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Abstract: Optimization algorithms play a crucial role in solving complex problems
across various fields, including global optimization and feature selection (FS). This paper
presents the enhanced polar lights optimization with cryptobiosis and differential evolu-
tion (CPLODE), a novel improvement upon the original polar lights optimization (PLO)
algorithm. CPLODE integrates a cryptobiosis mechanism and differential evolution (DE)
operators to enhance PLO’s search capabilities. The original PLO’s particle collision strategy
is replaced with DE’s mutation and crossover operators, enabling a more effective global
exploration and using a dynamic crossover rate to improve convergence. Furthermore,
a cryptobiosis mechanism records and reuses historically successful solutions, thereby
improving the greedy selection process. The experimental results on 29 CEC 2017 bench-
mark functions demonstrate CPLODE’s superior performance compared to eight classical
optimization algorithms, with higher average ranks and faster convergence. Moreover,
CPLODE achieved competitive results in feature selection on ten real-world datasets, out-
performing several well-known binary metaheuristic algorithms in classification accuracy
and feature reduction. These results highlight CPLODE’s effectiveness for both global
optimization and feature selection.

Keywords: polar lights optimization; global optimization; feature selection; differential
evolution; cryptobiosis mechanism; bionic algorithm

1. Introduction
The increasing importance of feature selection arises from the complexities introduced

by high-dimensional datasets [1]. In such datasets, irrelevant or redundant features can
obscure meaningful patterns, compromise model performance, and escalate computational
demands [2]. By concentrating on the identification of a subset of features that maintains or
enhances a model’s predictive power, feature selection boosts the efficiency and efficacy of
machine learning workflows [3].

Feature selection methods can be broadly categorized into three main types: filter
methods, embedded methods, and wrapper methods, each distinguished by their under-
lying principles and inherent trade-offs [4]. Filter methods employ statistical measures
to assess and rank features independent of any specific predictive model. Widely used
techniques encompass correlation coefficients [5], mutual information [6], and variance
thresholds [7]. Although computationally efficient, filter methods often overlook xinterac-
tions among features, limiting their effectiveness in more complex situations. Embedded
methods, conversely, integrate the feature selection process directly within the model train-
ing phase. Examples include Lasso regression [8], which introduces a penalty term to shrink
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the coefficients of less relevant features to zero and where feature importance is derived
from split criteria. These methods generally provide improved performance by aligning
feature selection with the model’s objectives but are restricted by the choice of the base al-
gorithm. Wrapper methods take a more comprehensive and iterative approach, evaluating
feature subsets using a predictive model [9]. Despite their computational overheads, they
are effective at addressing feature interactions and customizing the selected subset for a
particular problem. Techniques like forward selection, backward elimination, and recursive
feature elimination illustrate this category, underscoring its ability to effectively optimize
feature sets. The very nature of wrapper-based feature selection represents a global opti-
mization problem, where the search for the optimal subset within an exponentially growing
number of combinations necessitates the use of efficient algorithms. Formally, this problem
can be defined as follows:

Let F = { f1, f2, . . . , fn} denote the complete set of n features, and let x = (x1, x2, . . . , xn)

be a binary vector where xi ∈ {0, 1} indicates whether the i-th feature is selected (xi = 1) or
not (xi = 0). The goal of wrapper-based feature selection is to identify the optimal subset of
features S ⊆ F that maximizes (or minimizes) a predefined objective function J(S), which
typically evaluates the performance of a predictive model trained on the selected features.
The search space for this problem is combinatorial in nature, with a total of 2n possible
feature subsets.

Traditional methods, such as exhaustive search or greedy algorithms, often strug-
gle with the curse of dimensionality, thereby prompting the adoption of metaheuristic
approaches [10].

Metaheuristic algorithms have emerged as effective tools for addressing challenging
optimization problems, particularly in high-dimensional, multimodal, and non-convex
search spaces [11]. These algorithms can be generally categorized into two main types:
evolutionary algorithms and swarm intelligence algorithms. Evolutionary algorithms,
drawing inspiration from natural selection, encompass techniques such as genetic algo-
rithms (GA) [12] and differential evolution (DE) [13], which emulate biological evolutionary
processes. Conversely, swarm intelligence algorithms, inspired by the collective behav-
iors of animal groups, include methods like particle swarm optimization (PSO) [14] and
ant colony optimization (ACO) [15]. While both categories emphasize the importance of
balancing exploration and exploitation, they diverge in their foundational principles and
operational mechanisms.

Over the past few years, metaheuristic algorithms, particularly swarm intelligence-
based approaches, have shown significant promise in addressing FS challenges. Several
studies have explored improved versions of established metaheuristic algorithms for FS.
For instance, Gao et al. [16] introduced clustering probabilistic particle swarm optimiza-
tion (CPPSO), which enhances traditional PSO with probabilistic velocity representation
and a K-means clustering strategy to improve both exploration and exploitation for high-
dimensional data. Similarly, hybrid approaches have gained traction, such as the particle
swarm-guided bald eagle search (PS-BES) by Kwakye et al. [17], which combines the speed
of PSO to guide bald eagle search, introducing an attack–retreat–surrender mechanism
to better balance diversification and intensification. These studies showcase the effective-
ness of leveraging different search mechanisms for improved performance on benchmark
datasets and real-world problems. Other variations of metaheuristics have explored im-
proved exploration strategies, such as a modified version of the forensic-based investigation
algorithm (DCFBI) proposed by Hu et al. [18], incorporating dynamic individual selection
and crisscross mechanisms for improved convergence and avoidance of local optima. Fur-
thermore, Askr et al. [19] proposed binary-enhanced golden jackal optimization (BEGJO),
using copula entropy for dimensionality reduction while integrating enhancement strate-
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gies to improve exploration and exploitation capabilities. Beyond the improved variations
of metaheuristic algorithms, novel algorithms have also emerged. Lian et al. [20] presented
the parrot optimizer (PO), inspired by parrot behaviors, integrating stochasticity to enhance
population diversity and avoid local optima. Likewise, Singh et al. [21] explored combin-
ing emperor penguin optimization, bacterial foraging optimization, and their hybrid to
optimize feature selection for glaucoma classification. These studies indicate the emergence
of diverse metaheuristic strategies to balance exploration and exploitation for FS.

While metaheuristic approaches have shown considerable success in feature selection,
the no free lunch (NFL) theorem highlights their inherent limitations [22]. The NFL theo-
rem asserts that no single optimization algorithm can consistently outperform all others
across all problem instances. This necessitates ongoing innovation and adaptation of meta-
heuristic strategies to address diverse feature selection challenges. Researchers are thus
motivated to refine existing algorithms or explore the combination of multiple techniques,
such as hybridizing algorithms or incorporating adaptive mechanisms, to enhance their
generalizability and robustness [23,24]. Informed by these considerations and the need
to overcome the constraints of current metaheuristic algorithms, this study introduces an
innovative approach to enhance existing algorithms, aiming to advance their applicability
to both feature selection and global optimization tasks.

The polar lights optimization (PLO) algorithm, a recent metaheuristic optimization
approach proposed by Yuan et al. in 2024 [25], draws its inspiration from the natural
phenomenon of the aurora. PLO emulates the movement of high-energy particles as they
are affected by the Earth’s magnetic field and atmosphere, incorporating three fundamental
mechanisms: gyration motion for local exploitation, aurora oval walk for global exploration,
and particle collision to facilitate an escape from local optima. A key advantage of PLO lies
in its ability to balance local and global search through the use of adaptive weights. How-
ever, similar to other metaheuristic algorithms, PLO’s performance can be susceptible to
parameter settings, and its convergence may be challenged by high-dimensional problems.
Therefore, further research is warranted to investigate parameter-tuning strategies and
assess PLO’s performance across diverse real-world applications to validate its robustness
and practical utility.

This paper introduces CPLODE, an enhanced version of the polar lights optimization
(PLO) algorithm, designed to improve its search capabilities through the integration of a
cryptobiosis mechanism and differential evolution (DE) operators. Specifically, the crypto-
biosis mechanism refines the greedy selection process within PLO, allowing the algorithm
to retain and reuse historically effective search directions. Moreover, the original particle
collision strategy in PLO is replaced by DE’s mutation and crossover operators, which
provide a more effective means for global exploration and employ a dynamic crossover
rate to promote improved convergence. These modifications collectively contribute to the
enhanced performance of CPLODE. The key contributions of this paper can be summarized
as follows:

• A novel enhanced polar lights optimization algorithm, CPLODE, is proposed by
integrating a cryptobiosis mechanism and differential evolution operators to enhance
the search effectiveness.

• The DE mutation and crossover operators replace the original particle collision strategy
and use a dynamic and adaptive crossover rate to enable better solution convergence.

• The cryptobiosis mechanism replaces the greedy selection approach and allows for the
preservation and reuse of historically successful solutions to improve the overall performance.

• The performance of CPLODE is validated through comprehensive experiments,
demonstrating its efficacy in solving complex optimization problems.
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The remainder of this paper is organized as follows: Section 1 introduces the research
background, motivation, and key contributions. Section 2 describes the fundamentals of
the original PLO algorithm. Section 3 presents the proposed CPLODE algorithm, including
detailed explanations of the cryptobiosis mechanism and the DE operators. Section 4 covers
the experimental setup, results, and their analysis to evaluate CPLODE’s performance.
Section 5 explores the application of the proposed CPLODE algorithm in feature selection.
Finally, Section 6 concludes the paper by summarizing the key findings and outlining
potential future work.

2. The Original PLO
Polar lights optimization (PLO), introduced by Yuan et al. [25] in 2024, is a novel

metaheuristic algorithm that mimics the movement of high-energy particles interacting
with the Earth’s geomagnetic field and atmosphere, inspired by the natural phenomenon
of the aurora. The algorithm solves optimization problems by modeling this particle
motion, which is divided into three core phases: gyration motion, aurora oval walk, and
particle collision.

1. Gyration motion: Inspired by the spiraling trajectory of high-energy particles under
Lorentz force and atmospheric damping, gyration motion facilitates local exploitation.
Mathematically, this is represented by the following equation:

v(t) = Ce
qB−a

m t (1)

where v(t) represents the particle’s velocity at time t, C is a constant, q represents the
particle’s charge, B is the strength of Earth’s magnetic field, α represents the atmospheric
damping factor, and m is the mass of the particle. In the PLO algorithm, C, q, and B are set
to 1 for simplicity, and m is set to 100. The damping factor α is a random value within the
range [1, 1.5]. The fitness evaluation process of the current particle represents the time (t)
to model the decaying spiraling trajectories, enabling fine-grained local searches.

2. Aurora Oval Walk: The aurora oval walk emulates the dynamic movement of
energetic particles along the auroral oval, facilitating global exploration. This movement
is influenced by a Levy flight distribution, the average population position, and a ran-
dom search component. The aurora oval walk of each particle is calculated using the
following equation:

Ao = Levy(d)× (Xavg(j)− X(i, j)) + LB(i) + r1 × (UB(i)− LB(i))/2 (2)

where Ao represents the movement of a particle in the auroral oval walk, i represents the
i-th individual and ranges from 1 to N (population size), and j represents the j-th dimension,
ranging from 1 to D (problem dimension). Levy(d) is the Levy distribution, d is the step
size,

(
Xavg(j)− X(i, j)

)
represents the direction the particles tend to move toward the

average location, LB is the lower bound of the search space, UB is the upper bound of the
search space, and r1 is a random number [0, 1].

This auroral oval walk enables rapid exploration of the solution space through a
seemingly random walk. To integrate both gyration motion and the auroral oval walk, the
updated position of each particle (Xnew(i, j)) is computed as follows:

Xnew(i, j) = X(i, j) + r2 × (W1 × v(t) + W2 × Ao) (3)

where X(i, j) is the current particle position, and r2 introduces randomness, taking values
between 0 and 1. W1 and W2 are adaptive weights that balance exploration and exploitation.
They are updated in each iteration as follows:

W1 =
2

(1 + e−2(t/T)4
)
− 1 (4)
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W2 = e−(2t/T)3
(5)

where t is the current iteration, and T is the maximum number of iterations. W1 increases
over time, giving more weight to gyration motion and W2 decreases, giving less weight to
the auroral oval walk, shifting from global search towards local exploitation.

3. Particle Collision: Inspired by the violent particle collisions in Earth’s magnetic
field, which result in energy transfer and changes in particle directions, this strategy enables
particles to escape local optima. In PLO, each particle may collide with any other particle
in the swarm and is modeled mathematically with:

Xnew(i, j) =

X(i, j) + sin(r3 × π)× (X(i, j)− X(a, j)) r4 < K and r5 < 0.05

X(i, j) otherwise
(6)

where Xnew(i, j) is the new position of particle i in dimension j, X(i, j) is the current position
of particle i in dimension j, X(a, j) is the position of a randomly selected particle in the
population, and r3, r4, and r5 are random numbers from [0, 1]. The sine function introduces
a variable direction of movement after the collision. The collision probability, K, increases
with iterations as follows:

K =
√
(t/T) (7)

The PLO algorithm iteratively updates the particle positions by combining gyration
motion and the aurora oval walk by Equations (2) and (3). These motion patterns are
balanced by adaptive weights that gradually shift emphasis from global exploration to
local exploitation. The particle collision behavior occurs stochastically, allowing particles
to escape local optima. This process continues until a maximum number of iterations
is reached, resulting in a near-optimal solution. The core strength of PLO lies in the
combination of these inspired physical behaviors to enable an effective search and a specific
mechanism to avoid local optima. Figure 1 shows the flowchart of PLO.
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3. Proposed CPLODE
3.1. Differential Evolution

Differential evolution (DE) is a population-based evolutionary algorithm known
for its effectiveness in solving optimization problems through mutation and crossover
operators [13]. In this work, we leverage DE’s mutation and crossover operators as an
alternative to the particle collision strategy in the original PLO algorithm, aiming to enhance
the algorithm’s global exploration capability. This replacement provides a more effective
solution generation strategy than the random collisions used previously. Furthermore,
the r4 < K and r5 < 0.05 condition for particle collision is replaced with a dynamic and
adaptive crossover rate. The specific implementation of these DE operators within the
improved PLO is detailed below.

1. Mutation: The mutation operator, crucial in DE, generates a trial vector by per-
turbing the current solution. We employ the “DE/best/1” mutation strategy [26], which
perturbs a base vector by adding a scaled difference vector. This is mathematically ex-
pressed as:

M(i) = Xbest + F × (X(r1)− X(r2)) (8)

where X(r1) and X(r2) are two randomly selected individuals from the population, Xbest

is the best individuals in the population, and F is a scaling factor.
2. Crossover: Following mutation, a crossover operator is used to increase population

diversity by combining the beneficial features. We employed a binomial crossover, where
each component of the newly generated offspring was selected from either the mutated
vector or the current solution with a crossover probability, Cr. This is mathematically
expressed as:

C(i, j) =

M(i, j) rand < Cr

X(i, j) otherwise
(9)

where C(i, j) represents the jth dimension of the ith offspring, rand is a random number
between 0 and 1, and Cr is the crossover rate, as shown in Equation (10).

Cr = 0.5e−2(FEs/MaxFEs)1/2
+ 0.1 (10)

where FEs represents the current number of fitness evaluations, and MaxFEs is the max-
imum number of fitness evaluations. This dynamic crossover rate, Cr, starts at a higher
value initially, promoting exploration, and gradually decreases as the algorithm iterates,
transitioning the algorithm from diversification to intensification. This allows the algo-
rithm to effectively search the entire solution space initially and then focus on exploiting
promising regions, thus enhancing convergence.

3.2. Cryptobiosis Mechanism

The cryptobiosis mechanism, proposed by Zheng et al. in 2024 as part of the moss
growth optimizer (MGO) algorithm [27], is implemented to refine the greedy selection
mechanism. Drawing inspiration from the cryptobiosis phenomenon observed in moss,
which allows them to endure periods of inactivity and subsequently revive under favorable
conditions, this mechanism records historical information for each solution. In contrast to
conventional methods that directly modify individuals, this mechanism stores the solutions
generated in each iteration. Specifically, it maintains a record of a fixed number of past
solutions and tracks the best-performing particle. When specific criteria are met, such as
reaching the maximum number of records or the conclusion of a generation, the mechanism
is triggered. The best historical solution among the recorded solutions is then employed to
replace the current solution. This approach facilitates repeated exploration of promising
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areas, thereby ensuring the population’s global search capability. Concurrently, replacing
individuals with the best historical solutions under these conditions enhances population
quality. This mechanism remains active throughout the search process, aiming to improve
search efficiency by reintroducing previously successful solutions rather than initiating the
search from scratch at each step.

The pseudo-code of the cryptobiosis mechanism is shown in Algorithm 1. In Algo-
rithm 1, several variables are used to manage the cryptobiosis mechanism. X(i) repre-
sents the i-th solution within the population; recnum denotes the maximum number of
records that can be kept before a cryptobiosis event occurs; record is a counter tracking
the number of records currently stored; Xrecord(i) stores the recorded solutions for the
i-th individual; t represents the current iteration, and T is the maximum number of iter-
ations allowed before the next cryptobiosis cycle. Xbest

record(i) stores the best solution from
the recorded solutions for the i-th individual. The algorithm cycles until the maximum
number of fitness evaluations (MaxFEs) are reached. Within each cycle of the algorithm,
solutions are recorded, and a local best solution is found within the recorded solutions.

Algorithm 1: Pseudo-code of cryptobiosis mechanism

1. Input: X(i): i-th solution rec_num: maximum number of records
2. Output: Updated X(i)
3. record = 0
4. While (FEs < MaxFEs)
5. If record = 0
6. Xrecord(i) = X(i)
7. record = record + 1
8. End if
9. Update the X /* PLO */
10. For i = 1:N
11. Xrecord(i) = X(i)
12. record = record + 1
13. If record > recnum − 1||t ≥ T
14. Xrecord(i) = X(i)
15. For e = 1 : record

16. If Fitness(Xrecord(i)) < Fitness
(

Xbest
record(i)

)
17. Xbest

record(i) = Xrecord(i)
18. End if
19. End for
20. X(i) = Xbest

record(i)
21. record = 0
22. End if
23. End For
24. FEs = FEs + N
25. End while
26. Return X

3.3. The Proposed CPLODE

This section delineates the workflow of the proposed CPLODE algorithm, which
integrates the cryptobiosis mechanism and DE operators into the original PLO framework.
CPLODE commences by initializing the required parameters and generating an initial
population of solutions, which is consistent with standard optimization algorithms. The
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algorithm then proceeds through the following primary steps. Initially, the gyration motion
strategy of PLO is executed to perform a local search around the current particle. Subse-
quently, instead of employing the original particle collision strategy, CPLODE leverages
the DE mutation and crossover operators, as detailed in the preceding section, to produce
new candidate solutions. Specifically, the “DE/best/1” mutation operator perturbs the
current solution based on a scaled difference vector, while the binomial crossover operator,
utilizing a dynamic crossover rate Cr, combines the mutated solution with the current
solution. These steps ensure effective global exploration of the search space. Following the
completion of gyration motion and mutation/crossover by all particles in the population,
the cryptobiosis mechanism is activated. This mechanism records historical information
for each particle throughout the previous iterations, and upon activation, it replaces the
current solution with the best-recorded solution if a more effective historical solution is
identified. The algorithm continues to iterate through these steps until a termination crite-
rion is satisfied, at which point the algorithm returns the optimal or near-optimal solution.
The overall workflow of CPLODE is illustrated in Figure 2.

Algorithm 2 provides the pseudo-code for the CPLODE.

Algorithm 2: Pseudo-code of CPLODE

Parameters initializing: FEs = 0, MaxFEs, t = 0
Initialize high-energy particle cluster X.
Calculate the fitness value f (X).
Sort X according to f (X).
Update the current optimal solution Xbest.
While FEs < MaxFEs
Calculate the velocity v(t) for each particle, according to Equation (1).
Calculate aurora oval walk Ao for each particle, according to Equation (2).
Calculate weights W1 and W2 according to Equations (4) and (5).
For each energetic particle do
Updating particles Xnew using Equation (3).
If r4 < K and r5 < 0.05
Particle collision strategy: update particle Xnew using Equations (8) and (9).
End If

Calculate the fitness f (Xnew).
FEs = FEs + 1.

End For
If f (Xnew) < f (X)

Iterating over X using the cryptobiosis mechanism.
End If

Sort X according to f (X).
Update the optimal solution Xbest.

t = t + 1.
End While
Return the Xbest.

The computational complexity of the proposed CPLODE algorithm depends primarily
on population initialization, fitness evaluation, gyration motion, DE-based solution genera-
tion, cryptobiosis mechanism, and the particle collision strategy. Assuming a population
size of N, a maximum number of iterations of T, and a solution dimension of D, the overall
computational complexity of CPLODE can be approximated as follows: O(CPLODE) ≈
O(TN)* + O(TND) + O(TND) + O(TN)* + O(TN)* ≈ O(TND). Therefore, the computational
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complexity of CPLODE is dominated by the DE-based solution generation and gyration
motion and has a time complexity of O(TND).
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Figure 2. Flowchart of CPLODE.

4. Global Optimization Performance Evaluation
This section presents a comprehensive evaluation of the proposed CPLODE algo-

rithm’s performance on a set of 29 benchmark functions from the IEEE CEC 2017 test
suite. These experiments aim to provide a rigorous assessment of CPLODE’s optimization
capabilities. All tests were conducted under standardized conditions on an Ubuntu 22.04
system using MATLAB R2023b, with a consistent configuration to ensure a fair comparison.
The experiments were performed on an AMD Ryzen 9 5900X processor with 64 GB of RAM.
To evaluate the algorithm’s performance, each algorithm was executed 30 times, and the
average and standard deviation of the results for each benchmark function were recorded.
For these experiments, the population size was set to 30, the problem dimension was set
to 30, and the maximum number of fitness evaluations was set to 300,000. The following
analysis will detail these results and provide an in-depth performance comparison.

4.1. Detailed Description of Benchmark Functions

The performance of the proposed CPLODE algorithm was evaluated using a suite
of 29 benchmark functions from the 2017 IEEE Congress on Evolutionary Computation
(CEC 2017) test suite [28]. These functions encompass a diverse range of characteristics,
categorized into four primary types: unimodal, multimodal, hybrid, and composition
functions. This selection of functions ensures a robust evaluation of the algorithm’s opti-
mization capabilities across various landscape complexities. Each function is defined with
a specific global optimum, as summarized in Table 1, which provides the function name,
its type, and its optimal objective value. These benchmark functions serve as a standard
tool to analyze and compare the effectiveness of optimization algorithms.



Biomimetics 2025, 10, 53 10 of 20

Table 1. CEC2017 benchmark functions.

Function Function Name Class Optimum

F1 Shifted and Rotated Bent Cigar Function Unimodal 100
F2 Shifted and Rotated Zakharov Function Unimodal 300
F3 Shifted and Rotated Rosenbrock’s Function Multimodal 400
F4 Shifted and Rotated Rastrigin’s Function Multimodal 500
F5 Shifted and Rotated Expanded Scaffer’s F6 Function Multimodal 600
F6 Shifted and Rotated Lunacek Bi-Rastrigin Function Multimodal 700
F7 Shifted and Rotated Non-Continuous Rastrigin’s Function Multimodal 800
F8 Shifted and Rotated Lévy Function Multimodal 900
F9 Shifted and Rotated Schwefel’s Function Multimodal 1000
F10 Hybrid Function 1 (N = 3) Hybrid 1100
F11 Hybrid Function 2 (N = 3) Hybrid 1200
F12 Hybrid Function 3 (N = 3) Hybrid 1300
F13 Hybrid Function 4 (N = 4) Hybrid 1400
F14 Hybrid Function 5 (N = 4) Hybrid 1500
F15 Hybrid Function 6 (N = 4) Hybrid 1600
F16 Hybrid Function 6 (N = 5) Hybrid 1700
F17 Hybrid Function 6 (N = 5) Hybrid 1800
F18 Hybrid Function 6 (N = 5) Hybrid 1900
F19 Hybrid Function 6 (N = 6) Hybrid 2000
F20 Composition Function 1 (N = 3) Composition 2100
F21 Composition Function 2 (N = 3) Composition 2200
F22 Composition Function 3 (N = 4) Composition 2300
F23 Composition Function 4 (N = 4) Composition 2400
F24 Composition Function 5 (N = 5) Composition 2500
F25 Composition Function 6 (N = 5) Composition 2600
F26 Composition Function 7 (N = 6) Composition 2700
F27 Composition Function 8 (N = 6) Composition 2800
F28 Composition Function 9 (N = 3) Composition 2900
F29 Composition Function 10 (N = 3) Composition 3000

4.2. Comparative Analysis with Classical Optimization Algorithms

To evaluate the performance of the proposed CPLODE algorithm, comparative experi-
ments were conducted against the following eight other classical optimization algorithms:
PLO [25], SMA [29], WOA [30], GWO [31], MFO [32], SCA [33], FA [34], and DE [13].
These algorithms were chosen to provide a broad comparison across different optimization
techniques. The experiments were performed on the 29 benchmark functions from the
CEC 2017 test suite, and each algorithm was executed 30 times with a population size of 30,
a solution dimension of 30, and a maximum of 300,000 function evaluations.

Table 2 summarizes the average (Avg) and standard deviation (Std) of the fitness
values obtained by each algorithm on the 29 benchmark functions. Furthermore, Table 2
presents the overall rankings of each algorithm based on the Friedman test, along with
the win/loss/tie results of CPLODE against each other algorithm. As shown in Table 2,
CPLODE achieves the best average rank with a score of 1.6552, indicating its superior
performance. In detail, CPLODE performs favorably on most functions and notably
obtains results that are equal to or better than the other algorithms, especially on complex
multimodal functions such as F3, F14, F17, and F19, demonstrating its effectiveness in
navigating complex optimization landscapes.

Table 3 provides the p-values resulting from the Wilcoxon signed-rank test, which
compares CPLODE against each of the other algorithms on the 29 benchmark functions. A
p-value less than 0.05 indicates a statistically significant difference between the performance
of CPLODE and the other algorithm. As shown in Table 3, the p-values for the majority of
the functions are less than 0.05, demonstrating that CPLODE significantly outperforms the
other algorithms. In those cases where the p-value is higher than 0.05, this typically indicates
that CPLODE and that particular algorithm are able to provide results of comparable quality,
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typically when the problem is very simple, such as F12, F14, F21, F22, F23, F25, F26, F28,
and F29.

The results presented in Tables 2 and 3 demonstrate that CPLODE not only achieves a
higher average rank but also exhibits a robust and consistent performance when compared
to the selected classical optimization algorithms in these global optimization experiments.

Figure 3 illustrates the convergence behavior of CPLODE and the other comparison
algorithms across several representative benchmark functions (F2, F4, F6, F7, F9, F11,
F23, F25, and F29). The horizontal axis represents the number of fitness evaluations (FEs)
performed, while the vertical axis shows the best fitness value achieved by each algorithm
at each evaluation. The legend at the bottom of the figure identifies each algorithm.

A visual analysis of the convergence curves reveals that CPLODE (the red line with
circles) consistently achieves a superior convergence rate and reaches better fitness values
compared to the other algorithms. Notably, for most of the shown functions, CPLODE
exhibits a steep descent in fitness value during the initial evaluations, which indicates
rapid convergence and demonstrates its strong exploitation capacity. The red lines con-
sistently fall below the other colored lines across nearly all of the functions, showcasing
that the CPLODE algorithm effectively navigates the search space and escapes local optima
effectively to locate more promising solutions compared to all the comparison algorithms.
Specifically on the more challenging functions, such as F7, F9, and F29, other algorithms are
more prone to stagnating at local optima and show a much slower rate of convergence in
comparison to the CPLODE. The performance demonstrates that CPLODE provides better
exploration ability to navigate the entire solution space, and also has better exploitation
capabilities, thus achieving faster and more reliable convergence.

Table 2. Results of CPLODE and other algorithms on CEC2017.

F1 F2 F3

Avg Std Avg Std Avg Std
CPLODE 4.0920 × 103 4.1750 × 103 3.0002 × 102 1.0051 × 10−2 4.5068 × 102 3.4430 × 101

PLO 1.1590 × 104 2.4939 × 103 2.7023 × 104 5.6270 × 103 4.7492 × 102 1.1119 × 101

SMA 2.5115 × 109 9.8658 × 108 3.7557 × 104 8.5901 × 103 6.1469 × 102 5.3174 × 101

WOA 2.6952 × 106 1.5313 × 106 1.4743 × 105 6.0775 × 104 5.6002 × 102 3.6325 × 101

GWO 2.1219 × 109 1.3846 × 109 3.4397 × 104 1.0051 × 104 7.0155 × 102 4.0283 × 102

MFO 1.2988 × 1010 6.9423 × 109 7.7996 × 104 6.2218 × 104 1.1193 × 103 6.5315 × 102

SCA 1.2347 × 1010 2.1109 × 109 3.5606 × 104 5.4682 × 103 1.3672 × 103 2.2062 × 102

FA 1.4659 × 1010 1.4882 × 109 6.3838 × 104 8.0840 × 103 1.4042 × 103 1.5042 × 102

DE 2.3830 × 103 4.8570 × 103 2.1028 × 104 5.1500 × 103 4.9188 × 102 1.0679 × 101

F4 F5 F6

Avg Std Avg Std Avg Std
CPLODE 5.4831 × 102 7.8331 × 100 6.0000 × 102 9.1994 × 10−7 7.8753 × 102 8.8299 × 100

PLO 5.5092 × 102 7.4005 × 100 6.0412 × 102 6.4002 × 10−1 8.2325 × 102 9.5400 × 100

SMA 7.1420 × 102 2.9243 × 101 6.4455 × 102 8.0890 × 100 1.0707 × 103 4.4764 × 101

WOA 7.6420 × 102 4.8394 × 101 6.6890 × 102 9.1396 × 100 1.2308 × 103 7.8906 × 101

GWO 6.0427 × 102 2.7433 × 101 6.0927 × 102 3.9375 × 100 8.6044 × 102 4.4426 × 101

MFO 7.1517 × 102 6.3055 × 101 6.4193 × 102 1.1270 × 101 1.1255 × 103 2.3548 × 102

SCA 7.7692 × 102 1.9626 × 101 6.4836 × 102 4.2782 × 100 1.1213 × 103 3.1481 × 101

FA 7.6207 × 102 9.3450 × 100 6.4410 × 102 2.6151 × 100 1.3824 × 103 3.1254 × 101

DE 6.0933 × 102 8.3500 × 100 6.0000 × 102 0.0000 × 100 8.4291 × 102 7.5915 × 100

F7 F8 F9

Avg Std Avg Std Avg Std
CPLODE 8.4608 × 102 8.3623 × 100 9.0020 × 102 2.6584 × 10−1 3.2070 × 103 2.6162 × 102

PLO 8.5204 × 102 9.2515 × 100 1.2746 × 103 1.3036 × 102 3.2575 × 103 2.5941 × 102

SMA 9.7055 × 102 2.6769 × 101 5.5826 × 103 1.0568 × 103 5.3672 × 103 5.6679 × 102

WOA 1.0136 × 103 5.8658 × 101 8.1838 × 103 2.3689 × 103 6.2527 × 103 6.5665 × 102
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Table 2. Cont.

GWO 8.8678 × 102 1.9861 × 101 1.7494 × 103 6.1671 × 102 4.1153 × 103 9.3870 × 102

MFO 1.0139 × 103 5.2970 × 101 7.1350 × 103 1.9884 × 103 5.4931 × 103 7.9595 × 102

SCA 1.0478 × 103 1.5537 × 101 5.1287 × 103 1.0492 × 103 8.1431 × 103 3.2193 × 102

FA 1.0509 × 103 1.4648 × 101 5.4305 × 103 5.1404 × 102 7.9251 × 103 3.8444 × 102

DE 9.0849 × 102 1.0072 × 101 9.0000 × 102 9.6743 × 10−14 5.9854 × 103 1.9299 × 102

F10 F11 F12

Avg Std Avg Std Avg Std
CPLODE 1.1229 × 103 9.1014 × 100 1.2004 × 105 8.5831 × 104 1.8444 × 104 2.1474 × 104

PLO 1.1581 × 103 1.6584 × 101 5.0177 × 105 2.4604 × 105 1.4198 × 104 5.7243 × 103

SMA 1.5322 × 103 1.0156 × 102 1.2983 × 108 7.5032 × 107 1.5058 × 106 1.6082 × 106

WOA 1.4913 × 103 9.8025 × 101 4.8594 × 107 3.1101 × 107 1.3602 × 105 9.4765 × 104

GWO 1.8226 × 103 6.6599 × 102 1.1275 × 108 3.2956 × 108 1.3704 × 107 3.9247 × 107

MFO 5.9355 × 103 5.1442 × 103 3.5650 × 108 8.1328 × 108 3.1216 × 108 7.5404 × 108

SCA 2.0945 × 103 2.2808 × 102 1.1051 × 109 2.9299 × 108 3.4755 × 108 1.2259 × 108

FA 3.2599 × 103 5.7410 × 102 1.4017 × 109 3.0724 × 108 6.1809 × 108 1.7734 × 108

DE 1.1611 × 103 2.0851 × 101 1.5862 × 106 8.2773 × 105 2.9151 × 104 1.1875 × 104

F13 F14 F15

Avg Std Avg Std Avg Std
CPLODE 1.4384 × 104 1.0938 × 104 1.2813 × 104 1.3823 × 104 1.9560 × 103 1.3213 × 102

PLO 7.9649 × 103 4.7388 × 103 4.5866 × 103 1.2584 × 103 1.9970 × 103 1.1299 × 102

SMA 1.8264 × 105 9.5737 × 104 2.0160 × 104 9.2830 × 103 2.8795 × 103 3.3202 × 102

WOA 5.4997 × 105 7.1671 × 105 6.1537 × 104 5.5170 × 104 3.5053 × 103 4.9078 × 102

GWO 1.0984 × 105 1.8864 × 105 3.5527 × 105 8.3062 × 105 2.3715 × 103 2.8305 × 102

MFO 2.7980 × 105 6.5096 × 105 5.6788 × 104 4.2509 × 104 3.0976 × 103 3.6698 × 102

SCA 1.1542 × 105 6.3321 × 104 1.1045 × 107 8.4052 × 106 3.6068 × 103 2.2862 × 102

FA 1.8689 × 105 7.2559 × 104 6.2655 × 107 3.1177 × 107 3.4083 × 103 2.1965 × 102

DE 6.4866 × 104 5.4400 × 104 7.6915 × 103 4.1350 × 103 2.0677 × 103 1.3933 × 102

F16 F17 F18

Avg Std Avg Std Avg Std
CPLODE 1.7990 × 103 7.6248 × 101 1.8955 × 105 2.7639 × 105 1.7549 × 104 1.6480 × 104

PLO 1.8186 × 103 3.9754 × 101 1.3635 × 105 7.8731 × 104 2.9860 × 103 6.7273 × 102

SMA 2.3156 × 103 2.1345 × 102 4.8558 × 105 3.3512 × 105 5.0410 × 105 5.3037 × 105

WOA 2.6334 × 103 2.8446 × 102 3.3275 × 106 2.9399 × 106 2.2655 × 106 2.8705 × 106

GWO 1.9486 × 103 1.1480 × 102 5.9764 × 105 5.7548 × 105 8.0009 × 105 1.6674 × 106

MFO 2.5460 × 103 3.1139 × 102 3.1751 × 106 7.8848 × 106 1.2902 × 107 3.6770 × 107

SCA 2.3934 × 103 1.5338 × 102 3.3788 × 106 1.7657 × 106 3.3238 × 107 2.1205 × 107

FA 2.4670 × 103 1.2003 × 102 4.3534 × 106 1.9992 × 106 9.2454 × 107 3.1871 × 107

DE 1.8421 × 103 5.1530 × 101 3.1519 × 105 1.7642 × 105 8.2470 × 103 3.5513 × 103

F19 F20 F21

Avg Std Avg Std Avg Std
CPLODE 2.1010 × 103 6.2362 × 101 2.3480 × 103 9.5720 × 100 3.4641 × 103 1.3586 × 103

PLO 2.1670 × 103 5.1289 × 101 2.3505 × 103 7.3562 × 100 2.3855 × 103 4.1707 × 102

SMA 2.4134 × 103 1.2866 × 102 2.4785 × 103 2.4241 × 101 3.2081 × 103 1.4174 × 103

WOA 2.6641 × 103 2.0926 × 102 2.5797 × 103 6.7176 × 101 6.2597 × 103 2.2427 × 103

GWO 2.4343 × 103 1.2789 × 102 2.3797 × 103 2.6664 × 101 4.5712 × 103 1.3470 × 103

MFO 2.6919 × 103 2.6365 × 102 2.5126 × 103 4.5540 × 101 6.5400 × 103 9.2570 × 102

SCA 2.6031 × 103 1.4985 × 102 2.5514 × 103 2.2652 × 101 7.6999 × 103 2.5971 × 103

FA 2.5986 × 103 7.5334 × 101 2.5382 × 103 1.5345 × 101 3.8226 × 103 1.3006 × 102

DE 2.1400 × 103 7.0218 × 101 2.4102 × 103 9.0096 × 100 3.7627 × 103 1.6700 × 103

F22 F23 F24

Avg Std Avg Std Avg Std
CPLODE 2.7010 × 103 7.8806 × 100 2.8693 × 103 6.4910 × 100 2.8878 × 103 5.8163 × 10−1

PLO 2.6996 × 103 8.5181 × 100 2.8689 × 103 7.2496 × 100 2.8847 × 103 1.2452 × 100

SMA 2.8511 × 103 3.1216 × 101 3.0080 × 103 3.0863 × 101 3.0205 × 103 5.3642 × 101

WOA 3.0359 × 103 8.6584 × 101 3.1487 × 103 8.0901 × 101 2.9455 × 103 3.1040 × 101
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GWO 2.7461 × 103 3.6003 × 101 2.9220 × 103 4.7272 × 101 2.9723 × 103 2.5394 × 101

MFO 2.8310 × 103 3.4083 × 101 2.9962 × 103 3.4826 × 101 3.3300 × 103 4.3061 × 102

SCA 2.9926 × 103 2.3532 × 101 3.1572 × 103 3.5056 × 101 3.1873 × 103 5.5685 × 101

FA 2.9135 × 103 1.1764 × 101 3.0649 × 103 1.1714 × 101 3.5444 × 103 1.1607 × 102

DE 2.7561 × 103 8.9800 × 100 2.9626 × 103 1.2120 × 101 2.8874 × 103 3.4067 × 10−1

F25 F26 F27

Avg Std Avg Std Avg Std
CPLODE 4.1335 × 103 9.3910 × 101 3.2053 × 103 1.0043 × 101 3.1550 × 103 6.6740 × 101

PLO 3.9283 × 103 4.7938 × 102 3.2029 × 103 4.0598 × 100 3.2121 × 103 9.0455 × 100

SMA 5.2084 × 103 5.6927 × 102 3.2563 × 103 2.0406 × 101 3.4164 × 103 4.4305 × 101

WOA 7.7069 × 103 9.8268 × 102 3.3737 × 103 1.0329 × 102 3.3130 × 103 3.1227 × 101

GWO 4.5991 × 103 3.2501 × 102 3.2435 × 103 2.1859 × 101 3.4256 × 103 7.9194 × 101

MFO 6.0445 × 103 6.8971 × 102 3.2668 × 103 3.0744 × 101 4.4157 × 103 9.8818 × 102

SCA 6.9434 × 103 2.7207 × 102 3.4025 × 103 3.8445 × 101 3.8215 × 103 1.3113 × 102

FA 6.5170 × 103 1.5945 × 102 3.3344 × 103 1.4804 × 101 3.8905 × 103 8.7135 × 101

DE 4.6715 × 103 6.3597 × 101 3.2043 × 103 3.6717 × 100 3.1860 × 103 4.7932 × 101

F28 F29

Avg Std Avg Std
CPLODE 3.4382 × 103 9.2089 × 101 1.0096 × 104 3.3843 × 103

PLO 3.4618 × 103 5.5133 × 101 2.0740 × 104 4.9557 × 103

SMA 4.0386 × 103 2.0859 × 102 5.2833 × 106 2.8997 × 106

WOA 4.8405 × 103 3.4810 × 102 9.3134 × 106 7.1522 × 106

GWO 3.7806 × 103 1.6576 × 102 4.5862 × 106 3.5436 × 106

MFO 4.2868 × 103 3.1200 × 102 6.1200 × 105 8.0878 × 105

SCA 4.6218 × 103 2.1985 × 102 7.0732 × 107 2.6337 × 107

FA 4.7160 × 103 1.2109 × 102 9.4462 × 107 3.0941 × 107

DE 3.5286 × 103 7.2288 × 101 1.2285 × 104 3.3857 × 103

Overall Rank

RANK +/=− AVG
CPLODE 1 ~ 1.6552

PLO 2 12/14/3 1.8621
SMA 5 28/1/0 5.1379
WOA 7 29/0/0 7.0000
GWO 4 29/0/0 4.4483
MFO 6 29/0/0 6.7586
SCA 8 29/0/0 7.5517
FA 9 29/0/0 7.7241
DE 3 19/5/5 2.8621

Table 3. The p-values of CPLODE versus other algorithms on CEC2017.

PLO SMA WOA GWO

F1 5.752 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6

F2 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6

F3 7.271 × 10−3 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6

F4 1.414 × 10−1 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6

F5 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6

F6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 2.127 × 10−6

F7 2.105 × 10−3 1.734 × 10−6 1.734 × 10−6 2.353 × 10−6

F8 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6

F9 7.971 × 10−1 1.734 × 10−6 1.734 × 10−6 5.752 × 10−6

F10 1.921 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6

F11 3.882 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6
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Table 3. Cont.

PLO SMA WOA GWO

F12 7.655 × 10−1 1.734 × 10−6 1.921 × 10−6 1.921 × 10−6

F13 3.379 × 10−3 2.353 × 10−6 1.734 × 10−6 1.251 × 10−4

F14 5.710 × 10−2 4.492 × 10−2 1.734 × 10−6 1.238 × 10−5

F15 2.134 × 10−1 1.734 × 10−6 1.734 × 10−6 8.466 × 10−6

F16 8.972 × 10−2 1.734 × 10−6 1.734 × 10−6 1.799 × 10−5

F17 4.908 × 10−1 1.965 × 10−3 2.603 × 10−6 4.534 × 10−4

F18 2.843 × 10−5 3.182 × 10−6 1.734 × 10−6 4.729 × 10−6

F19 4.897 × 10−4 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6

F20 1.470 × 10−1 1.734 × 10−6 1.734 × 10−6 3.182 × 10−6

F21 1.020 × 10−1 8.451 × 10−1 2.843 × 10−5 6.035 × 10−3

F22 8.290 × 10−1 1.734 × 10−6 1.734 × 10−6 6.984 × 10−6

F23 7.189 × 10−1 1.734 × 10−6 1.734 × 10−6 1.921 × 10−6

F24 2.127 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6

F25 3.600 × 10−1 3.182 × 10−6 1.734 × 10−6 6.339 × 10−6

F26 4.779 × 10−1 1.734 × 10−6 1.734 × 10−6 2.127 × 10−6

F27 8.944 × 10−4 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6

F28 7.521 × 10−2 1.734 × 10−6 1.734 × 10−6 1.921 × 10−6

F29 1.921 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6

MFO SCA FA DE

F1 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 1.319 × 10−2

F2 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6

F3 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 1.127 × 10−5

F4 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6

F5 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 1.953 × 10−3

F6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6

F7 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6

F8 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 6.104 × 10−5

F9 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6

F10 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 6.339 × 10−6

F11 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 1.921 × 10−6

F12 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 2.183 × 10−2

F13 1.973 × 10−5 1.734 × 10−6 1.921 × 10−6 5.216 × 10−6

F14 5.216 × 10−6 1.734 × 10−6 1.734 × 10−6 4.653 × 10−1

F15 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 6.424 × 10−3

F16 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 6.836 × 10−3

F17 5.706 × 10−4 1.734 × 10−6 1.734 × 10−6 2.765 × 10−3

F18 1.127 × 10−5 1.734 × 10−6 1.734 × 10−6 1.657 × 10−2

F19 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 4.277 × 10−2

F20 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6

F21 1.734 × 10−6 1.494 × 10−5 6.035 × 10−3 8.130 × 10−1

F22 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6

F23 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6

F24 2.127 × 10−6 1.734 × 10−6 1.734 × 10−6 3.162 × 10−3

F25 1.921 × 10−6 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6

F26 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 8.130 × 10−1

F27 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 6.511 × 10−2

F28 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 8.944 × 10−4

F29 1.734 × 10−6 1.734 × 10−6 1.734 × 10−6 5.193 × 10−2
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5. Application to Feature Selection
This section explores the application of the proposed CPLODE algorithm to feature

selection problems. Feature selection is a critical task in machine learning, aimed at
identifying the most relevant features from a dataset, thereby reducing dimensionality and
improving model performance. To apply CPLODE, a method designed for continuous
domains, to this discrete problem, we employed a binary encoding strategy. Specifically,
we constrained the problem’s upper and lower bounds to the interval [0, 1] and utilized
Equation (11) to determine the selection status of each feature. This approach enables
CPLODE, which is inherently suited for continuous domains, to operate effectively within
the binary search space of feature selection.

Xi,j =

{
0 Xi,j < 0.5
1 Xi,j ≥ 0.5

(11)

To transition from the continuous search space of CPLODE to the binary feature
selection space, each dimension is converted using a threshold of 0.5. Specifically, if a
dimension’s value is greater than or equal to 0.5, the corresponding feature is selected;
otherwise, it is not selected. This process maps the continuous space to a binary selec-
tion space.
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In this study, we use the K-nearest neighbors (KNN) classifier to evaluate the quality
of the selected feature subsets and use the following fitness function, which seeks to
simultaneously minimize the classification error and the number of selected features:

Fitness = µ × E + (1 − µ)× l
L

(12)

where E represents the classification error rate, l is the number of selected features, L is
the total number of features, and µ is a constant between 0 and 1 controlling the trade-off
between the error rate and the number of selected features. Because we primarily focus on
the accuracy of the selected feature subset, we set µ to 0.05 to prioritize error minimization.
This setting gives more weight to the classification error and less weight to the number of
features selected.

5.1. Detailed Description of Datasets

To evaluate the performance of the proposed CPLODE algorithm for feature selection,
experiments were conducted on ten datasets selected from the UCI Machine Learning
Repository. These datasets represent a range of complexity with varying numbers of
samples, features, and classes. The number of samples in these datasets ranges from 72
to 2310, while the number of features varies from 8 to 7130. These variations ensure that
the performance of the algorithm is tested across diverse feature selection scenarios, from
low-dimensional to high-dimensional data and with different class distributions. Table 4
provides a detailed description of each dataset used in this study, including the dataset
name, number of samples, number of features, and number of classes.

Table 4. Detailed description of datasets.

Datasets Samples Features Classes

Breast cancer 286 9 2
Heart EW 270 13 2

Lymphography 148 18 4
Hepatitis_full_data 155 19 2

Glass 214 9 6
Heart 303 13 5

Thyroid_2class 187 8 2
Leukemia 72 7130 2

Vote 534 16 2
Segment 2310 18 7

5.2. Feature Selection Results and Discussion

This subsection presents the experimental results of CPLODE for feature selection,
compared with several other well-known binary metaheuristic algorithms as follows:
BPSO [35], BGSA [36], BALO [37], BBA [38], and BSSA [39]. These experiments were
conducted on the ten real-world datasets described in Section 5.1. All algorithms were run
with a population size of 30 and a maximum of 1000 iterations. To ensure robustness and
avoid bias, a 10-fold cross-validation technique was used in all experiments. The detailed
experimental results are shown in Tables 5 and 6.

Table 5 presents the average classification error rates, with standard deviations in
parentheses, obtained by each algorithm on each dataset. From the table, it can be observed
that CPLODE achieves the lowest error rates on the majority of datasets, demonstrating its
superior performance in feature selection. Notably, CPLODE achieves significantly lower
error rates on datasets such as “Hepatitis_full_data” and “Segment”, where the error rates
of CPLODE are well below other binary metaheuristic algorithms. While some algorithms,
such as BPSO and BSSA, perform well on datasets like “Leukemia”, their results are not
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consistently better than CPLODE across all datasets. On the “Heart” dataset, CPLODE,
BGSA, and BSSA exhibited similar performances, but all of the algorithms outperformed
BBA, which had the worst performance. These results indicate that CPLODE achieves
better accuracy on many of the datasets presented.

Table 5. Classification error rates of different algorithms.

Function CPLODE BPSO BGSA BALO BBA BSSA

Breast cancer
9.21 × 10−2 9.76 × 10−2 9.91 × 10−2 9.36 × 10−2 1.62 × 10−1 9.42 × 10−2

7.68 × 10−3 9.52 × 10−3 1.08 × 10−2 1.29 × 10−2 1.38 × 10−2 1.36 × 10−2

Heart EW
7.68 × 10−2 8.10 × 10−2 8.75 × 10−2 8.36 × 10−2 1.72 × 10−1 8.32 × 10−2

2.32 × 10−2 4.21 × 10−2 3.67 × 10−3 3.52 × 10−2 2.58 × 10−2 3.14 × 10−3

Lymphography 1.82 × 10−2 2.42 × 10−2 2.38 × 10−2 1.97 × 10−2 6.52 × 10−2 2.01 × 10−2

5.12 × 10−3 (4.23 × 10−3) (3.25 × 10−3) (2.46 × 10−3) (1.23 × 10−3) (4.02 × 10−3)

Hepatitis_full_data 1.28 × 10−2 1.93 × 10−2 2.57 × 10−2 9.42 × 10−3 2.37 × 10−1 1.82 × 10−2

(1.47 × 10−3) (3.23 × 10−2) (5.36 × 10−3) (1.86 × 10−3) (8.45 × 10−2) (4.89 × 10−3)

Glass
9.86 × 10−2 1.17 × 10−1 1.07 × 10−1 1.21 × 10−1 2.92 × 10−1 1.06 × 10−1

(6.49 × 10−2) (4.25 × 10−2) (4.99 × 10−2) (5.44 × 10−2) (1.08 × 10−1) (4.93 × 10−2)

Heart
6.18 × 10−2 7.03 × 10−2 5.58 × 10−2 6.97 × 10−2 2.63 × 10−1 6.28 × 10−2

(3.54 × 10−2) (4.43 × 10−2) (5.21 × 10−2) (3.39 × 10−2) 8.96 × 10−2) (3.49 × 10−2)

Thyroid_2class 1.89 × 10−1 2.01 × 10−1 2.14 × 10−1 2.08 × 10−1 3.21 × 10−1 2.17 × 10−1

5.36 × 10−2 (6.49 × 10−2) (6.85 × 10−2) (7.31 × 10−2) (8.81 × 10−2) (7.59 × 10−2)

Leukemia
0.00 × 100 0.00 × 100 1.05 × 10−1 0.00 × 100 1.65 × 10−2 0.00 × 100

(0.00 × 100) (0.00 × 100) (4.21 × 10−2) (0.00 × 100) (4.91 × 10−2) (0.00 × 100)

Vote
2.13 × 10−2 2.76 × 10−2 2.437 × 10−2 8.96 × 10−2 3.72 × 10−2 3.92 × 10−2

1.62 × 10−2 3.68 × 10−3 9.86 × 10−2 2.83 × 10−2 3.13 × 10−2 4.07 × 10−3

Segment 2.26 × 10−2 2.35 × 10−2 2.48 × 10−2 2.42 × 10−2 4.23 × 10−2 2.88 × 10−2

3.65 × 10−3 6.58 × 10−3 7.38 × 10−3 6.74 × 10−3 9.46 × 10−3 5.33 × 10−3

Table 6. Number of selected features by different algorithms.

Function CPLODE BPSO BGSA BALO BBA BSSA

Breast cancer
4.2 4.8 5.8 4.8 5.3 5.8

(1.35) (1.47) (1.08) (0.66) (0.93) (1.36)

Heart EW
5.3 5.5 6.2 5.3 4.4 5.7

(0.85) (1.44) (0.96) (0.84) (1.21) (0.93)

Lymphography 4.2 4.4 4.3 4.8 8.4 4.8
(0.99) (0.68) (1.17) (1.23) (2.67) (2.05)

Hepatitis_full_data 5.6 6.3 4.2 6.3 6.1 5.3
(2.32) (1.25) (1.71) (2.21) (2.37) (2.56)

Glass
3.7 3.9 4.6 3.9 4.1 4.3

(0.92) (0.74) (1.36) (0.67) (1.53) (0.87)

Heart
6.4 6.1 6.4 5.9 5.7 6.2

(0.63) (0.78) (0.62) (1.46) (1.05) (1.17)

Thyroid_2class 4.1 5.5 4.3 4.0 3.9 4.2
(0.73) (1.28) (0.76) (1.20) (1.34) (1.37)

Leukemia
1879.3 5236.4 2531.7 2657.0 3146.3 2768.1
(26.32) (67.45) (23.32) (46.44) (38.52) (94.68)

Vote
3.8 3.2 3.1 2.7 6.3 4.4

(1.62) (1.33) (1.67) (1.24) (1.35) (2.50)

Segment 5.2 6.3 5.4 5.3 7.6 6.2
(0.83) (0.94) (0.99) (1.48) (1.76) (1.66)

Table 6 presents the average number of selected features, with standard deviations
in parentheses, achieved by each algorithm on each dataset. From the table, it can be
observed that while CPLODE shows a competitive ability in selecting the relevant features,
it does not consistently select the shortest feature subsets. For example, the BGSA algorithm
achieves lower feature selections on the “Hepatitis_full_data” and “Leukemia” datasets.
However, this lower feature count comes at the expense of higher error rates, as shown
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in Table 5. Overall, CPLODE tends to select feature subsets that strike a good balance
between classification performance and feature reduction, although not always selecting
the absolute minimum number of features.

In summary, the experimental results demonstrate that the proposed CPLODE al-
gorithm provides a highly competitive performance for feature selection. The proposed
CPLODE demonstrates superior performance on most of the datasets used in this study,
achieving a better classification performance. These superior results can be attributed to
the integration of effective global search mechanisms through DE while employing the
cryptobiosis mechanism for population quality control and the gyration motion strategy of
PLO for local exploitation.

6. Conclusions
In this work, we have introduced CPLODE, a novel enhancement of the PLO algorithm,

achieved through the integration of a cryptobiosis mechanism and DE operators. These
modifications were designed to improve the original PLO’s search capabilities. Specifically,
we replaced the original particle collision strategy with DE’s mutation and crossover
operators, which enables more effective global exploration while also employing a dynamic
crossover rate to enhance convergence. Furthermore, the cryptobiosis mechanism was
incorporated to refine the greedy selection approach by recording and reusing historically
successful solutions.

The performance of CPLODE was assessed on 29 benchmark functions from the
CEC 2017 test suite, demonstrating superior performance across diverse fitness landscapes
when compared to eight classical optimization algorithms. CPLODE achieved a higher
average rank and statistically significant improvements, according to the Wilcoxon signed-
rank test, particularly on more complex functions. Convergence curves further validated
its enhanced convergence rate and optimal function values. These results emphasize the
effectiveness of the integrated cryptobiosis mechanism and DE operators within CPLODE,
confirming its improved search capability.

Moreover, CPLODE was applied to ten real-world datasets for feature selection, show-
casing competitive performance by outperforming several well-known binary metaheuristic
algorithms on most datasets and achieving a good balance between classification accuracy
and feature reduction.

Future research will focus on further refining CPLODE with advanced adaptive
mechanisms and exploring its application to a wider range of real-world optimization and
feature selection tasks, including comparisons with traditional methods. We also intend to
investigate the integration of machine learning and reinforcement learning techniques for
more intelligent optimization strategies.
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