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Abstract: (1) Background: At present, the bio‑inspired visual neural models have made
significant achievements in detecting the motion direction of the translating object. Vari‑
able contrast in the figure‑ground and environmental noise interference, however, have
a strong influence on the existing model. The responses of the lobula plate tangential
cell (LPTC) neurons of Drosophila are robust and stable in the face of variable contrast
in the figure‑ground and environmental noise interference, which provides an excellent
paradigm for addressing these challenges. (2) Methods: To resolve these challenges, we
propose a bio‑inspired visual neural model, which consists of four stages. Firstly, the
photoreceptors (R1–R6) are utilized to perceive the change in luminance. Secondly, the
change in luminance is divided into parallel ON and OFF pathways based on the lamina
monopolar cell (LMC), and the spatial denoising and the spatio‑temporal lateral inhibi‑
tion (LI) mechanisms can suppress environmental noise and improve motion boundaries,
respectively. Thirdly, the non‑linear instantaneous feedback mechanism in divisive con‑
trast normalization is adopted to reduce local contrast sensitivity; further, the parallel ON
and OFF contrast pathways are activated. Finally, the parallel motion and contrast path‑
ways converge on the LPTC in the lobula complex. (3) Results: By comparing numerous
experimental simulations with state‑of‑the‑art (SotA) bio‑inspired models, we can draw
four conclusions. Firstly, the effectiveness of the contrast neural computation and the spa‑
tial denoising mechanism is verified by the ablation study. Secondly, this model can ro‑
bustly detect the motion direction of the translating object against variable contrast in the
figure‑ground and environmental noise interference. Specifically, the average detection
success rate of the proposed bio‑inspired model under the pure and real‑world complex
noise datasets was increased by 5.38% and 5.30%. Thirdly, this model can effectively re‑
duce the fluctuation in this model response against variable contrast in the figure‑ground
and environmental noise interference, which shows the stability of this model; specifically,
the average inter‑quartile range of the coefficient of variation in the proposed bio‑inspired
model under the pure and real‑world complex noise datasets was reduced by 38.77% and
47.84%, respectively. The average decline ratio of the sum of the coefficient of variation in
the proposed bio‑inspired model under the pure and real‑world complex noise datasets
was 57.03% and 67.47%, respectively. Finally, the robustness and stability of this model
are further verified by comparing other early visual pre‑processing mechanisms and engi‑
neering denoising methods. (4) Conclusions: This model can robustly and steadily detect
the motion direction of the translating object under variable contrast in the figure‑ground
and environmental noise interference.
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1. Introduction
In nature, Drosophila, as a model organism, has evolved over millions of years to de‑

velop a robust and stable visual neural system that plays a vital role in its survival, and
it has better motion sensitivity than humans [1,2]. Detecting the motion direction of the
translating object has become one of the fundamental survival skills of Drosophila, which
plays a significant role in daily behavior, such as avoiding predators, chasing prey, and
so forth [3,4]. A variety of bio‑inspired models are proposed based on motion‑sensitive
visual neurons of Drosophila [5], which are widely used in robots [6] and drones [7]. From
biology to bio‑inspired modeling and even to biomimetic applications, the physiological
mechanisms of the Drosophila visual neural system provide many inspirations. The mo‑
tion direction of the object, as one of the important motion features of the object, provides
a basis for the higher‑order neural structure (central brain) to make decisions [8]. The ini‑
tial motion‑directional detection model to express the behavioral and physiological char‑
acteristics of Drosophila is the elementary motion detector (EMD) [9], which is widely
used in the fields of intelligent devices [10,11]. However, the detection performance of
the EMD and a series of improved EMD‑based models [12–14] under complex dynamic
backgrounds is not satisfactory. With the revelation of the physiological mechanism of
the motion‑sensitive neurons of Drosophila, the LPTC has been shown to have a strong
response to translating wide‑field objects and the motion of local salient objects [15]. Sub‑
sequently, several bio‑inspiredmodels based on the LPTC have been put forward bymath‑
ematicians, which have proven to have excellent detection performance under complex dy‑
namic backgrounds [16]. In the visual neural system of Drosophila, the retina and the optic
lobe are two significant biological structures for detectingmotion features and objects. The
retina is responsible for perceiving the change in luminance and color information from
the natural environment, while the optic lobe is a multi‑layered structure responsible for
processing the change in luminance and color information, and further detecting motion
features and objects [17,18].

The visual neural systemofDrosophila is a visual invariant, highly parallel, andmulti‑
layer ganglion information processing model. The first‑order visual neural structure is the
retina, which consists of approximately 800 ommatidia in each ommateum. Each omma‑
tidium consists of eight different photoreceptor cells, R1–R8, of which R1–R6 are respon‑
sible for perceiving a wide range of light and motion information, while R7 and R8 are re‑
sponsible for perceiving the color information [19]. The second‑order higher visual neural
structure is the optic lobe, which includes the lamina, the medulla, and the lobula complex
(including lobula and lobula plate). Firstly, in the lamina, a large number of the LMC neu‑
rons receive the signal from the R1–R6 neurons, which are highly sensitive to the change
in luminance [20]. The LMC neurons mainly include two types, namely, L1 and L2. The
L1 type of the LMC has a strong response to increased luminance, while the L2 type of
the LMC has a strong response to decreased luminance [21]. Further, the inter‑neurons in
the lamina have the property of improving environmental disturbance [22] and the char‑
acteristic of the LI biological mechanism, which can improve motion boundaries [23]. Sec‑
ondly, a great number of the transmedulla 3, 2, and 1 (Tm3, Tm2, and Tm1) and intrinsic
medulla 1 (Mi1) neurons in the medulla receive the signal from the LMC. The Tm3 and
Mi1 neurons are highly sensitive to increased luminance with the response of the Mi1 de‑
layed relative to the Tm3, on the contrary, the Tm2 and Tm1 neurons are highly sensitive
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to decreased luminance with the response of the Tm1 delayed relative to the Tm2 [24].
Thirdly, the T4 neurons in the medulla have four sub‑types, which are highly sensitive to
increased luminance and receive signals from the Tm3 andMi1 neurons [25]; additionally,
the ON/OFF contrast pathways will be activated in the medulla [26]. Finally, the T5 neu‑
rons in the lobula of the lobula complex have four sub‑types, which are highly sensitive to
decreased luminance and receive signals from the Tm2 and Tm1 neurons [27]; after that,
the LPTC and the lobula plate‑intrinsic (LPi) neurons in the lobula plate of the lobula com‑
plex [28–30] are adopted to detect the motion direction of the translating object. Although
the Drosophila‑inspired visual neural model based on the visual neural circuits has made
remarkable progress in detecting the motion direction of the translating object, the detec‑
tion performance is not satisfactory in the case of visual contrast in the figure‑ground and
environmental noise interference. Furthermore, there is scant literature that comprehen‑
sively analyses and verifies this. This study proposes a bio‑inspired visual neural model to
resolve these challenges. In summary, the main contributions of this paper are as follows:

(1) Weutilize the spatio‑temporal biologicalmechanism to suppress environmental noise
and improve motion boundaries, which facilitate the subsequent detection of the mo‑
tion direction of the translating object.

(2) We adopt the contrast normalizationmechanism and the contrast pathways to reduce
the fluctuation in the response of variable contrast in the figure‑ground.

(3) The computing of Drosophila’s four‑layer visual neural circuits demonstrates a com‑
pact and layered solution to robustly and steadily detect the motion direction of the
translating object against variable contrast in the figure‑ground and noise interfer‑
ence, which further approximates Drosophila’s visual neural detection capability.

The remainder of this paper is organized as follows. In Section 2, the relatedworks are re‑
viewed. In Section 3, the proposed bio‑inspiredmodel is introduced in detail. In Section 4, the
experimental simulations and performance are analyzed based on the synthetic noisy visual
stimulus sequence dataset. In Section 5, the proposed bio‑inspired model is discussed and
prospects for future research are presented. In Section 6, the proposed bio‑inspired model is
summarized.

2. Related Works
Over the years, numerous works based on the visual neural system of Drosophila

have been presented. Some of the notable ones, including spatio‑temporal biologicalmech‑
anisms, bio‑inspired motion direction detection models, and contrast neural computation,
are discussed below.

2.1. Spatio‑Temporal Biological Mechanisms

The spatio‑temporal biological mechanisms work together to play a significant role
in reducing background interference, which facilitates the subsequent detection of the mo‑
tion direction of the translating object. The spatio‑temporal biologicalmechanismhas been
shown to suppress environmental noise and improve motion boundaries, which is con‑
sidered a suitable filter prior to motion and contrast information detection in the visual
neural system of Drosophila [16,22]. The suitable filter mainly includes the spatial denois‑
ing mechanism [31] inspired by grouping‑layer processing mechanisms [32] and the role
of lateral excitation [33], and the spatio‑temporal LI mechanism inspired by the biologi‑
cal neural system, i.e., the inhibition that occurs between the adjacent neurons [23]. The
review of relevant literature is shown in Table 1.
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Table 1. Literature review concerning the spatio‑temporal biological mechanisms.

References Brief Description

[31]

LEI et al. [31] proposed a robust model based on the lobula giant movement detector (LGMD). In
the lamina layer of this model, the denoising mechanism is adopted to reduce the ambient noise,
which is beneficial for detecting looming objects, but was not validated in the neural circuit based
on the LPTC.

[34]

HONG et al. [34] presented a probabilistic LGMD (Prob‑LGMD) model. This model incorporates
probability into the synaptic connections between multiple layers (not from the summing layer to
the grouping layer) to reduce ambient noise, which is beneficial for detecting looming objects, but
was not validated in the LPTC‑based bio‑inspired model.

[35]
ZHENG et al. [35] put forward a binocular‑structure LGMD‑based (Bi‑LGMD) model. In the S
layer of this model, the delayed propagation mode is adopted to implement the LI mechanism,
which is beneficial for detecting the depth distance of looming objects.

[36]
WANG et al. [36] proposed a feedback model based on the small target motion detector (STMD)
against naturally complex backgrounds. In the lamina layer of this model, the inhibition kernel is
adopted to implement the LI mechanism, which is beneficial for detecting small moving objects.

2.2. Bio‑Inspired Motion Direction Detection Models

To further incorporate the latest biological findings of the motion‑sensitive neural
mechanisms, the EMD model [9] has been optimized and several optimized models have
been presented; additionally, according to the physiological mechanism of LPTC neurons,
several LPTC‑based bio‑inspired models were presented. The relevant literature reviews
are shown in Table 2.

Table 2. Literature review concerning the bio‑inspired motion direction detection models.

References Brief Description

[8]
CHEN et al. [8] presented a Drosophila‑inspired detection model based on the LPTC that integrates
a continuous computational layer from the retina to the central complex, which can effectively
extract motion salience in complex dynamic environments.

[12]
FRANCESCHINI et al. [12] proposed a two‑quadrant detector (TQD) model. First, the input visual
signal is divided into ON and OFF visual pathways, and then the motion detection is performed
using input combinations of the same‑sign signals, i.e., ON–ON and OFF–OFF.

[13]
EICHNER et al. [13] put forward a four‑quadrant detector (FQD) model. First, the input visual
signal is divided into ON and OFF visual pathways, and then the motion detection is performed
using four parallel input combinations, i.e., ON–ON, ON–OFF, OFF–ON, and OFF–OFF.

[14]

CLARK et al. [14] proposed a weighted‑four‑quadrant detector (WFQD) model, which is optimized
based on the FQD. First, the input visual signal is divided into ON and OFF visual pathways, and
then the motion detection is performed using four parallel input combinations, i.e., ON–ON,
ON–OFF, OFF‑ON, and OFF‑OFF; furthermore, the two combinations of ON–OFF and OFF–ON
are weighted.

[16]
FU et al. [16] presented a motion vision pathway model based on the LPTC of Drosophila, which
was used to decode the motion direction of translating objects against complex moving
backgrounds; however, the noise environment and model response fluctuation are not considered.

[37]

WANG et al. [37] adopted the max operation algorithm to simulate the physiological mechanism of
Tm9 neurons, which is adopted to estimate the motion direction of the translating background, but
the model did not validate the motion direction of translating objects against complex dynamic
backgrounds.

[38]
XU et al. [38] proposed an improved LPTC‑based model, which adopts smooth and threshold
filtering to maximize the extraction of valuable motion information against complex dynamic
backgrounds; however, the noise environment and model response fluctuation are not considered.

[39]
WIEDERMAN et al. [39] demonstrated that the EMD model [9] is integrated into the elementary
small target motion detector for detecting the directional selectivity of small‑moving objects, which
can detect the four basic translating directions of small‑moving objects.
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2.3. Contrast Neural Computation

To adapt to the highly variable natural environment, some related researchers proposed
the environmental statistics method described earlier; nevertheless, the challenge of highly
variable inputs had not been fully resolved [40,41]. Through the latest relevant investigations,
contrast visual computation is presented to resolve this challenge, which includes the contrast
normalization mechanism and the parallel contrast pathways; the relevant literature reviews
are shown in Table 3. According to the relevant literature, this mechanism has not yet been
verified in detecting the motion direction of the translating object.

Table 3. Literature review concerning the contrast neural computation.

References Brief Description

[26]
BAHL et al. [26] verified that the parallel ON and OFF contrast pathways start from the medulla,
additionally, the parallel ON and OFF contrast pathways negatively affect the parallel ON and OFF
motion pathways, which can attenuate the high‑contrast signal.

[42]

DREWS et al. [42] demonstrated that the divisive contrast normalization based on fast spatial
integration of neural feedback plays a significant role in the visual neural system of Drosophila,
which happens prior to motion correlation. Specifically, the foreground signal intensity of each
medullary inter‑neuron is divided into its neighboring background field via spatially integrating
surrounding feedback signals.

[43]
FU et al. [43] proposed a bio‑inspired neural network model with contrast vision computation for
estimating the natural background motion, but the noise environment is not considered and is not
verified in detecting the motion direction of the translating object.

[44] LI et al. [44] proposed a single LGMD‑based bio‑inspired pathway model with contrast vision
computation for looming perception, but the noise environment is not considered.

[45]
FU et al. [45] presented an ON/OFF LGMD‑based bio‑inspired pathway model with contrast vision
computation, the difference with the reference [44] is that the input visual signal is divided into ON
and OFF visual pathways.

[46]
HUA et al. [46] put forward a non‑linear bio‑inspired pathway model based on lobula plate/lobula
columnar type II (LPLC2), which is used to solve the problem of stable collision perception caused
by radial motion. Contrast vision computation is applied in the LPLC2.

3. Methods
The proposed bio‑inspired model is developed with formulation on four‑layer neu‑

rons including the retina, lamina, medulla, and lobula complex, together with the model
parameter configuration. Figure 1 depicts the network structure and legend of the pro‑
posed bio‑inspired model, which consists of four‑layer neurons. Firstly, the change in
luminance is perceived by photoreceptors (R1–R6) in the retina neural layer. Secondly,
the change in luminance is divided into parallel ON and OFF pathways by the LMC; the
spatial denoising mechanism is adopted to suppress environmental noise; and the spatio‑
temporal LI mechanism is utilized to improve motion boundaries in the lamina neural
layer. Thirdly, the ON and OFF signals are normalized and the parallel ON and OFF con‑
trast pathways are activated in the medulla neural layer. Finally, the contrast and motion
pathways converge on the LPTC in the lobula‑complex neural layer to detect the motion
direction of the translating object.

3.1. Retina Neural Layer

In the retina neural layer, Drosophila has a compound eye structure, each com‑
pound eye includes numerous ommatidia, each ommatidium consists of several photore‑
ceptors, and each photoreceptor corresponds to a pixel [47]. These photo‑ receptors (R1–
R6) are able to perceive the change in luminance frame‑by‑frame and transmit it to down‑
stream neurons for further processing. Specifically, this model adopts gray‑scale process‑
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ing [48,49] and the difference between two successive frames [16] to obtain the change in
luminance (see GSP, ⊖, and P in the retina neural layer, shown in Figure 1).
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3.2. Lamina Neural Layer

In the lamina neural layer, a large number of LMCneurons (L1 andL2) (see the dashed
rectangular box LMC in the lamina neural layer shown in Figure 1) separate the change
in luminance into parallel ON (L1) and OFF (L2) pathways, which encode increased and
decreased luminance, respectively. The half‑wave rectification (HWR) algorithm is used
to divide the change in luminance into the ON and OFF pathways [43] (see HWR, ON
Pathway, and OFF Pathway in the lamina neural layer shown in Figure 1). The ON signal
corresponds to the L1 type of the LMC, while the OFF signal corresponds to the L2 type
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of the LMC, and the OFF signal is inverted (see ▼ in the lamina neural layer shown in
Figure 1).

Afterward, the spatial denoisingmechanism is used to suppress environmental noise,
which includes two stages. In the first stage, the value of the passing coefficient is com‑
puted, which is defined in Equations (1) and (2):

ALCON/OFF(x, y, t) =
1

∑
u=−1

1

∑
v=−1

LON/OFF(x + u, y + v, t) · WON/OFF(u+1, v + 1), (1)

[WON/OFF] =

 1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

, (2)

where ALCON/OFF(x, y, t) represents the average luminance change in ON and OFF sig‑
nals, which represents the passing coefficient; LON/OFF(x, y, t) represents the ON and OFF
signals; and [WON/OFF] represents the weighting matrix of ON and OFF signals. The clus‑
ter excitation obtains a larger passing coefficient, while the isolated excitation obtains a
smaller passing coefficient. Then, the normalized passing coefficient is calculated, which
is defined in Equation (3):

NPCON/OFF(x, y, t) = ALCON/OFF(x + u, y + v, t)/(∆c +max(ALCON/OFF)), (3)

where NPCON/OFF(x, y, t) represents the normalized passing coefficient of ON and OFF
signals and ∆c represents a small real number to prevent the denominator tending toward
zero. In the second stage, the value of the signal is multiplied by the corresponding nor‑
malized passing coefficient and then transmitted, as defined in Equation (4):

DNON/OFF(x, y, t) = LON/OFF(x, y, t) · NPCON/OFF(x, y, t), (4)

whereDNON/OFF(x, y, t) represents the ON andOFF signals after the denoising. Addition‑
ally, the threshold comparison is adopted to filter the decayed excitation, i.e., the isolated
excitation.

Finally, each inter‑neuron in the lamina neural layer receives the LI from its adjacent
similar neurons, which can be achieved by the delayed propagationmode, and the relevant
references verify its validity [33,35] (see LI in the lamina neural layer shown in Figure 1).

3.3. Medulla Neural Layer

In the medulla neural layer, the inter‑neurons (Tm3, Tm2, Mi1, and Tm1) receive the
ON and OFF signals, and the contrast normalization is calculated by a hyperbolic tangent
tanh function (see Tm3, Tm2, andCN in themedulla neural layer shown in Figure 1), which
is defined in Equation (5):

NON/OFF(x, y, t) = tanh

(
SON/OFF(x, y, t)

ŜON/OFF(x, y, t) + ψ

)
, (5)

where NON/OFF(x, y, t) represents the normalized ON and OFF signals, SON/OFF(x, y, t)
represents the ON and OFF signals after the early visual pre‑processing, ψ represents the
baseline contrast sensitivity, and ŜON/OFF(x, y, t) represents ON and OFF signals after the
convolution, which are defined in Equations (6) and (7):

ŜON/OFF(x, y, t) =
5

∑
u=−5

5

∑
v=−5

SON/OFF(x + u, y + v, t) · Gσ(u+5, v + 5), (6)
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Gσ(u, v) =
1

2πσ2 exp
(
−u2 + v2

2σ2

)
, (7)

where σ represents the standard deviation and Gσ(u, v) represents a two‑dimensional
Gaussian kernel. Furthermore, the medulla neural layer again splits the signals into paral‑
lel contrast and motion pathways. The local contrast signal is obtained by calculating the
competition between the response of the central and the surrounding adjacent neurons
(see CON and COFF in the medulla neural layer shown in Figure 1), which are defined in
Equations (8) and (9):

CON/OFF(x, y, t) =

∣∣∣∣∣NON/OFF(x, y, t)−
1

∑
u=−1

1

∑
v=−1

NON/OFF(x + u, y + v, t) · W1(u + 1, v + 1)

∣∣∣∣∣, (8)

[W1] =

 1/8 1/8 1/8
1/8 0 1/8
1/8 1/8 1/8

, (9)

where CON/OFF(x, y, t) represents the local contrast signals of the ON and OFF pathways
(see purple CON and blue COFF in themedulla neural layer of Figure 1) and [W1] represents
the weighting matrix of the center‑surrounding competition.

Next, the T4 neurons have integrated signals from the Tm3 and Mi1 neurons. At
the same time, the T4 neurons have four sub‑types, each of which is sensitive to one of
the upward, downward, leftward, and rightward motion directions, i.e., have four differ‑
ent direction‑selective responses. This model adopts the computing between the current
and delayed normalized ON signals to separate the ON pathway into upward, downward,
rightward, and leftward sub‑visual pathways. The calculation formula of the separating
operation of the T4 is defined in Equation 10:

T4U(x, y, t) = NON(x, y − sd, t) · ND
ON(x, y, t)− NON(x, y, t) · ND

ON(x, y − sd, t)
T4D(x, y, t) = NON(x, y + sd, t) · ND

ON(x, y, t)− NON(x, y, t) · ND
ON(x, y + sd, t)

T4R(x, y, t) = NON(x + sd, y, t) · ND
ON(x, y, t)− NON(x, y, t) · ND

ON(x + sd, y, t)
T4L(x, y, t) = NON(x − sd, y, t) · ND

ON(x, y, t)− NON(x, y, t) · ND
ON(x − sd, y, t)

, (10)

where T4U(x, y, t), T4D(x, y, t), T4R(x, y, t), and T4L(x, y, t) represent the signal of upward,
downward, rightward, and leftward sub‑visual pathways of T4 (see U, D, R, and L of the
rectangular dotted box T4 in the medulla neural layer shown in Figure 1); ND

ON(x, y, t) rep‑
resents the delayed normalized ON signal, which can be obtained by using the temporally
delayed output from Tm3 [16,43] (see red TDU andMi1 in the medulla neural layer shown
in Figure 1); and sd represents the sampling distance in every pairwise detector.

3.4. Lobula‑Complex Neural Layer

In the lobula‑complex neural layer, the T5 neurons integrate signals from the Tm2 and
Tm1 neurons in the medulla neural layer. At the same time, the T5 neurons have four sub‑
types, each of which is sensitive to one of upward, downward, rightward, and leftward
moving directions, i.e., have four different direction‑selective responses. The calculation
formula for the separating operation of T5 is defined in Equation (11):

T5U(x, y, t) = NOFF(x, y − sd, t) · ND
OFF(x, y, t)− NOFF(x, y, t) · ND

OFF(x, y − sd, t)
T5D(x, y, t) = NOFF(x, y + sd, t) · ND

OFF(x, y, t)− NOFF(x, y, t) · ND
OFF(x, y + sd, t)

T5R(x, y, t) = NOFF(x + sd, y, t) · ND
OFF(x, y, t)− NOFF(x, y, t) · ND

OFF(x + sd, y, t)
T5L(x, y, t) = NOFF(x − sd, y, t) · ND

OFF(x, y, t)− NOFF(x, y, t) · ND
OFF(x − sd, y, t)

, (11)

where T5U(x, y, t), T5D(x, y, t), T5R(x, y, t), and T5L(x, y, t) represent the signal of up‑
ward, downward, rightward, and leftward sub‑visual pathways in T5 (see U, D, R, and
L of the rectangular dotted box T5 in the lobula‑complex neural layer shown in Figure 1);
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ND
OFF(x, y, t) represents the delayed normalized OFF signal, which can be obtained by us‑

ing the temporally delayed output of Tm2 [16,43] (see green TDU and Tm1 in the medulla
neural layer shown in Figure 1).

Afterward, the T4 and T5 sub‑layers with the same motion direction are integrated
into the LPTC in the lobula, namely, the responses of the same motion direction converge
to the same sub‑layer of the LPTC (see the rectangular dotted box LPTC in the lobula‑
complex neural layer shown in Figure 1). The calculation formula of the translatingmoving
directions is defined in Equation (12):

LPTCU(x, y, t) = (T4U(x, y, t)− CON(x, y, t))γ1 + (T5U(x, y, t)− COFF(x, y, t))γ2

LPTCD(x, y, t) = (T4D(x, y, t)− CON(x, y, t))γ1 + (T5D(x, y, t)− COFF(x, y, t))γ2

LPTCR(x, y, t) = (T4R(x, y, t)− CON(x, y, t))γ1 + (T5R(x, y, t)− COFF(x, y, t))γ2

LPTCL(x, y, t) = (T4L(x, y, t)− CON(x, y, t))γ1 + (T5L(x, y, t)− COFF(x, y, t))γ2

, (12)

where LPTCU(x, y, t), LPTCD(x, y, t), LPTCR(x, y, t), and LPTCL(x, y, t) represent the sig‑
nal of upward, downward, leftward, and rightward sub‑visual pathways of the LPTC; and
γ1 and γ2 represent the exponents of the ON and OFF signals.

Next, the responses of the opposite motion directions inhibit each other by the LPi.
This model adopts the sign‑inverting operation to simulate the direction‑opponent re‑
sponse (see the rectangular dotted box LPi in the lobula‑complex neural layer of Figure 1).
The calculation formulas of the vertical and horizontal direction‑opponent responses of
the LPi are defined in Equations (13) and (14):

VS(t) =
H
∑

y=1

W
∑

x=1
[LPTCU(x, y, t)− LPiU(x, y, t)]+ −

H
∑

y=1

W
∑

x=1
[LPTCD(x, y, t)− LPiD(x, y, t)]+

HS(t) =
H
∑

y=1

W
∑

x=1
[LPTCR(x, y, t)− LPiR(x, y, t)]+ −

H
∑

y=1

W
∑

x=1
[LPTCL(x, y, t)− LPiL(x, y, t)]+

, (13)


LPiU(x, y, t) = LPTCD(x, y, t)
LPiD(x, y, t) = LPTCU(x, y, t)
LPiL(x, y, t) = LPTCR(x, y, t)
LPiR(x, y, t) = LPTCL(x, y, t)

, (14)

whereVS(t) andHS(t) represent the direction‑opponent responses of vertical and horizon‑
tal; H and W represent height and width of the two‑dimensional visual field in the retina
neural layer; VS(t) > 0 represents the upward motion and VS(t) < 0 represents the down‑
ward motion; and HS(t) > 0 represents the rightward motion and HS(t) < 0 represents
the leftward motion (see MDTO in the lobula‑complex neural layer shown in Figure 1).

The pseudo‑code of the proposed bio‑inspired model is depicted in Algorithm 1,
which shows the signal processing of the proposed bio‑inspired model in detail.

3.5. Model Parameter Configuration

The parameter configuration of the proposed bio‑inspired model is given in Table 4.
All of the parameters are determined empirically by considering the functionality of the
visual neural system of Drosophila.



Biomimetics 2025, 10, 51 10 of 28

Algorithm 1. Proposed bio‑inspired model

1: Input: Visual stimulus sequences at continuous frames, L(x, y, t) < t = 1, 2, 3, . . . , n − 2, n − 1, n >.
2: Output: Motion directions of translating objects, VS(t) and HS(t).
3: Procedure ProposedBioInspiredModel _CALCULATION(Lt−1, Lt)
4:   for num = from (L1, L2) to (Ln−1, Ln)
5:     // 1. Retina neural layer
6:     Compute the gray‑scale successive frames and the change in luminance between every two successive
frames
7:    // 2. Lamina neural layer
8:     Firstly, compute the ON and OFF signals by the HWR algorithm, get LON/OFF(x, y, t)
9:     Finally, compute the pre‑processed ON and OFF signals by the early visual pre‑processing in Equations
(1)–(4), the threshold comparison, and LI, get SON/OFF(x, y, t)
10:    // 3. Medulla neural layer
11:    Firstly, compute the normalized ON and OFF signals by Equations (5)–(7), get NON/OFF(x, y, t)
12:    Secondly, compute the local contrast ON and OFF pathway signals by Equations (8) and (9), get
CON/OFF(x, y, t)
13:    Finally, compute the sub‑visual signals of four different motion directions of the T4 by Equation (10), get
T4X∈{U,D,R,L}(x, y, t)
       // 4. Lobula‑complex neural layer
14:    Firstly, compute the sub‑visual signals of four different motion directions of the T5 by Equation (11), get
T5X∈{U,D,R,L}(x, y, t)
15:    Secondly, compute the integrated sub‑visual motion and contrast pathway signals of the LPTC by
Equation (12), get LPTCX∈{U,D,R,L}(x, y, t)
16:    Finally, compute the vertical and horizontal direction‑opponent responses of the LPi by Equations (13)
and (14), get VS(t) and HS(t)
17:    return VS(t) and HS(t)
18:   end for
19: End procedure

Table 4. The parameter configuration of the proposed bio‑inspired model.

Parameters Description Value
∆c A small real number in Equation (3) 0.01
ψ Baseline contrast sensitivity in Equation (5) 20.0

σ
Standard deviation in the contrast

normalization in Equations (6) and (7) 5

sd Sampling distance in every pairwise detectors
in Equations (10) and (11) 4

(γ1, γ2)
Exponents of the ON and OFF signals in

Equation (12) (0.5, 0.5)

(W, H)
Width and height of two‑dimensional visual

field in Equation (13) adaptable

4. Results
In the experiments, the proposed bio‑inspiredmodel was set up in Visual Studio 2010

(The Microsoft Corporation, Redmond, WA, USA) using Intel Core i7‑8700 and 3.20 GHz
(12 CPUs) hardware. The synthetic visual stimulus sequences were generated by Vision
Egg [49], and the noise was added to the synthetic visual stimulus sequences by OpenCV
2.4.9 (The Intel Corporation, Santa Clara, CA, USA). The performance of the proposed bio‑
inspiredmodelwas verified by the ablation study, the detection performance of translating
objects in pure and real‑world complex noise backgrounds, and further investigations.
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4.1. Ablation Study

In this section, 10 groups of the synthetic pure visual stimulus sequences and 10 groups
of the synthetic pure noisy visual stimulus sequences were adopted, the pure background is a
solid imagewith afixedgrayvalue of 1, and the resolution of thepure background is 500× 250
pixels× pixels. The translating object is a solid rectanglewith a different gray value that varies
between a maximum of 250 and a minimum of 25, and is taken every 25 gray values; the mo‑
tion velocity of the translating object is 2000 pixels/second. In the upward/downwardmotion,
the size of the translating object is 100× 50 pixels× pixels. In the leftward/rightward motion,
the size of the translating object is 50 × 100 pixels × pixels. Each synthetic pure visual stimu‑
lus sequence consists of 100 frames. Sample frames 40 and 80 from the 10 groups of the syn‑
thetic pure visual stimulus sequences are shown as dataset I in Figure 2. We adopted dataset
I (no noise, only various contrasts in the figure‑ground) to verify the effectiveness of the con‑
trast neural computation. For dataset II, salt and pepper noise (SPN ratio: 0.01/0.02/0.03/0.04)
or Gaussian noise (GN standard deviation: 10.0/20.0/30.0/50.0/80.0) were added based on
Figure 2(a1–a4); sample frames 40 and 80 from the 10 groups of the synthetic pure noisy visual
stimulus sequences with the upward moving object are shown in Figure 3; in the same way,
the synthetic pure noisy visual stimulus sequences with the downward, leftward, and right‑
ward moving object were obtained. We adopted dataset II (keep the figure‑ground contrast
constant, only various noises) to verify the effectiveness of the spatial denoising mechanism.
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In the ablation study, the proposed bio-inspired model without the ON and OFF 
contrast neural computation (i.e., Model 1) and the proposed bio-inspired model with-
out the spatial denoising mechanism (i.e., Model 2) were adopted to verify the effective-
ness of the proposed bio-inspired model. The experimental results of model responses 
based on dataset I are shown in Figure 4. The experimental results of the mean and 
standard deviation based on dataset I are shown in Figure 5. The experimental results of 

Figure 2. Sample frames 40 and 80 from 10 groups of synthetic pure visual stimulus sequences. The
light blue arrows represent the motion direction of the translating object. (a1–j1) represent the trans‑
lating object in the upward motion; (a2–j2) represent the translating object in the downward motion;
(a3–j3) represent the translating object in the leftward motion; (a4–j4) represent the translating object
in the rightward motion. The gray values of the translating objects in am, bm, cm, dm, em, fm, gm, hm,
im, and jm{m ∈ (1, 2, 3, 4)} are 250, 225, 200, 175, 150, 125, 100, 75, 50, and 25, respectively.

In the ablation study, the proposed bio‑inspired model without the ON and OFF con‑
trast neural computation (i.e., Model 1) and the proposed bio‑inspired model without the
spatial denoising mechanism (i.e., Model 2) were adopted to verify the effectiveness of
the proposed bio‑inspired model. The experimental results of model responses based on
dataset I are shown in Figure 4. The experimental results of the mean and standard devia‑
tion based on dataset I are shown in Figure 5. The experimental results of model responses
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based on dataset II are shown in Figure 6. The experimental results of the mean and stan‑
dard deviation based on dataset II are shown in Figure 7.
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Figure 3. Sample frames 40 and 80 from 10 groups of the synthetic pure noisy visual stimulus se‑
quences with the upward moving object based on dataset II. The noise intensity in (a), (b), (c), (d),
(e), (f), (g), (h), (i) and (j) are 0, SPN = 0.01, SPN = 0.02, SPN = 0.03, SPN = 0.04, GN = 10.0, GN = 20.0,
GN = 30.0, GN = 50.0, and GN = 80.0, respectively.
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Figure 5. The experimental results of the mean and standard deviation based on dataset I. Hori-

zontal axis represents time in frames; vertical axis represents the mean and standard deviation. 
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Figure 4. The experimental results of model responses based on dataset I. Horizontal axis represents
time in frames; vertical axis representsmodel responses. (a1,a2) represent the translating object in the
upward motion; (b1,b2) represent the translating object in the downward motion; (c1,c2) represent
the translating object in the leftwardmotion; (d1,d2) represent the translating object in the rightward
motion. (a1–d1) represent themodel responses ofModel 1 and (a2–d2) represent themodel responses
of the proposed bio‑inspiredmodel; (e) represents the legend for (a1–d2). O represents the translating
object and B represents the background.
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Figure 5. The experimental results of the mean and standard deviation based on dataset I. Hor‑
izontal axis represents time in frames; vertical axis represents the mean and standard deviation.
(a1,a2) represent the translating object in the upward motion; (b1,b2) represent the translating
object in the downward motion; (c1,c2) represent the translating object in the leftward motion;
(d1,d2) represent the translating object in the rightwardmotion; (a1–d1) represent the mean and stan‑
dard deviation of Model 1; and (a2–d2) represent the mean and standard deviation of the proposed
bio‑inspired model.
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Figure 6. The experimental results ofmodel responses based on dataset II. Horizontal axis represents
time in frames; vertical axis representsmodel responses. (a1,a2) represent the translating object in the
upward motion; (b1,b2) represent the translating object in the downward motion; (c1,c2) represent
the translating object in the leftwardmotion; (d1,d2) represent the translating object in the rightward
motion; (a1–d1) represent themodel responses ofModel 2; and (a2–d2) represent themodel responses
of the proposed bio‑inspired model. (e) represents the legend of for (a1–d2). SPN represents the salt
and pepper noise; GN represents the Gaussian noise.
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Figure 7. The experimental results of the mean and standard deviation based on dataset II. Hor‑
izontal axis represents time in frames; vertical axis represents the mean and standard deviation.
(a1,a2) represent the translating object in the upward motion; (b1,b2) represent the translating
object in the downward motion; (c1,c2) represent the translating object in the leftward motion;
(d1,d2) represent the translating object in the rightwardmotion; (a1–d1) represent the mean and stan‑
dard deviation of Model 2; and (a2–d2) represent the mean and standard deviation of the proposed
bio‑inspired model.

Since the standard deviation is affected by the value of the variable itself, we adopted
the dispersion of the coefficient of variation to further compare. The coefficient of variation,
the inter‑quartile range (IQR) of the coefficient of variation, and the sum of the coefficient
of variation are defined in Equations (15)–(17):

Vc(t) =
∣∣∣∣ σ(t)
m(t)

∣∣∣∣, (15)

IQR = Q3 − Q1, (16)

S = ∑
t

Vc(t), (17)

where Vc(t) represents the coefficient of variation, σ(t) represents the standard deviation,
m(t) represents the mean value, t represents the temporal coordinate, IQR represents the
inter‑quartile range of the coefficient of variation, Q3 represents the upper quartile, Q1

represents the lower quartile, and S represents the sum of coefficient of variation. The
smaller the inter‑quartile range, the better the statistical result; the smaller the coefficient
of variation and the sum of the coefficient of variation, the better the statistical result. The
experimental results of the coefficient of variation and the sum of the coefficient of varia‑
tion based on dataset I comparison in Model 1 and the proposed bio‑inspired model are
shown in Table 5. The experimental results of the coefficient of variation and the sum of
the coefficient of variation based on dataset II comparison in Model 2 and the proposed
bio‑inspired model are shown in Table 6.

From Figures 4 and 5, we can draw the following two conclusions. (1) The proposed
bio‑inspired model and Model 1 have a high response to the translating object in the up‑
ward, downward, leftward, and rightward motions; furthermore, they can accurately de‑
tect the motion direction of the translating object. (2) In the upward/downward motion
of the translating object, the horizontal response is approximately 0; furthermore, in the
leftward/rightwardmotion of the translating object, the vertical response is approximately
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0. From Table 5, compared with Model 1, we can draw the following two conclusions.
(1) The inter‑quartile range of the proposed bio‑inspired model is reduced by 30.03%.
(2) The sum of the coefficient of variation in the proposed bio‑inspiredmodel is reduced by
42.48%. In summary, the contrast neural computation of the proposed bio‑inspired model
effectively reduces the fluctuation in the model response under various contrasts in the
figure‑ground.

Table 5. The experimental results of the inter‑quartile range and the sumof the coefficient of variation
based on dataset I comparison in Model 1 and the proposed bio‑inspired model. Bold indicates the
best result.

Indicators Model 1 Our Model

IQR 8.900 × 10−10 6.228× 10−10

S 211.2 121.5

Table 6. The experimental results of the inter‑quartile range and the sumof the coefficient of variation
based on dataset II comparison in Model 2 and the proposed bio‑inspired model. Bold indicates the
best result.

Indicators Model 2 Our Model
IQR 0.283 0.120
S 107.5 88.9

From Figures 6 and 7, we can draw the following two conclusions. (1) The proposed
bio‑inspired model and Model 2 have a strong response to the translating object in the up‑
ward, downward, leftward, and rightward motions, and can accurately detect the motion
direction of the translating object; furthermore, the fluctuation in the proposed bio‑inspired
model is significantly lower than that in Model 2. (2) In the upward/downward motion of
the translating object, the horizontal response is small relative to the vertical response; fur‑
thermore, in the leftward/rightward motion of the translating object, the vertical response
is small relative to the horizontal response. From Table 6, compared with Model 2, we
can draw the following two conclusions. (1) The inter‑quartile range of the coefficient of
variation in the proposed bio‑inspiredmodel is reduced by 57.38%. (2) The sum of the coef‑
ficient of variation in the proposed bio‑inspired model is reduced by 17.36%. In summary,
the spatial denoisingmechanism of the proposed bio‑inspiredmodel has the ability to sup‑
press environmental noise and effectively reduces the fluctuation in the model response
under different noise types with different intensities.

4.2. Detection Performance of Motion Directions of Translating Objects in Pure
Noise Backgrounds

In this section, six kinds of comparable bio‑inspired models (i.e., SotA models) in‑
cluding the EMD [9], TQD [12], FQD [13], FU [16], XU [38], and WANG [50] models were
adopted to verify the detection performance of the proposed bio‑inspiredmodel; the value
of the sampling distance (sd) of the EMD, TQD, and FQD models is 4, and the value of
the parameter of the FU and XU models is shown in the references [16] and [38], and re‑
mains unchanged. Tomaintain consistency with the structure of other models, theWANG
model adopts a combination of GPS, Gaussian blur, difference calculation, HWR, LI, and
TQD, and the value of the sd is 4. SPN ratio (0.01/0.02/0.03/0.04) or GN standard deviation
(10.0/20.0/30.0/50.0/80.0) were added based on Figure 2, as dataset III, i.e., sample frames
40 and 80 from 10 groups of the synthetic pure noisy visual stimulus sequences (SPN ratio:
0.04) with the upward moving object that is shown in Figure 8. The experimental results
of model responses based on dataset III (SPN ratio: 0.04) are shown in Figure 9. The ex‑
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perimental results of the mean and standard deviation based on dataset III (SPN ratio:
0.04) are shown in Figure 10. The experimental results of the detection success rate based
on the dataset III comparison for the six kinds of bio‑inspired models and the proposed
bio‑inspired model are shown in Table 7. The experimental results of the inter‑quartile
range of the coefficient of variation based on dataset III comparison for the six kinds of
bio‑inspired models and the proposed bio‑inspired model are shown in Table 8. The ex‑
perimental results of the inter‑quartile range and the sum of the coefficient of variation
based on dataset III comparison for the six kinds of bio‑inspired models and the proposed
bio‑inspired model are shown in Table 9.
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125, 100, 75, 50, and 25, respectively.

To compare the detection performance of the bio‑inspired models, we adopt the de‑
tection success rate for quantitative analysis, which is defined in Equation (18):

DR =
number of true detections
number of frame sequences

(18)

where DR represents the detection success rate. The experimental results of the detection
success rate DR comparison for the six kinds of bio‑inspired models and the proposed bio‑
inspired model are shown in Table 7.

From Figures 9 and 10 and Table 7, we can draw the following three conclusions.
(1) The EMD [9], TQD [12], FQD [13], FU [16], XU [38], WANG [50], and proposed bio‑
inspired models have strong responses to the translating object in the upward, downward,
leftward, and rightward motions; however, they have some detection errors of varying
degrees. (2) The detection performance of the proposed bio‑inspired model is superior
to the six kinds of comparable bio‑inspired models in the detection success rate; surpris‑
ingly, in the ten sub‑datasets of dataset III, eight sub‑datasets achieve the first best results,
one sub‑dataset achieves the second best result, and one sub‑dataset achieves the third
best result. Specifically, the detection success rate of the proposed bio‑inspired model is
increased by 9.32%, 3.59%, 2.72%, 5.84%, 6.27%, and 4.51%, respectively. The average de‑
tection success rate of the proposed bio‑inspired model is increased by 5.38%. Thus, the
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proposed bio‑inspiredmodel can robustly detect themotion direction of the translating ob‑
ject. (3) In the upward/downwardmotion of the translating object, the horizontal response
is small relative to the vertical response; furthermore, in the leftward/rightward motion
of the translating object, the vertical response is small relative to the horizontal response.
From Tables 8 and 9, comparing the six kinds of bio‑inspired models, we can draw the fol‑
lowing two conclusions. (1) In ten groups of experiments, the inter‑quartile range of the
coefficient of variation in the proposed bio‑inspiredmodel achieves three of the first results
and four of the second results. The inter‑quartile range of the coefficient of variation in the
proposed bio‑inspired model is reduced by 94.70%, 65.21%, 57.85%, 74.32%, ‑150.64%, and
91.16%, respectively. The average decline in the inter‑quartile range of the coefficient of
variation in the proposed bio‑inspired model is 38.77%. (2) In 10 groups of experiments,
the sum of the coefficient of variation in the proposed bio‑inspired model achieves ten of
the first results. The sum of the coefficient of variation in the proposed bio‑inspired model
is reduced by 66.41%, 51.01%, 48.88%, 55.89%, 60.82%, and 59.17%, respectively. The aver‑
age decline in the sum of the coefficient of variation in the proposed bio‑inspired model is
57.03%. To summarize, the proposed bio‑inspired model can robustly detect the motion
direction of the translating object and effectively reduces the fluctuation in the model re‑
sponse against variable contrast in the figure‑ground and environmental noise interference,
which verifies the most basic detection capabilities of the proposed bio‑inspired model.
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translating object in the upwardmotion; (a2–g2) represent the translating object in the downwardmo‑
tion; (a3–g3) represent the translating object in the leftward motion; (a4–g4) represent the translating
object in the rightward motion. am, bm, cm, dm, em, fm, and gm{m ∈ (1, 2, 3, 4)} represent EMD [9],
TQD [12], FQD [13], FU [16], XU [38], WANG [50], and the proposed bio‑inspired model, respec‑
tively; (h) represents the legend of (a1–g4). O represents the translating object and B represents the
background.
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Figure 10. The experimental results of the mean and standard deviation based on dataset III (SPN
ratio: 0.04). Horizontal axis represents time in frames; vertical axis represents the mean and stan‑
dard deviation. (a1–g1) represent the translating object in the upward motion; (a2–g2) represent the
translating object in the downward motion; (a3–g3) represent the translating object in the leftward
motion; (a4–g4) represent the translating object in the rightward motion. am, bm, cm, dm, em, fm, and
gm{m ∈ (1, 2, 3, 4)} represent EMD [9], TQD [12], FQD [13], FU [16], XU [38], WANG [50], and the
proposed bio‑inspired model, respectively.

Table 7. The experimental results of the detection success rate (unit: %) based on dataset III compar‑
ison for the 6 kinds of bio‑inspired models and the proposed bio‑inspired model. Text in red, green,
and blue are the first, second, and third best results.

Datasets EMD [9] TQD [12] FQD [13] FU [16] XU [38] WANG [50] Our Model

Dataset III with no noise 99.00 99.03 99.93 99.00 99.90 99.25 99.88
Dataset III with SPN: 0.01 84.68 93.75 94.63 90.23 93.15 91.92 99.70
Dataset III with SPN: 0.02 77.08 90.45 91.18 85.63 92.60 89.03 97.75
Dataset III with SPN: 0.03 69.70 86.33 87.75 80.03 92.38 86.95 94.95
Dataset III with SPN: 0.04 67.25 84.55 86.88 77.53 92.63 75.30 93.33
Dataset III with GN: 10.0 99.00 99.03 99.50 98.98 99.98 99.45 99.85
Dataset III with GN: 20.0 99.03 99.03 99.48 98.98 92.38 99.55 99.80
Dataset III with GN: 30.0 99.03 99.03 99.43 98.88 83.48 99.58 99.83
Dataset III with GN: 50.0 99.03 99.00 99.55 98.95 83.83 99.50 99.63
Dataset III with GN: 80.0 98.95 99.03 99.48 98.80 92.48 99.60 99.83
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Table 8. The experimental results of the inter‑quartile range of the coefficient of variation based on
dataset III comparison for the 6 kinds of bio‑inspired models and the proposed bio‑inspired model.
Text in red, green, and blue are the first, second, and third best results.

Datasets EMD [9] TQD [12] FQD [13] FU [16] XU [38] WANG [50] Our Model

Dataset III with no noise 0 1.321 × 10−12 1.806 × 10−11 1.787 × 10−12 0 0 6.228 × 10−10
Dataset III with SPN: 0.01 1.053 0.276 0.196 0.351 0.055 0.859 0.051
Dataset III with SPN: 0.02 2.733 0.536 0.464 0.617 0.073 1.920 0.156
Dataset III with SPN: 0.03 5.414 0.800 0.681 1.172 0.095 3.717 0.276
Dataset III with SPN: 0.04 9.216 1.155 0.948 1.595 0.124 4.541 0.436
Dataset III with GN: 10.0 0.003 0.002 0.002 0.006 0.003 0.003 0.002
Dataset III with GN: 20.0 0.008 0.006 0.003 0.011 0.006 0.007 0.007
Dataset III with GN: 30.0 0.011 0.009 0.005 0.018 0.009 0.009 0.008
Dataset III with GN: 50.0 0.019 0.012 0.010 0.012 0.010 0.012 0.010
Dataset III with GN: 80.0 0.036 0.021 0.016 0.034 0.016 0.019 0.034

Table 9. The experimental results of the sum of the coefficient of variation based on dataset III com‑
parison for the 6 kinds of bio‑inspired models and the proposed bio‑inspired model. Text in red,
green, and blue are the first, second, and third best results.

Datasets EMD [9] TQD [12] FQD [13] FU [16] XU [38] WANG [50] Our Model

Dataset III with no noise 348.3 351.7 357.4 347.9 429.3 336.4 121.5
Dataset III with SPN: 0.01 383.7 349.9 216.9 367.3 437.6 394.6 200.5
Dataset III with SPN: 0.02 565.0 351.8 305.4 341.4 439.3 469.2 218.8
Dataset III with SPN: 0.03 845.3 348.4 331.3 469.9 438.1 508.8 243.0
Dataset III with SPN: 0.04 1178.6 377.0 353.9 593.4 437.4 558.0 266.0
Dataset III with GN: 10.0 344.7 346.7 360.4 346.6 428.6 430.9 125.2
Dataset III with GN: 20.0 344.1 336.5 344.8 344.8 425.0 371.8 126.3
Dataset III with GN: 30.0 343.3 327.6 352.2 342.1 421.5 360.1 127.1
Dataset III with GN: 50.0 334.1 324.3 345.70 331.4 414.8 349.9 126.9
Dataset III with GN: 80.0 313.2 314.7 318.2 323.1 415.3 334.3 124.5

4.3. Detection Performance of Motion Directions of Translating Objects in Real‑World Complex
Noise Backgrounds

In this section, to further verify the detection performance of the proposed bio‑inspired
model in real‑world complex backgrounds, we used a Samsung camera (8 megapixels)
to collect 500 real‑world scenes on campus and the institute, including trees, buildings,
bicycles, and so on. Each real‑world scene of the campus and the institute comprised
60 partially overlapping images that were stitched together with PTGui (New House Inter‑
net Services BV, Rotterdam, Netherlands) to obtain the panoramic real‑world images [51];
the resolution of the panoramic real‑world images is set to 2048 × 310 pixels × pixels. These
panoramic real‑world images are the backgrounds, and the translating object is embedded in
the panoramic real‑world background. The translating object is a solid rectangle with a differ‑
ent gray value that varies between amaximumof 250 and aminimumof 25, and is taken every
25 gray values. In the upward/downwardmotion, the size and themotion velocity of the trans‑
lating object are 100 × 50 pixels × pixels and 2000 pixels/second. In the leftward/rightward
motion, the size and the motion velocity of the translating object are 50 × 100 pixels × pix‑
els and 2000 pixels/second. Each panoramic background consists of 40 groups of real‑world
visual stimulus sequences and each group of the real‑world visual stimulus sequences con‑
sists of 100 frames, the resolution and frame rate of each group of the real visual stimulus
sequences are 500 × 250 pixels × pixels and 30 fps. The motion velocities of the background
in the leftward/rightward and upward/downward motion are 500 and 2000 pixels/second, re‑
spectively. The sample of panoramic real‑world backgrounds (ID: 1–500) amongst dataset
including 500 testing panoramic real‑world complex backgrounds are shown in Figure 11.
The SPN ratio (0.01/0.02/0.03/0.04) or GN standard deviation (10.0/20.0/30.0/50.0/80.0) were
added based on Figure 11, as dataset IV; sample frames 40 and 80 from 10 groups of synthetic
real‑world complex noisy visual stimulus sequences from one sample (ID = 8) of dataset IV
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(SPN ratio: 0.04) are shown in Figure 12. The experimental results of the mean and standard
deviation based on dataset IV (SPN ratio: 0.04) are shown in Figure 13. The experimental
results, represented by violin‑ and box‑type diagrams of the coefficient of variation based on
dataset IV (SPN ratio: 0.04), comparison drawings for the six kinds of bio‑inspired models,
and the proposed bio‑inspired model, are shown in Figure 14. The denser the distribution of
the coefficient of variation is, the better the statistical result. The closer the coefficient of vari‑
ation is to 0, the better the statistical result. Therefore, we hope that the height of the violin
based on the coefficient of variation can be as narrow as possible, and the position of the vio‑
lin based on the coefficient of variation can be as close to 0 as possible. In addition, the blue
box in each violin represents a box‑plot, which is used to characterize the dispersion degree
of the coefficient of variation; the blue top and bottom of each box‑plot represent the upper
and lower quartile, the red line of each box‑plot represents the median value, the black top
and bottom line of each box‑plot represent the upper and lower edges, and the red crosses
represent outliers. The experimental results of the detection success rate based on the dataset
IV comparison for the six kinds of bio‑inspired models and the proposed bio‑inspired model
are shown in Table 10. The experimental results of the inter‑quartile range of the coefficient
of variation based on dataset IV comparison for the six kinds of bio‑inspired models and the
proposed bio‑inspired model are shown in Table 11. The experimental results of the sum of
the coefficient of variation based on dataset IV comparison for the six kinds of bio‑inspired
models and the proposed bio‑inspired model are shown in Table 12.
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Figure 11. The sample of panoramic real‑world complex backgrounds (ID: 1–500) amongst dataset
IV, including 500 panoramic real‑world backgrounds used in the tests. … represents other panoramic
real‑world complex backgrounds.

From Figure 13 and Table 10, we can draw the following four conclusions. (1) From
Figure 11(a1–a4), the detection performance of the EMD [9] is not satisfactory. (2) From
Figure 11(b1–f1,b2–f2,b3–f3,b4–f4), the detection performance of the TQD [12], FQD [13],
FU [16], XU [38], and WANG [50] models can meet the basic detection performance, but
there are still a few detection errors. (3) The detection performance of the proposed bio‑
inspired model is superior to the six kinds of comparable bio‑inspired models in the de‑
tection success rate; surprisingly, in the ten sub‑datasets of dataset IV, seven sub‑datasets
achieve the first best results and two sub‑datasets achieve the second best results. Specifi‑
cally, the detection success rate of the proposed bio‑inspired model is increased by 10.82%,
3.33%, 3.15%, 4.16%, 6.05%, and 4.26%, respectively. The average increase in the detection
success rate of the proposed bio‑inspired model is 5.30%. So, the proposed bio‑inspired
model can robustly detect the motion direction of the translating object. (4) In the up‑
ward/downward motion of the translating object, the horizontal response is small relative
to the vertical response; furthermore, in the leftward/rightward motion of the translating
object, the vertical response is small relative to the horizontal response. From Figure 14,
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we can draw the following two conclusions. (1) In the upward motion, the height of the
proposed bio‑inspired model violin diagram is narrower than the EMD [9], TQD [12],
FQD [13], XU [38], and WANG [50] models, but not that of the FU [16] model. In the
downward motion, the height of the proposed bio‑inspired model violin diagram is nar‑
rower than the EMD [9], TQD [12], XU [38], and WANG [50] models, but not that of the
FQD [13] and FU [16] models. In the leftward motion, the height of the proposed bio‑
inspired model violin diagram is narrower than the six kinds of comparable bio‑inspired
models. In the rightward motion, the height of the proposed bio‑inspired model violin
diagram is narrower than the EMD [9], TQD [12], FQD [13], FU [16], andWANG [50] mod‑
els, but not that of the XU [38] model. (2) In the upward/downward motion, the position
of the violin diagram for the proposed bio‑inspired model is closer to 0 than the EMD [9],
TQD [12], FQD [13], XU [38], and WANG [50] models, but not closer than that for the
FU [16] model. In the leftward/rightward motion, the position of the violin diagram for
the proposed bio‑inspired model is closer to 0 than for the six kinds of comparable bio‑
inspired models. From Tables 11 and 12, we can draw the following two conclusions.
(1) The inter‑quartile range of the coefficient of variation in the proposed bio‑inspired
model is reduced by 84.83%, 10.02%, 23.23%, 27.52%, 64.32%, and 77.12%. The average de‑
cline in the inter‑quartile range of the coefficient of variation in the proposed bio‑inspired
model is 47.84%. (2) The sum of the coefficient of variation in the proposed bio‑inspired
model is reduced by 71.49%, 66.47%, 64.78%, 64.45%, 69.49%, and 68.16%. The average
decline in the sum of the coefficient of variation in the proposed bio‑inspired model is
67.47%. Briefly, the proposed bio‑inspired model can robustly detect the motion direction
of the translating object and effectively reduces the fluctuation in themodel response under
various contrasts in the figure‑ground of real‑world complex noise backgrounds.
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Figure 12. Sample frames 40 and 80 from 10 groups of synthetic real‑world complex noisy visual
stimulus sequences from one sample (ID = 8) of dataset IV (SPN ratio: 0.04). The light blue arrows
represent the motion direction of the translating object. (a1–j1) represent the translating object in the
upward motion; (a2–j2) represent the translating object in the downward motion; (a3–j3) represent
the translating object in the leftward motion; and (a4–j4) represent the translating object in the right‑
ward motion. The gray values of the translating objects in am, bm, cm, dm, em, fm, gm, hm, im, and
jm{m ∈ (1, 2, 3, 4)} are 250, 225, 200, 175, 150, 125, 100, 75, 50, and 25, respectively.
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Figure 13. The experimental results of the mean and standard deviation based on dataset IV (SPN
ratio: 0.04). Horizontal axis represents time in frames; vertical axis represents the mean and the
standard deviation. The red line represents the mean, the transparent red shadow represents the
standard deviation, and the blue lines represent the addition and subtraction between the mean
and the standard deviation; (a1–g1) represent the translating object in the upward motion; (a2–g2)
represent the translating object in the downward motion; (a3–g3) represent the translating object in
the leftward motion; (a4–g4) represent the translating object in the rightward motion.am, bm, cm, dm,
em, fm, and gm{m ∈ (1, 2, 3, 4)} represent EMD [9], TQD [12], FQD [13], FU [16], XU [38], WANG [50],
and the proposed bio‑inspired model, respectively.

Table 10. The experimental results of the detection success rate (unit: %) based on dataset IV, com‑
paring the 6 kinds of bio‑inspired models and the proposed bio‑inspired model. Text in red, green,
and blue are the first, second, and third best results.

Dataset EMD [9] TQD [12] FQD [13] FU [16] XU [38] WANG [50] Our Model

Dataset IV with no noise 98.01 97.08 97.94 98.06 97.90 98.06 98.65
Dataset IV with SPN: 0.01 83.59 92.65 92.66 90.79 92.19 91.98 97.69
Dataset IV with SPN: 0.02 73.08 90.45 91.18 85.63 92.60 87.36 96.45
Dataset IV with SPN: 0.03 65.45 86.98 85.99 84.65 91.99 84.42 93.99
Dataset IV with SPN: 0.04 56.66 80.84 82.59 82.53 90.11 79.98 92.68
Dataset IV with GN: 10.0 97.89 98.63 98.50 98.01 97.85 97.88 97.97
Dataset IV with GN: 20.0 97.43 97.91 97.48 97.55 90.65 96.98 97.66
Dataset IV with GN: 30.0 97.56 97.09 97.43 97.19 86.33 96.68 97.95
Dataset IV with GN: 50.0 97.49 96.88 97.55 97.23 85.76 96.70 97.78
Dataset IV with GN: 80.0 96.39 97.49 96.48 96.39 84.33 97.00 97.45

4.4. Further Investigations

To further estimate the performance of the proposed bio‑inspired model, the spatial
denoising mechanism is replaced by the difference of Gaussians (DoG) [22] (Model 3), fast‑
depolarizing slow‑repolarizing (FDSR) [52] (Model 4), Gaussian filter (Model 5), mean fil‑
ter (Model 6), or median filter (Model 7) based on two sub‑datasets (SPN ratio: 0.04 and
GN standard deviation: 80.0) of dataset IV, for further comparison. The DoG and FDSR
as early visual pre‑processing mechanisms have previously been validated for their role in
filtering background interference [22,52]. Gaussian, mean, andmedian filters are standard
engineering noise‑filtering methods [53].
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Figure 14. The experimental results shown as violin‑ and box‑type diagrams of the coefficient of
variation based on dataset IV (SPN ratio: 0.04), comparison drawings for the 6 kinds of bio‑inspired
models and the proposed bio‑inspired model: (a) represents the translating object in the upward
motion; (b) represents the translating object in the downward motion; (c) represents the translating
object in the leftward motion; (d) represents the translating object in the rightward motion. OUR
represents the proposed bio‑inspired model [9,12,13,16,38,50].

Table 11. The experimental results of the inter‑quartile range of the coefficient of variation based on
dataset IV, comparing the 6 kinds of bio‑inspired models and the proposed bio‑inspired model. Text
in red, green, and blue are the first, second, and third best results.

Datasets EMD [9] TQD [12] FQD [13] FU [16] XU [38] WANG [50] Our Model

Dataset IV with no noise 0.623 0.127 0.240 0.226 0.517 0.489 0.153
Dataset IV with SPN: 0.01 1.188 0.190 0.260 0.313 0.574 0.846 0.233
Dataset IV with SPN: 0.02 2.166 0.272 0.294 0.387 0.589 1.574 0.310
Dataset IV with SPN: 0.03 3.337 0.405 0.366 0.416 0.575 2.034 0.326
Dataset IV with SPN: 0.04 4.629 0.581 0.422 0.458 0.592 2.721 0.367
Dataset IV with GN: 10.0 0.654 0.146 0.255 0.249 0.599 0.500 0.166
Dataset IV with GN: 20.0 0.668 0.176 0.279 0.257 0.654 0.502 0.186
Dataset IV with GN: 30.0 0.705 0.204 0.301 0.279 0.775 0.561 0.200
Dataset IV with GN: 50.0 0.783 0.249 0.326 0.312 0.865 0.598 0.202
Dataset IV with GN: 80.0 0.999 0.305 0.369 0.399 0.955 0.617 0.246
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Table 12. The experimental results of the sum of the coefficient of variation based on dataset IV,
comparing the 6 kinds of bio‑inspired models and the proposed bio‑inspired model. Text in red,
green, and blue are the first, second, and third best results.

Datasets EMD [9] TQD [12] FQD [13] FU [16] XU [38] WANG [50] Our Model

Dataset IV with no noise 420.0 348.5 422.1 410.4 582.8 399.8 168.3
Dataset IV with SPN: 0.01 445.8 436.7 571.5 535.4 650.1 456.7 200.5
Dataset IV with SPN: 0.02 565.0 436.7 305.4 341.4 439.3 578.6 228.1
Dataset IV with SPN: 0.03 845.3 348.4 331.3 469.9 438.1 754.6 267.5
Dataset IV with SPN: 0.04 1316.3 973.4 675.1 482.0 671.4 984.3 316.7
Dataset IV with GN: 10.0 465.2 426.7 360.4 476.3 602.6 408.9 169.3
Dataset IV with GN: 20.0 542.3 546.1 534.6 568.1 680.3 490.3 172.5
Dataset IV with GN: 30.0 655.5 669.0 718.2 699.7 764.2 646.7 178.2
Dataset IV with GN: 50.0 965.0 936.2 988.7 856.4 939.4 825.3 189.1
Dataset IV with GN: 80.0 1200.4 1187.1 1098.6 1110.6 1165.7 1099.5 225.2

From Table 13, comparing Models 3, 4, 5, 6, and 7, we can draw the following two
conclusions. (1) The inter‑quartile range of the coefficient of variation in the proposed bio‑
inspired model is reduced by 76.26%, 34.46%, 28.32%, 25.86%, and −1.7%, respectively.
The average decline in the inter‑quartile range of the coefficient of variation in the proposed
bio‑inspired model is 32.64%. (2) The sum of the coefficient of variation in the proposed
bio‑inspired model is reduced by 47.64%, 25.48%, 33.69%, 26.96%, and 1.3%, respectively.
The average decline in the sum of the coefficient of variation in the proposed bio‑inspired
model is 27.01%. From Table 14, comparing Models 3, 4, 5, 6, and 7, we can draw the
following two conclusions. (1) The inter‑quartile range of the coefficient of variation in the
proposed bio‑inspired model is reduced by 7.87%, −0.82%, −2.50%, 13.99%, and 4.65%,
respectively. The average decline in the inter‑quartile range of the coefficient of variation
in the proposed bio‑inspired model is 4.64%. (2) The sum of the coefficient of variation
in the proposed bio‑inspired model is reduced by −18.65%, −26.94%, −18.22%, 2.30%,
and 1.57%, respectively. The average decline in the sum of the coefficient of variation in
the proposed bio‑inspired model is ‑11.99%. To summarize, for the salt and pepper noise
(SPN ratio: 0.04), the performance of the proposed bio‑inspiredmodel is superior to that of
Models 3, 4, 5, and 6, and is close to that of Model 7. For the Gaussian noise (GN standard
deviation: 80.0), the performance of the proposed bio‑inspiredmodel obtains the third best
result according to the inter‑quartile range of the coefficient of variation; the performance
of the proposed bio‑inspired model is superior to Models 6 and 7 but inferior to Models 3,
4, and 5, according to the sum of the coefficient of variation.

Table 13. The experimental results of the inter‑quartile range and the sum of the coefficient of vari‑
ation based on one sub‑dataset (SPN ratio: 0.04) of the dataset IV comparison for Models 3, 4, 5, 6,
7, and the proposed bio‑inspired model. Text in red, green, and blue are the first, second, and third
best results.

Indicators Model 3 Model 4 Model 5 Model 6 Model 7 Our Model

IQR 1.546 0.560 0.512 0.495 0.361 0.367
S 604.8 425.0 477.6 433.6 320.8 316.7

Table 14. The experimental results of the inter‑quartile range and the sum of the coefficient of varia‑
tion based on one sub‑dataset (GN standard deviation: 80.0) of the dataset IV comparison forModels
3, 4, 5, 6, 7, and the proposed bio‑inspired model. Text in red, green, and blue are the first, second,
and third best results.

Indicators Model 3 Model 4 Model 5 Model 6 Model 7 Our Model

IQR 0.267 0.244 0.240 0.286 0.258 0.246
S 189.8 177.4 190.5 230.5 228.8 225.2
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5. Discussion
In the lamina neural layer, the spatial denoising mechanism is regarded as the early

visual pre‑processing, which can suppress environmental noise of the ON and OFF visual
pathways. In the medulla neural layer, the non‑linear instantaneous feedback divisive
contrast normalization mechanism dynamically suppresses the neural signals to reduce
local contrast sensitivity, and the parallel contrast pathways are activated. In the lobula‑
complex neural layer, the parallel motion and contrast pathways converge and the con‑
trast pathways negatively affect themotion pathways to suppress the high‑contrast optical
flow. The proposed bio‑inspiredmodel performs feed‑forward visual processing in a four‑
hierarchical neural network to denoise and encode polar motion and contrast information,
respectively. The contrast neural computation and the spatial denoising mechanism are
the main innovations of this modeling study because they act as an instantaneous, feed‑
back, and dynamic normalization mechanism and environmental noise suppression for
processing ON and OFF signals. There are ON and OFF contrast pathways to neutralize
high contrast local ON and OFF motion‑induced excitation for robust and stable model
responses against variable contrast in the figure‑ground of the pure and real‑world com‑
plex noise backgrounds. To confirm the proposed bio‑inspired model, we produced four
datasets consisting of the translating motions of a rectangle object against the pure and
real‑world complex backgrounds with different noise types with variable intensities. To
highlight the detection performance of the proposed bio‑inspired model, comparative ex‑
periments were carried out. Comparative experiments consist of four sections. Firstly, the
ablation study verifies the effectiveness of the contrast neural computation and the spa‑
tial denoising mechanism. Secondly, the pure background verifies the effectiveness of the
proposed bio‑inspired model under different noise types with variable intensities and dif‑
ferent gray‑scale objects against the same gray‑scale background. Thirdly, the real‑world
complex background verifies the effectiveness of the proposed bio‑inspired model under
different noise types with variable intensities and different gray‑scale objects against dif‑
ferent real‑world complex backgrounds. Finally, further investigations verify the perfor‑
mance of the proposed bio‑inspired model under various contrasts in the figure‑ground of
real‑world complex noise backgrounds. The experimental results verify the proposed bio‑
inspired model has better stability and robustness for detection in pure and real‑world
complex backgrounds with different noise types. Separating motion and contrast into
ON and OFF pathways, the model works effectively to alleviate the response fluctuation
against variable contrast in the figure‑ground; furthermore, the spatial denoising mecha‑
nism makes the bio‑inspired visual neural model more robust and stable in response to
translating motion. Future research efforts may involve the following aspects:

(1) The limitation of this study is that the baseline contrast sensitivity has an impact on
the detection performance of the proposed bio‑inspired model. Therefore, how to
effectively determine the corresponding relationship between variable signals and
the baseline contrast sensitivity is the focus of future research.

(2) How to use the moving direction of the translating object based on LPTC neurons to
detect the wide‑field or local‑salient object is one of the future research points.

(3) Integrating the probability between layers of the LPTC‑based bio‑inspired model to
further improve environmental interference is one of the future research points.

6. Conclusions
In this study, the LPTC is used as a research object to study its physiological mecha‑

nism and the existing computational model. We find that it can detect themotion direction
of the translating object robustly and stably under a complex dynamic noise background;
based on this biological vision paradigm, a bio‑inspired visual neural model is proposed,
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which incorporates continuous computational neural layers from the retina to the lobula
complex. Firstly, in the retina neural layer, the photoreceptors (R1–R6) are utilized to
perceive the change in luminance. Secondly, in the lamina neural layer, the change in
luminance is divided into parallel ON and OFF pathways, and the spatial denoising and
spatio‑temporal LI mechanisms are regarded as the early visual pre‑processing, which can
suppress environmental noise and improve motion boundaries. Thirdly, in the medulla
neural layer, the non‑linear instantaneous feedback divisive contrast normalizationmecha‑
nism is adopted to reduce local contrast sensitivity; furthermore, the parallel contrast path‑
ways are activated. Finally, the parallel motion and contrast pathways converge on the
LPTC in the lobula‑complex neural layer and the contrast pathway negatively affects the
motion pathway to suppress the high‑contrast optical flow. Variable contrast in the figure‑
ground and environmental noise interference are two major factors that affect the stability
and robustness of the motion direction of the translating object detection. The proposed
bio‑inspired model not only has stable and robust performance in variable contrast in the
figure‑ground, but also has stable and robust performance in the noise background, with
its performance to process both simultaneously, which further approximates Drosophila’s
visual neural detection capability. Four groups of experiments were adopted to verify the
robustness and stability of the proposed bio‑inspired model under variable contrast in the
figure‑ground and environmental noise interference. We have consistently adhered to the
study of how Drosophila utilizes a robust, stable, and lightweight visual neural system
to process environmental information from a neuroscientific perspective, which can effec‑
tively enhance the current ability to build various bio‑inspired visual neural models.
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