; Logan, E.; Holloway, J.W.; Igland, J.; Johannessen, A.; Levin, M.; Real, F.G.; Schlunssen, V.; et al. Zoonotic helminth exposure and risk of allergic diseases: A study of two generations in Norway. Clin. Exp. Allergy 2018, 48, 66–77. [Google Scholar] [CrossRef]
- Rubinsky-Elefant, G.; Hirata, C.E.; Yamamoto, J.H.; Ferreira, M.U. Human toxocariasis: Diagnosis, worldwide seroprevalences and clinical expression of the systemic and ocular forms. Ann. Trop. Med. Parasitol. 2010, 104, 3–23. [Google Scholar] [CrossRef]
- Dogan, N.; Dinleyici, E.C.; Bor, O.; Toz, S.O.; Ozbel, Y. Seroepidemiological survey for Toxocara canis infection in the northwestern part of Turkey. Turk. Parazitolojii Derg. 2007, 31, 288–291. [Google Scholar]
- Won, K.Y.; Kruszon-Moran, D.; Schantz, P.M.; Jones, J.L. National seroprevalence and risk factors for Zoonotic Toxocara spp. infection. Am. J. Trop. Med. Hyg. 2008, 79, 552–557. [Google Scholar] [CrossRef]
- Rostami, A.; Riahi, S.M.; Holland, C.V.; Taghipour, A.; Khalili-Fomeshi, M.; Fakhri, Y.; Omrani, V.F.; Hotez, P.J.; Gasser, R.B. Seroprevalence estimates for toxocariasis in people worldwide: A systematic review and meta-analysis. PLoS Neglected Trop. Dis. 2019, 13, e0007809. [Google Scholar] [CrossRef] [PubMed]
- Abbaszadeh Afshar, M.J.; Zahabiun, F.; Heydarian, P.; Mozafar Saadati, H.; Mohtasebi, S.; Khodamoradi, F.; Raissi, V. A Systematic Review and Meta-analysis of Toxocariasis in Iran: Is it Time to Take it Seriously? Acta Parasitol. 2020, 65, 569–584. [Google Scholar] [CrossRef]
- Eslahi, A.V.; Badri, M.; Khorshidi, A.; Majidiani, H.; Hooshmand, E.; Hosseini, H.; Taghipour, A.; Foroutan, M.; Pestehchian, N.; Firoozeh, F.; et al. Prevalence of Toxocara and Toxascaris infection among human and animals in Iran with meta-analysis approach. BMC Infect. Dis. 2020, 20, 20. [Google Scholar] [CrossRef]
- Platts-Mills, T.A.; Woodfolk, J.A.; Erwin, E.A.; Aalberse, R. Mechanisms of tolerance to inhalant allergens: The relevance of a modified Th2 response to allergens from domestic animals. Springer Semin. Immunopathol. 2004, 25, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Fischer, N.; Rostaher, A.; Zwickl, L.; Deplazes, P.; Olivry, T.; Favrot, C. A Toxocara canis infection influences the immune response to house dust mite allergens in dogs. Vet. Immunol. Immunopathol. 2018, 202, 11–17. [Google Scholar] [CrossRef]
- Pinelli, E.; Brandes, S.; Dormans, J.; Gremmer, E.; van Loveren, H. Infection with the roundworm Toxocara canis leads to exacerbation of experimental allergic airway inflammation. Clin. Exp. Allergy. 2008, 38, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Rujeni, N.; Nausch, N.; Midzi, N.; Gwisai, R.; Mduluza, T.; Taylor, D.W.; Mutapi, F. Soluble CD23 levels are inversely associated with atopy and parasite-specific IgE levels but not with polyclonal IgE levels in people exposed to helminth infection. Int. Arch. Allergy Immunol. 2013, 161, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Smits, H.H.; Everts, B.; Hartgers, F.C.; Yazdanbakhsh, M. Chronic helminth infections protect against allergic diseases by active regulatory processes. Curr. Allergy Asthma Rep. 2010, 10, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Despommier, D. Toxocariasis: Clinical aspects, epidemiology, medical ecology, and molecular aspects. Clin. Microbiol. Rev. 2003, 16, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Pourgholaminejad, A.; Razipour, H.; Heydarian, P.; Ashrafi, K.; Roushan, Z.A.; Sharifdini, M. A survey on the seroprevalence of toxocariasis and related risk factors in Eosinophilic children of Northwest Iran. Afr. Health Sci. 2022, 22, 617–625. [Google Scholar] [CrossRef]
- Kim, H.S.; Jin, Y.; Choi, M.H.; Kim, J.H.; Lee, Y.H.; Yoon, C.H.; Hwang, E.H.; Kang, H.; Ahn, S.Y.; Kim, G.J.; et al. Significance of serum antibody test for toxocariasis in healthy healthcare examinees with eosinophilia in Seoul and Gyeongsangnam-do, Korea. J. Korean Med. Sci. 2014, 29, 1618–1625. [Google Scholar] [CrossRef] [PubMed]
- Al-Awadhi, M.; Jamal, W. Seroprevalence of toxocariasis among allergic patients in Kuwait and its association with eosinophilia. Parasite Epidemiol. Control 2022, 18, e00260. [Google Scholar] [CrossRef]
Prevalence to Anti-Toxocara spp. IgG Positivity | n | n/N (926) % |
---|---|---|
Cases in 2005 | 450 | 49 |
Cases in 2013 | 490 | 53 |
New cases in 2013 | 236 | 25 |
Remission cases from 2005 to 2013 | 195 | 21 |
IgG positivity in 2005 and 2013 | 254 | 27 |
Variables | 2005 | 2013 | ||
---|---|---|---|---|
N = 926 | n/N % | N = 926 | n/N % | |
Gender | n | n | ||
Male | 477 | 51% | 477 | 51% |
Female | 499 | 49% | 499 | 49% |
Age | ||||
2005/2013 | ||||
0 ≤ 5/11 ≤ 13 | 349 | 38% | 349 | 38% |
06–07/14–15 | 318 | 34% | 318 | 34% |
≥8/≥16 | 259 | 28% | 259 | 28% |
Maternal Schooling | ||||
1st grade or less | 219 | 24% | 174 | 19% |
Incomplete 2nd grade | 431 | 46% | 201 | 22% |
Complete 2nd grade or more | 276 | 30% | 551 | 59% |
Incoming | ||||
≤125 USD | 759 | 82% | 317 | 35% |
125 ≤ 282.5 USD | 137 | 15% | 579 | 62% |
>282.5 USD | 30 | 3% | 30 | 3% |
Street paving | ||||
No | 563 | 61% | 173 | 19% |
Yes | 363 | 39% | 753 | 81% |
Cat at home | ||||
No | 758 | 82% | 625 | 67% |
Yes | 168 | 18% | 301 | 33% |
Dog at home | ||||
No | 556 | 60% | 321 | 35% |
Yes | 370 | 40% | 605 | 65% |
Anti-T. canis IgG | ||||
No | 476 | 51% | 436 | 47% |
Yes | 450 | 49% | 490 | 53% |
Variables | Anti-T. canis IgG Positivity/2005 (n = 450) | Anti-T. canis IgG Positivity/2013 (n = 490) | ||
---|---|---|---|---|
n/N (%) & | ORadjusted | n/N (%) & | ORadjusted | |
Gender | ||||
Male | 230/477 (48) | 1 | 249/477 (52) | 1 |
Female | 220/499 (44) | 0.94 (0.72–1.23) | 241/499 (48) | 0.94 (0.72–1.22) |
Ages | ||||
2005/2013 | ||||
0 ≤ 5/11 ≤ 13 | 156/349 (44) | 1 | 176/349 (50) | 1 |
06–07/14–15 | 158/318 (50) | 1.22 (0.89–1.67) | 167/318 (52) | 1.04 (0.76–1.43) |
≥8/≥16 | 136/359 (38) | 1.42 (1.02–1.98) * | 147/259 (57) | 1.20 (0.86–1.68) |
Maternal Schooling | ||||
1st grade or less | 129/219 (59) | 1 | 103/174 (60) | 1 |
Incomplete 2nd grade | 224/431 (52) | 1.01 (0.69–1.49) | 112/201 (56) | 0.84 (0.55–1.28) |
≥Complete 2nd grade | 97/276 (35) | 0.50 (0.36–0.69) * | 275/551 (50) | 0.65 (0.46–0.93) * |
Incoming | ||||
≤125 dollars | 386/759 (51) | 1 | 158/317 (50) | 1 |
125 ≤ 282.5 dollars | 55/137 (40) | 0.80 (0.54–1.19) | 313/579 (54) | 1.27 (0.96–1.68) |
>282.5 dollars | 9/30 (30) | 0.50 (0.22–1.13) | 19/30 (63) | 2.13 (0.96–4.68) |
Street paving | ||||
No | 290/563 (51) | 1 | 105/173 (61) | 1 |
Yes | 160/363 (44) | 0.72 (0.54–0.94) * | 385/753 (51) | 0.68 (0.48–0.95) * |
Cat at home | ||||
No | 349/758 (46) | 1 | 331/625 (53) | 1 |
Yes | 101/168 (60) | 1.58 (1.10–2.28) * | 159/301 (53) | 1 (0.75–1.35) |
Dog at home | ||||
No | 253/556 (45) | 1 | 175/321 (54) | 1 |
Yes | 197/370 (53) | 1.27 (1–1.69) * | 315/605 (52) | 0.91 (0.68–1.21) |
Variables | Anti-T. canis IgG Positivity/2005 (n = 254) | Anti-T. canis IgG Positivity/2013 (n = 254) | ||
---|---|---|---|---|
n/N (%) & | ORadjusted | n/N (%) & | ORadjusted | |
Gender | ||||
Male | 132/262 (50) | 1 | 132/262 (50) | 1 |
Female | 122/232 (52) | 0.89 (0.61–1.29) | 122/232 (52) | 0.94 (0.65–1.36) |
Ages | ||||
2005/2013 | ||||
0 ≤ 5/11 ≤ 13 | 87/191 (45) | 1 | 87/191 (45) | 1 |
06–07/14–15 | 90/173 (52) | 1.32 (0.86–2.03) | 90/173 (52) | 1.32 (0.86–2.03) |
≥8/≥16 | 77/130 (59) | 1.63 (1.02–2.61) * | 77/130 (59) | 1.63 (1.02–2.61) * |
Maternal Schooling | ||||
1st grade or less | 163/281 (58) | 1 | 58/94 (61) | 1 |
Incomplete 2nd grade | 41/74 (55) | 0.89 (0.53–1.51) | 71/112 (63) | 1.12 (0.62–2.03) |
≥Complete 2nd grade | 50/139 (36) | 0.42 (0.27–0.65) * | 125/288 (43) | 0.50 (0.30–0.81) * |
Incoming | ||||
≤125 USD | 218/408 (53) | 1 | 95/179 (53) | 1 |
125 ≤ 282.5 USD | 30/68 (44) | 0.89 (0.51–1.55) | 154/303 (51) | 1.02 (0.69–1.52) |
>282.5 USD | 6/18 (33) | 0.54 (0.19–1.53) | 5/12 (42) | 0.93 (0.27–3.19) |
Street paving | ||||
No | 174/307 (57) | 1 | 60/93 (64) | 1 |
Yes | 80/187 (43) | 0.57 (0.39–0.84) * | 194/401 (48) | 0.52 (0.32–0.84) * |
Cat at home | ||||
No | 205/401 (51) | 1 | 152/317 (48) | 1 |
Yes | 49/93 (53) | 1.04 (0.63–1.70) | 102/177 (57) | 1.50 (1.00–2.26) * |
Dog at home | ||||
No | 143/282 (51) | 1 | 79/157 (50) | 1 |
Yes | 111/212 (52) | 1.11 (0.75–1.63) | 175/337 (52) | 0.94 (0.61–1.43) |
Toxocara infection/2005 | n/N = 490 (%) & | ORadjusted | n/N = 490 (%) & | ORadjusted |
sIgE ≥ 0.75 | Skin Prink Test $ | |||
No | 168/319 (53) | 1 | 82/344 (24) | 1 |
Yes | 82/171 (48) | 0.91 (0.62–1.34) | 64/146 (44) | 0.72 (0.48–1.00) * |
Toxocara infection/2013 | n/N = 490 (%) & | ORadjusted | n/N = 490 (%) & | ORadjusted |
sIgE ≥ 0.75 | Skin Prink Test $ | |||
No | 112/281 (40) | 1 | 82/349 (23) | 1 |
Yes | 97/209 (46) | 0.77 (0.53–1.13) | 59/141 (42) | 0.62 (0.41–0.93) * |
Toxocara infection/2005 | n/N = 435 (%) & | ORadjusted | n/N = 435 (%) & | ORadjusted |
>10% | Eosinophilia ≥ 500 mm3 | |||
No | 153/334 (45) | 1 | 90/215 (42) | 1 |
Yes | 63/101 (62) | 1.85 (1.15–2.98) * | 126/220 (57) | 1.92 (1.28–2.86) * |
Toxocara infection/2013 | n/N = 435 (%) & | ORadjusted | n/N = 435 (%) & | ORadjusted |
>10% | Eosinophilia ≥ 500 mm3 | |||
No | 191/390 (49) | 1 | 164/349 (47) | 1 |
Yes | 25/45 (55) | 1.38 (0.73–2.60) | 52/86 (60) | 1.74 (1.07–2.84) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, R.C.; Silva, J.W.d.; Fernandes, A.M.S.; Figueiredo, C.A.V.d.; Coneglian, N.G.d.M.; Alcântara Neves, N.M.; Pinheiro, C.d.S. A Roadmap to Toxocariasis Infection Control: A Comprehensive Study on Its Impact, Seroprevalence, and Allergic Implications in Latin America. Allergies 2024, 4, 124-137. https://doi.org/10.3390/allergies4030009
Silva RC, Silva JWd, Fernandes AMS, Figueiredo CAVd, Coneglian NGdM, Alcântara Neves NM, Pinheiro CdS. A Roadmap to Toxocariasis Infection Control: A Comprehensive Study on Its Impact, Seroprevalence, and Allergic Implications in Latin America. Allergies. 2024; 4(3):124-137. https://doi.org/10.3390/allergies4030009
Chicago/Turabian StyleSilva, Raphael Chagas, Jaqueline Wang da Silva, Antônio Márcio Santana Fernandes, Camila Alexandrina Viana de Figueiredo, Natália Gomes de Morais Coneglian, Neuza Maria Alcântara Neves, and Carina da Silva Pinheiro. 2024. "A Roadmap to Toxocariasis Infection Control: A Comprehensive Study on Its Impact, Seroprevalence, and Allergic Implications in Latin America" Allergies 4, no. 3: 124-137. https://doi.org/10.3390/allergies4030009
APA StyleSilva, R. C., Silva, J. W. d., Fernandes, A. M. S., Figueiredo, C. A. V. d., Coneglian, N. G. d. M., Alcântara Neves, N. M., & Pinheiro, C. d. S. (2024). A Roadmap to Toxocariasis Infection Control: A Comprehensive Study on Its Impact, Seroprevalence, and Allergic Implications in Latin America. Allergies, 4(3), 124-137. https://doi.org/10.3390/allergies4030009