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Abstract: Treating the surfaces of dental implants in an alkaline medium allows us to
obtain microstructures of sodium titanate crystals that favor the appearance of apatite
in the physiological environment, producing osteoconductive surfaces. In this research,
385 discs made of titanium used in dental implants underwent different NaOH treatments
with a 6M concentration at 600 ◦C and cooling rates of 20, 50, 75, and 115 ◦C/h. Using high-
resolution electron microscopy, the microstructures were observed, and the different crystal
sizes were determined and compared with control samples (those without biomimetic
treatment). Roughness, wettability, surface energy and the sodium content of the surface
were determined. The different surfaces were cultured with human osteoblastic cells;
cell adhesion was determined at 3 and 14 days, and the degree of mineralization was
determined at 14 days via alkaline phosphatase levels. Variations in the microstructure
and size of sodium titanate crystals in NaOH solutions rich (1 g/L) or low in calcium
(approximately 100 ppm) were determined. The results show that as the cooling rate
increases, the size of the crystals decreases (from 0.4 µm to 0.8 µm) except for the case
of 115 ◦C/h, when the rate is too fast for crystalline nucleation to occur on the surface
of the titanium. The thermochemical treatment does not influence the roughness or the
cooling rate since a Sa of 0.21 µm is maintained. However, the presence of titanate causes a
decrease in the contact angle from 70◦ to 42◦ and, in turn, causes an increase in the total
surface energy from 35 to 49.5 mJ/m2, with the polar component standing out in this energy
increase. No variations were observed in the thermochemical treatments in the presence
of sodium, which was around 1200 ppm. It was observed that as the size of the crystals
decreases, cell adhesion increases at 3 days and decreases at 14 days. This is because finer
crystals on the surface are already in the mineralization process, as demonstrated using
the level of alkaline phosphatase that is maximal for the cooling rate of 75 ◦C/h. It was
possible to confirm that the variations in the concentrated NaOH solutions with different
calcium contents did not affect the crystal sizes or the microstructure of the surface. This
research makes it possible to obtain dental implants with different mineralization speeds
depending on the cooling rate applied.
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1. Introduction
Advances in surface characteristics have led to a more predictable and quicker os-

seointegration of dental implants which, in turn, has initiated a progressive change in
loading protocols in recent years [1,2]. Immediate loading has been defined as the connec-
tion of the rehabilitation to the implant in occlusion with the opposing dentition earlier
than 1 week after implant placement, while early loading is defined as occurring between
1 week and 2 months subsequent to implant placement [3]. Predictable results in terms of
implant survival rate and marginal bone loss have been attained with immediate and early
loading procedures in different clinical situations, such as in the treatment of either totally
or partially edentulous patients with fixed prostheses [4–6]. In general, from a clinical
point of view, immediate loading is more common in the rehabilitation of the anterior
maxillary and mandibular sectors, mainly for esthetic reasons and the configuration of an
adequate emergency profile. Nevertheless, in the rehabilitation of the premolar and molar
areas of the maxilla and mandible with dental implants, the placement of fixed provisional
restorations in the early stages can also improve esthetics and comfort for the patient, with
high success rates under favorable occlusal conditions and good primary stability of the
implants [7].

Bioactive implant surfaces, due to their capacity to accelerate osseointegration, have
been proposed for use in immediate or early loading for implants at posterior and anterior
sites in order to further increase the predictability of non-bioactive rough surfaces [8,9].

Kokubo [10] proposed a thermochemical method to obtain titanium implants with a
bioactive surface in which titanium and their alloys are first etched chemically with alkaline
solutions with high concentration and then submitted to heat treatment at temperature
between 600 and 800 ◦C. The objective of this thermochemical treatment is to reproduce the
in vivo formation of crystalline apatite, with the same inorganic composition of the human
bone, on the titanium surface, therefore accelerating bone healing and osseointegration [11–13].

The chemical treatment, as described by the author, consists of soaking the implant in
a 10 M NaOH aqueous solution at 60 ◦C for 24 h and then gently washing it with distilled
water. The thermal procedure consists of implants being heated in an electrical furnace to
various temperatures below 800 ◦C at a rate of 5 ◦C/min, kept at the temperature for 1 h,
and allowed to cool to room temperature in the furnace.

Titanium and titanium alloys are covered with a thin TiO2 (titanium oxide) passive
layer, and this passivation film is produced spontaneously, which provides high corrosion
resistance, lower titanium ion release and durability. During the soaking phase of the
chemical treatment, the TiO2 layer comes into contact and reacts with the NaOH (sodium
hydroxide) solution, forming a hydrated TiO2 gel that can be stabilized as an amorphous
sodium titanate using a suitable heat treatment [14,15].

The sodium titanate layer is expected to form many TiOH− groups on its surface in
the living body via the exchange of surface Na+ ions with H3O+ ions in the surrounding
body fluid. These TiOH− groups produce a highly negatively charged surface that initially
combines with positive Ca2+ ions from human plasma to form amorphous calcium titanate
in the surface environment, which later combines with the negative phosphate ions to form
amorphous calcium phosphate, transforming into bone-like apatite [12]. This method can
be said to provide a biomimetic surface, without the need for osteoblast participation. The
surface of the biomimetic dental implants can be observed in Figure 1.

Once the hydroxyapatite layer on the implant surface has formed, the osseointegration
process continues with the selective adsorption of fibronectin from human plasma followed
by the migration, adhesion, proliferation, and differentiation of osteoblasts, which initiates
bone apposition on the surface [12,14,15].



Biomimetics 2025, 10, 43 3 of 20

Biomimetics 2025, 10, x FOR PEER REVIEW 3 of 25 
 

 

Once the hydroxyapatite layer on the implant surface has formed, the osseointegra-
tion process continues with the selective adsorption of fibronectin from human plasma 
followed by the migration, adhesion, proliferation, and differentiation of osteoblasts, 
which initiates bone apposition on the surface [12,14,15]. 

 

Figure 1. Showing the bioactive surface using Scanning Electron Microscopy, of the implants VEGA 
(Klockner, Esdaldes-Engorday, Andorra). 

The objective of this study is to determine the growth of sodium titanate crystals in 
relation to the cooling rate and different calcium contents of concentrated NaOH solutions 
and, additionally, to analyze the influence of crystal size on the behavior of osteoblasts to 
achieve the rapid bone mineralization of biomimetic dental implants. The clinical rele-
vance of this research is to provide clinicians with implant surfaces with a hydrophilic 
microstructure and small crystals to facilitate osteoblast adhesion and trigger rapid min-
eralization for bone tissue formation. 

2. Materials and Methods 
2.1. Materials 

Three hundred eighty-five discs of cpTi (commercially pure titanium) grade 3 with a 
diameter of 10 mm were donated by Klockner Dental Implants (Soadco, Escaldes En-
gordany, Andorra) for this study. The microstructure comprised alpha grains with an av-
erage diameter of 50 μm. The titanium was subjected to a passivation process with 40% 
citric acid for 5 min before the thermochemical treatments. It was washed with distilled 
water and dried with hot air flow. The average thickness of the passivation layer formed 
by titanium oxide was determined using a high-resolution Field Emission Scanning Elec-
tron Microscope FE-SEM 230( FEI, Hillsboro, OR, USA). In Figure 2, the passivation film 
on the titanium surface can be observed. The average thickness of the titanium oxide layer 
was 0.60 ± 0.13 μm. Layer thickness measurements were performed on five titanium disks 
at 5 different locations for each disk. 

Figure 1. Showing the bioactive surface using Scanning Electron Microscopy, of the implants VEGA
(Klockner, Esdaldes-Engorday, Andorra).

The objective of this study is to determine the growth of sodium titanate crystals in
relation to the cooling rate and different calcium contents of concentrated NaOH solutions
and, additionally, to analyze the influence of crystal size on the behavior of osteoblasts to
achieve the rapid bone mineralization of biomimetic dental implants. The clinical relevance
of this research is to provide clinicians with implant surfaces with a hydrophilic microstruc-
ture and small crystals to facilitate osteoblast adhesion and trigger rapid mineralization for
bone tissue formation.

2. Materials and Methods
2.1. Materials

Three hundred eighty-five discs of cpTi (commercially pure titanium) grade 3 with a
diameter of 10 mm were donated by Klockner Dental Implants (Soadco, Escaldes Engor-
dany, Andorra) for this study. The microstructure comprised alpha grains with an average
diameter of 50 µm. The titanium was subjected to a passivation process with 40% citric
acid for 5 min before the thermochemical treatments. It was washed with distilled water
and dried with hot air flow. The average thickness of the passivation layer formed by
titanium oxide was determined using a high-resolution Field Emission Scanning Electron
Microscope FE-SEM 230( FEI, Hillsboro, OR, USA). In Figure 2, the passivation film on the
titanium surface can be observed. The average thickness of the titanium oxide layer was
0.60 ± 0.13 µm. Layer thickness measurements were performed on five titanium disks at
5 different locations for each disk.

2.2. Heat Treatments

Twenty samples were used as a control. The samples were only passivated with
citric acid.

The thermochemical treatment was conducted according to Kokubo et al. [10]:

• The samples were introduced into a vial containing 10 mL of NaOH 6 M and then
placed in an oven at 60 ◦C for 24 h.

• The samples were carefully rinsed with distilled water and dried in an oven at 40 ◦C
for 24 h.

• The samples were subjected to thermal treatment in a tubular furnace with a 5 ◦C/min
heating rate up to 600 ◦C and maintained at this temperature for 1 h.
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• Eighty samples were cooled to room temperature inside the furnace at different rates:
20 ◦C/h, 50 ◦C/h, 75 ◦C/h, and 115 ◦C/h (with 20 samples for each cooling rate).
The cooling rates were chosen from the lowest rate of 20 ◦C/h, which corresponds to
cooling inside the oven, to 150 ◦C/h, which corresponds to cooling with the oven door
open. The other two speeds are average values in order to determine the influence
of the cooling rate on the size of the crystals. The control samples did not undergo
any treatment.
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Figure 2. Titanium dioxide obtained by the passivation process.

These discs were heat-treated at a predetermined temperature with a tubular furnace
(Hobersal ST16, Caldes de Montbui, Spain) with an atmosphere controlled using an Argon
99.99% flow to avoid the oxidation of titanium (Figure 3).
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Figure 3. Tubular furnace used for the thermochemical treatment with heating and cooling
rate control.

2.3. Electron Microscopy

The samples were observed using a TESCAN (CLARA UHR SEM. Brno, Czech Re-
public) high-resolution scanning electron microscope using a 15 KV electron acceleration at
different viewing distances. The microscope has an image analysis system (Image Jversion
1.54f) with a resolution of 2 nm. This equipment was used to determine the average size of
the sodium titanate crystals produced at different cooling rates. In addition, the microscope
has a system of microanalysis EDX (Oxford Aztec EDX, Oxford, UK).
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2.4. Sodium Cations Determination

The amounts of sodium cations in the different treatments were studied. For this
purpose, 5 samples of the control and of each thermo-chemical treatment were immersed in
distilled water with agitation. It is well known that sodium will be totally solubilized in the
aqueous medium. The different solutions were analyzed in an Inductively Coupled Plasma
(ICP-MS) to determine the sodium ion values after 1 h of immersion at room temperature.

2.5. Roughness

White light interferometry (Wyko NT1100 Interferometer, Veeco Instruments, Plain-
view, NY, USA), in its vertical scanning interferometry mode, was used to produce, evaluate,
and quantify topographical features of the tested surfaces. The interferometric technique
is ideal for imaging these surfaces as a large area of the surface can be imaged with a
high vertical resolution (≈2 nm). The analysis area was 124.4 × 94.6 µm. Data analysis
was performed with Wyko 32 (Veeco Instruments, Plainview, NY, USA), which allows
the application of a Gaussian filter to separate waviness and form from roughness. Five
different specimens of each treatment and control were measured to determine the am-
plitude parameter (Sa), the maximum peak value (Sz), and the hybrid parameter (Index
area) [16,17].

2.6. Wettability and Surface Energy

The contact angle analysis was performed on n = 5 samples with ultrapure distilled
water (Millipore Milli-Q, Merck Millipore Corporation, Darmstadt, Germany) and for-
mamide (Contact Angle System OCA15plus-Dataphysics, Filderstadt, Germany), and the
corresponding data were analyzed with the SCA20 goniometer (Dataphysics, Filderstadt,
Germany). Contact angle measurements were made using the sessile drop method. Drops
were generated with a micrometric syringe and were deposited over discs. A total of 3 µL
of distilled water and 1 µL of formamide were deposited on each sample at 200 µL/min.
Finally, the surface free energy was determined by applying the Owens, Wendt, Rabel,
and Kaelble (OWRK) equation with wettability values obtained with distilled water and
formamide and the Wenzel equation for the correction of contact angles with the rough-
ness [18–20].

2.7. Osteoblast Study

For in vitro studies, human osteoblast cells (Saos-2; ATCC, Manassas, VA, USA) were
cultured in McCoy’s modified 5A medium, supplemented with 10% fetal bovine serum
(FBS, Gibco, New York, NY, USA), 1% penicillin/streptomycin 2 mM (Invitrogen, Carlsbad,
CA, USA), and 1% sodium pyruvate (Invitrogen, Carlsbad, CA, USA). Cultures were grown
at 37 ◦C in a 5% CO2 incubator under humidified conditions, with n = 25 for control and
each cooling rate studied.

Confluent cells were incubated with TrypLE (Invitrogen, Carlsbad, CA, USA) for
1 min to detach them from the flask. Subsequently, 5000 cells were seeded on each disc
and incubated at 37 ◦C. After 3 and 14 days of incubation, the samples were washed with
PBS and moved onto a new plate to perform a metabolic activity assay using Alamar Blue
(Invitrogen-Thermo Fisher Scientific, Waltham, MA, USA), following the manufacturer’s
protocol. Briefly, the reagent was prepared and pipetted to cover the samples, and the
percentage of Alamar Blue reduction was estimated after 4 h of incubation at 37 ◦C, using
the Alamar Blue solution as a blank.

To study the osteoblasts’ differentiation, the alkaline phosphatase (ALP) activity was
determined using the Sensolyte pNPP alkaline phosphatase colorimetric assay (Anaspec,
Fremont, CA, USA). The determination of ALP was performed at a wavelength of 495 nm,
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and detection was carried out using a conventional ELx800 microplate reader (Bio-Tek
Instruments Inc., Winooski, VT, USA).

2.8. Influence of Calcium Content

Additionally, NaOH 6 M solutions were made, as indicated by Kokubo’s method, with
the presence of calcium at two concentrations, one of approximately 1000 ppm and another
of 100 ppm. The treatments to obtain sodium titanate were carried out for the samples
cooled at 20 ◦C/h and 75 ◦C/h with the two solutions, one rich in calcium and the other
low in calcium. The crystal size and microstructure were analyzed in order to determine
whether high levels of calcium could affect the microstructure. For this purpose, 80 disks
were used for the two cooling rates and the two calcium contents.

2.9. Statistic Study and Number of Samples

The number of samples used was obtained using an experimental sample size method.
Statistical analysis was performed using the MiniTab version 17 software (Minitab Inc.,
Lock Haven, PA, USA). The Kruskal–Wallis and Mann–Whitney U non-parametric tests
were used to compare the different conditions. Statistical differences were considered at
p < 0.05.

The number of samples was as follows: 5 samples passivation film + 20 samples
SEM × 5 (1 control + 4 cooling rates) + 5 samples roughness × 5 (1 control + 4 cooling rates)
+ 5 samples wettability × 5 (1 control + 4 cooling rates) + 5 samples for Na content × 5
(1 control + 4 cooling rates) + 25 samples cellular studies × 5 (1 control + 4 cooling rates) +
20 samples Ca study × 2 calcium contents × 2 cooling rates = 385 samples.

3. Results
Figure 4 shows the surface of the biomimetic dental implant at different cooling rates.

It can be seen that as the cooling rate increases, the crystal size decreases. At the fastest
speed (115 ◦C/h), the surface does not show clear crystallization but rather an amorphous
phase, although some very fine crystals can be seen in some areas.

The sodium titanate that forms on the surface of the titanium is generated by the
chemical reaction with concentrated NaOH and causes a sodium titanate structure in the
form of crystals that will grow with temperature. There is no increase in the thickness
of the titanium oxide layer as it is the reaction with the titanium oxide that changes the
morphology of the crystals formed and gives this crystalline structure. The topography
changes due to the cooling rate, which shows that it is a solid-state diffusion effect, just as
it occurs in other processes such as grain size growth in metallic materials or in calcium
phosphate granules, which depends on the temperature of the materials, time and solid-
state diffusion coefficients [21–23].

Figure 5 shows the average crystal sizes obtained using high-resolution microscopic
observation in more than 10 zones per disk.

The EDX results of the control sample and the thermochemically treated samples are
shown in Figure 6 where the oxygen and sodium peaks produced by the reaction with
NaOH can be seen. Between the different cooling rates, no difference between the EDX
spectra can be observed.

Table 1 shows the roughness, wettability and the total surface free energy considering
the dispersive and polar component of the different surfaces.
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The values in Table 1 show that the different cooling rate does not affect the roughness
between the different cooling rates or with respect to the control. It can be confirmed
that the titanate layer reproduces the original topography of the samples. In none of the
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different types of treatment were statistically significant differences observed in any of the
roughness parameters studied.

Table 1. Roughness parameters Sa, Sz and index area, contact angle (CA), dispersive component of
the surface energy (DC), polar component (PC) and total surface energy (SFE). Asterisks mean the
statistical difference significance p < 0.05.

Sa (µm) Sz (µm) Index Area CA (◦) DC (mJ/m2) PC (mJ/m2) Total SFE
(mJ/m2)

Control 0.21 ± 0.02 0.34 ± 0.02 1.09 ± 0.01 77 ± 5 24.8 ± 1.2 10.2 ± 2.0 35.0 ± 3.2

20 0.24 ± 0.10 0.41 ± 0.11 1.08 ± 0.06 58 ± 3 * 27.2 ± 1.2 ** 18.3 ± 1.8 * 45.5 ± 2.2 *

50 0.26 ± 0.15 0.67 ± 0.47 1.06 ± 0.04 50 ± 4 ** 27.7 ± 1.3 ** 17.5 ± 2.1 * 45.2 ± 1.2 *

75 0.22 ± 0.18 0.59 ± 0.67 1.15 ± 0.04 42 ± 2 *** 29.0 ± 2.2 ** 20.5 ± 1.9 ** 49.5 ± 1.8 **

115 0.25 ± 0.18 0.33 ± 0.17 1.07 ± 0.08 70 ± 7 25.0 ± 1.1 10.5 ± 1.8 35.5 ± 4.2

The wettability behavior shows that as we increase the cooling rate, a greater hy-
drophilicity of the surfaces is produced, showing statistically significant differences be-
tween them in all cases. The samples with a cooling rate of 115 ◦C/h show a wettability
without statistically significant differences with respect to the control. In the same way, it
can be observed in the calculation of surface energies that the structure obtained with a
speed of 75 ◦C/h presents a higher surface energy with statistically significant differences
with respect to the other cooling speeds. The speeds of 20 and 50 ◦C/h also show higher
hydrophilicity than the control and those of the 115 ◦C/h speed. It should be noted that
in the surface energy, which is a sum of the dispersive and polar component, the polar
component of the samples cooled at the 75 ◦C/h rate plays the most important role.

Studies of sodium cation content on the surfaces of the different treatments have shown
that there are no statistically significant differences between the different thermochemical
treatments studied. The differences are clearly with respect to the control, since these discs
have not been subjected to the reaction with concentrated NaOH. The sodium contents in
this control are due to the impurities that are present in its surface; therefore, the cooling
rate does not affect the sodium contents of the samples as can be observed in Table 2.

Table 2. Sodium cations determined for different samples studied. One asterisk means statistically
significant differences at p < 0.05 with the samples without asterisk.

Samples Concentration Na+ (ppm)

Control 24 ± 5

20 1174 ± 298 *

50 1289 ± 312 *

75 1199 ± 288 *

115 1135 ± 234 *

Figure 7 shows that in the human osteoblast cultures, the values of cell adhesion at
three days are at their maximum for dental implants with smaller crystal sizes except for
the culture at the maximum velocity since it has a predominance of the amorphous phase,
with values similar to the control. It can also be seen that as the crystal size decreases,
osteoblastic adhesion increases. These values show statistically significant differences
at p < 0.05 between the 20, 50, and 75 ◦C/h conditions and the rest but not between the
control and the conditions at 115 ◦C/h. It can also be observed that the sizes of the control
crystals and those generated at 115 ◦C/h do not present statistically significant differences
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since, as can be seen in the microstructure, there is no complete crystallization under this
cooling rate.
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Figure 7. Osteoblast adhesion for the different cooling rates at three days after culture. The different
number of asterisks means a statistically significant difference at p < 0.05 among them.

The results of cell adhesion at 14 days show a change in trend, where the samples
cooled at a speed of 75 ◦C/h present lower adhesion than the others, with statistically
significant differences. This is because adhesion to the surface has practically completed,
and the cells are in the proliferation and mineralization phase, as can be seen in Figure 8.
The other speeds do not present statistically significant differences.
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This result is corroborated in Figure 9, in which the degree of mineralization at 14 days
reaches a maximum for the samples cooled at a speed of 75. The alkaline phosphatase
activity shows growth as the cooling speed increases, showing statistically significant
differences at all speeds. The control surfaces do not show statistically significant differences
from the surfaces cooled at a speed of 115 ◦C/h, which do not have a crystalline surface as
we have seen.
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Figure 9. Alkaline phosphatase activity after 14 days for the different cooling rates. The different
number of asterisks means a statistically significant difference at p < 0.05 among them.

The influence of calcium on the growth of sodium titanate crystals has been deter-
mined, and no statistically significant differences in crystal size were observed. The results
can be seen in Figure 10, and the microstructures for the two calcium contents are shown in
Figure 11. The different commercial NaOH solutions have different purities ranging, in
general, from 100 ppb of calcium to 1000 ppb. We wanted to determine if the oscillations
of the calcium concentrations in the NaOH solutions could vary the measurements in the
sizes of the crystals as well as their biological activity [24,25].

It can be seen from the crystal sizes and morphologies obtained by SEM that there
is no statistically significant influence on the values of crystal size and morphology as a
function of the calcium contents studied.

Figure 12 shows the number of osteoblastic cells at 3 days and Figure 13 at 14 days. It
can also be seen that the influence of the calcium content up to 950 ppb does not influence
osteoblast activity and follows the same trend as the previous results of NaOH without
calcium cations.

The results of alkaline phosphatase show no statistically significant differences
p < 0.05 with the different calcium contents, but there is an influence with the cooling
rate, as can be observed in Figure 14.
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Figure 10. Average crystal size using different calcium contents in the solution and different cool-
ing rates. The different number of asterisks means a statistically significant difference at p < 0.05
among them.
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Figure 11. (A) Microstructure obtained with a cooling rate of 20 ◦C/h and 950 ppb of calcium in
the solution. (B) Microstructure obtained with a cooling rate of 20 ◦C/hand 120 ppb of calcium in
the solution. (C) Microstructure obtained with a cooling rate of 75 ◦C/h and 950 ppb of calcium in
the solution. (D) Microstructure obtained with a cooling rate of 75 ◦C/h and 120 ppb of calcium in
the solution.
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p < 0.05 among them.
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4. Discussion
From the results of the crystal sizes obtained at different cooling rates in titanium

processing, it is possible to grade the biological behavior of the osteoblastic cells. It is
well known, in material science, that fast cooling rates produce more crystallization nuclei
of the material to be processed, i.e., there are more nuclei due to the undercooling that
occurs. When the cooling rate is slow, the degree of subcooling is smaller, and, therefore,
the numbers of crystal nuclei are reduced [26–28]. When there are many nuclei, the
crystallization rate is faster, and we are able to obtain structures of many crystals and of a
smaller size than those cooled slowly. This behavior can also be seen in materials based on
calcium phosphates, where when the particles are smaller, the material is more reactive
than that of larger particles [19–30]. As shown by Geneva et al., small particles are more
reactive than large particles due to an increase in the specific surface area able to react with
the medium to form apatites [31–33]. For this reason, bone regeneration materials can be
found that present small calcium phosphate granules for rapid bone formation or large
granules for slower regeneration rates.

When the cooling speeds are very fast, as in the case of 115 ◦C/h, there is not enough
time for the formation of clusters or crystallization nuclei, and an amorphous material is
obtained on a part of the surface dotted with very small crystals. The amorphous part
is not so favorable for osteoblast adhesion, and, as we have seen, it is very similar to the
untreated surface.

From the roughness results obtained, it can be affirmed that the thermochemical
treatment does not affect the original roughness of the samples. The titanate layers that are
formed reproduce the topography, and the appreciating values of Sa, Sz and area index
are very similar with no statistically significant differences in any case. Therefore, the
roughness of the samples will not be a factor affecting osteoblastic cell activity. However,
we have been able to observe the improvement of the hydrophilicity in the samples cooled
at a speed of 75 ◦C/h, statistically superior to the hydrophilicity of the titanate layers
obtained at speeds of 20 and 50 ◦C/h. The increase in hydrophilicity will allow a greater
adsorption of proteins in the physiological media and therefore favors the adhesion of
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osteoblasts than in the other cases. We can also say that, in all cases, the presence of titanate
crystals improves hydrophilicity and produces an increase in surface energy with respect
to the control and the higher speed, which forms an amorphous structure [34,35]. It should
be noted that the polar component grows more with respect to the dispersive component in
the calculation of the surface energy. As is well known, this increase in the polar component
favors osteoblast adhesion [36–38].

It has been possible to verify how the adhesion of osteoblastic cells, after three days, is
higher for the treatment at a speed of 75 ◦C/h, when compared to the other cooling speeds.
Increasing cell adhesion behavior can be seen as the cooling rate increases, since there are
more and smaller crystals, significantly increasing the specific surface area, i.e., the surface
area susceptible to cell adhesion [36–41]. It only decreases with the highest speed analyzed
(115 ◦C/h), as we have mentioned, due to the difficulty of crystalline growth. On the
other hand, it should be noted that this cell adhesion decreases for the case of 75 ◦C/h at
14 days, and this is due to the fact that the cells are already in the process of differentiation,
also called mineralization, as indicated by the significant levels of alkaline phosphatase
found [42–45]. In other words, the cooling rate of 75 ◦C/h will be the surface that will most
accelerate the mineralization process in a dental implant. The clinical implication of this
result is that we will be able to have dental implants with faster bone formation speeds in
the clinic, which will allow the clinician to reduce the time to load the dental implant with
the prostheses, and the patient will have all his or her functionality and esthetics recovered
in less time [46–52].

This biomimetic surface of different crystal sizes varies the speed of bone mineraliza-
tion but not in the bone implant contact at the end of the process of bone growth. That is, the
75 ◦C/h implant will mineralize faster, but over time, the degree of bone growth between
the control and this 75 ◦C/h implant will be the same [53]. It seems that optimizing the
cooling rate and, consequently, mineralization will be important for immediately loaded or
early loaded implants that some clinicians prefer for their patients [54,55].

Another important result is that the calcium levels studied do not affect the crystal
sizes or even the microstructure of the material. Kokubo et al. [10] indicated that high levels
of calcium could negatively influence the formation of a biomimetic crystal structure, since
calcium could substitute for sodium and inhibit bioactivity, as the biomimetic structure
would not form [56,57]. However, the studied levels corresponding to the possible calcium
contents present in NaOH solutions do not affect the properties of the biomimetic sodium
titanate surface. The calcium contents studied also do not show variations in the osteoblastic
adhesion activity at 3 and 14 days, nor in the mineralization behavior. No statistically
significant differences were observed with a p < 0.005 between the calcium contents studied.
However, as in the case of the solutions without calcium, the different cooling rates studied
cause the differences in the crystal sizes and consequently in the cellular activity.

The study of the calcium content in NaOH solutions responds to research by Kokubo
et al. [10] which indicated that when calcium cations were present in titanium, a decrease
in osteoblastic biological activity occurred. This fact responds to the fact that calcium
replaces sodium cations and blocks the formation of apatite in contact with the human
physiological environment; therefore, titanium would lose osteoconductive capacity. This
research demonstrates that the quantities of calcium present as impurities in concentrated
NaOH solutions do not affect the behavior of titanate on the surface of the implants. It was
found that the size of titanate crystals, osteoblast adhesion and alkaline phosphate levels
do not present statistically significant differences with respect to the alkaline solutions used
without the presence of calcium ions.

In this research, it has been possible to determine that the cooling rate causes a decrease
in the size of the titanate crystals that will favor the rapidity in the osteoblastic biological
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activity as the size decreases. The decrease in crystal size has a limit of about 150 ◦C/h due
to the fact that titanium does not crystallize. We have carried out these tests with NaOH
concentrations of 6 M and other authors have worked with 10 M, but we have been able to
verify [14] that with these concentrations, the same type of osteoconductive morphologies
can be obtained. Another possible line of future work is that these results can also be
transferred to other titanium alloys used as biomedical implants, such as Ti6Al4V, Ti13Zr
or low-elastic-modulus titanium-based alloys with the presence of Zr, Nb, and Ta.

The clinical significance of these thermal treatments could be interesting to have more
biologically active osteoconductive implants for patients with deficiencies in bone tissue
metabolism, such as diabetics [58,59], osteoporotic [60,61], smokers [62,63] or oncological
patients [64]. The small crystals could help osteoblastic cell activity, which in these patients
is clearly diminished [59–61]. These applications have already been obtained for granules
based on calcium phosphates that surgeons introduce in bone-deficient sites in order to
regenerate the bone. It is well demonstrated that small granules have a much faster bone
formation than large granules due to the specific surface of the biomaterial that interacts
with proteins and cells [65]. On the other hand, surfaces with very small titanates would
be suitable for immediate loading implants as they would facilitate mineralization, and
therefore, biological fixation would be obtained at shorter times than with larger titanate
crystals obtained at slower speeds.

From the point of view of dental implant manufacturing, it is important to know
that faster cooling rates also produce titanate crystalline titanate structures that will favor
cellular activity. This fact reduces the manufacturing times and reduces the economic cost
of the implants.

This treatment of sodium titanate formation causes it to form apatite when in contact
with the blood fluid, thus making the implant osteoconductive. There are other ways
to obtain the improvement of osteoblastic activity as shown in the work of Papynov
et al. [65], where they present a bioactive material, CaSiO3-HAp biocomposite ceramics
reinforced with a Ti6Al4V titanium alloy matrix obtained by additive manufacturing. This
material is new and represents a prospect for the creation of high-tech implant products for
regenerative bone surgery.

The findings of this study should be completed with in vivo test results, which we
hope to finish in the near future. In any case, we found that it was possible to optimize the
size of the titanate crystals to obtain the most active microstructure for osteoblastic cells
by means of the cooling rate. It was also possible to confirm that the presence of calcium
below 900 ppm in the solutions does not affect the biomimetic topography.

5. Conclusions
It was determined that increasing the cooling rate results in smaller sodium titanate

structures that are more hydrophilic and have higher total surface energy than the control
ones. The different cooling rates do not affect the roughness or surface sodium concentra-
tions. The smaller crystal size results in higher osteoblastic cell activity and a higher degree
of mineralization. It was observed that the speed of 150 ◦C/h produces an amorphous
structure and does not present good biological properties. The optimum cooling rate
of those studied was 75 ◦C/h. It was determined that the calcium impurities that may
be present in NaOH solutions do not inhibit the biological activity of osteoblasts. These
treatments are encouraging for producing more osteoconductive surfaces that favor the
rapid mineralization of bone tissue.
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