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Abstract: Using bidirectional fluid–structure interaction technology, the dorsal–ventral
motion of the dolphin tail fin was simulated, and the feasibility of the numerical simulation
method was validated through underwater motion experiments. This study investigated
the effects of structural parameters and motion modes of bionic dolphin tail fins on their
propulsion performance. The results show that flexible tail fins can enhance propulsion
performance. Compared to equal-thickness flexible tail fins, variable-thickness flexible
tail fins that conform to the structural characteristics of real dolphin tail fins exhibit better
propulsion performance. Asymmetric motion modes have a certain thrust-enhancing effect,
but altering the frequency ratio F and amplitude ratio H of heaving motion leads to an
increase in pitching moment, reducing swimming stability. Additionally, the greater the
difference in frequency and amplitude between the up-and-down motions, the larger the
pitching moment. The study results provide references for the optimized design and motion
control of bionic tail fins.

Keywords: asymmetric motion; bionic tail fin; bidirectional fluid–structure interaction;
flexibility; hydrodynamic characteristics

1. Introduction
With the gradual depletion of terrestrial resources, the pace of human development of

marine resources has accelerated in response to increasing demand. Underwater robots,
as important tools for human exploration of the ocean, have broad application prospects.
Traditional propeller-driven underwater robots have disadvantages such as high noise,
poor stability, and low propulsion efficiency [1,2]. Aquatic organisms in the ocean have
developed unique swimming methods and extraordinary swimming abilities through
long-term natural evolution. Researchers are studying the propulsion mechanisms of
various underwater organisms, hoping to develop bionic underwater robots that are highly
efficient, low-noise, and highly maneuverable. According to differences in morphologi-
cal characteristics and swimming methods, fish movement in the ocean can be divided
into body/caudal fin (BCF) propulsion mode and median/paired fin (MPF) propulsion
mode [3,4]. Approximately 80% of fish in the ocean employ the BCF propulsion mode,
which is characterized by fast swimming speed and high propulsion efficiency, and it has
become an important subject for researchers conducting bionic engineering studies [5].

Over the past few decades, researchers both domestically and internationally have
conducted extensive studies on the phenomena and mechanisms of fish swimming. Tay-
lor [6] established the “drag model” for studying fish swimming, using steady-state theory
to calculate the hydrodynamic forces experienced by the fish at a specific moment during
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swimming. Due to the neglect of inertial forces, this method is only applicable to low-
Reynolds-number conditions. Lighthill [7–10] was the first to propose the elongated-body
theory (EBT) for investigating the propulsion mechanisms of fish swimming. This theory
posits that the total energy required for swimming originates from the active movement
of the fish body and does not account for the influence of wake vortices on swimming
performance. Wu Yaozu [11] proposed the two-dimensional waving plate theory (2DWPT)
to describe the propulsion mechanisms of fish, utilizing two-dimensional potential flow
theory. This theory allows for the calculation of thrust generated by swimming, the power
required, the energy transferred to the wake, and propulsion efficiency. Cheng Jianyu,
Tong Binggang, and others [12,13] extended the two-dimensional waving plate model
to three dimensions, establishing the three-dimensional waving plate theory (3DWPT)
using linear unsteady potential flow theory. This model not only takes into account the
effects of inertial forces and leading-edge suction but also considers the influence of wake
vortices on the waving plate. However, it is only applicable to inviscid potential flows
and small-amplitude oscillations. In addition to theoretical analysis, researchers have
conducted numerous experiments to study fish swimming. Gray [14] proposed the famous
“Gray Paradox” through experiments and observations, which states that if the resistance
experienced by a swimming dolphin were equal to that of a rigid dolphin model being
towed, then the dolphin’s muscles would need to supply at least seven times the power
that normal mammalian muscles can provide. This is obviously unreasonable; however,
studies have found that marine organisms employ various drag reduction mechanisms
during swimming, which may provide an explanation for the “Gray Paradox”. With the
development of digital particle image velocimetry (DPIV) [15,16], researchers have ob-
tained more direct means to measure and analyze the flow fields during fish swimming.
Fish [17] directly measured the flow field generated during dolphin swimming using DPIV
technology. Nauen and Lauder [18] studied the wake flow field of mackerel and found
that the wake consists of a series of interconnected elliptical vortex rings, each containing
a central jet. Muller et al. [19] employed DPIV technology to conduct detailed studies
and analyses of the flow field vortex structures during the C-shaped rapid start, periodic
forward swimming, and the transition from periodic forward swimming to gliding in
zebrafish larvae under the sub-carangid mode.

Theoretical analysis often requires simplifying the swimming process, while exper-
imental studies face issues such as uncontrollable experimental subjects or constraints
imposed by experimental technical conditions. With the development of computational
fluid dynamics (CFD) [20–22], numerical simulation techniques have, to some extent, com-
pensated for the limitations of theoretical analysis and experimental research. Wolfgang
et al. [23] employed the boundary element method (BEM) to conduct numerical studies
on the straight-line swimming and C-shaped turning processes of a large tuna numerical
model, obtaining two-dimensional velocity vector distribution maps and pressure distribu-
tion contour maps of the flow field. Zhu et al. [24], based on the BEM method, investigated
the interference between vortices generated by the body and those generated by the tail
fin in the swimming process of tuna adopting the BCF propulsion mode. The results
indicated that the interference between body-generated vortices and tail-fin-generated
vortices can enhance the propulsion efficiency of the tail fin. Li et al. [25] used a mov-
ing mesh approach to numerically study the hydrodynamic performance of pufferfish
during straight-line swimming under the combined propulsion modes of boxfish and
scorpionfish. The results demonstrated that bionic fish propelled by flexible fins achieve
cruising speeds 1.6 to 2.0 times faster than those of fish propelled by rigid fins. Zhou
et al. [26] investigated the effects of spanwise flexibility on the swimming performance of
tail fins through numerical simulations. Their results indicated that spanwise flexibility
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can enhance thrust and improve propulsion efficiency. Ramesh et al. [27], using Fluent’s
fluid–structure interaction techniques, studied the impact of phase angle and flexible tail
fin design on propulsion efficiency. Their findings demonstrated that a phase angle of 90◦

yields the optimal propulsion performance, while flexible designs significantly enhance
propulsion efficiency and reduce fluid resistance. Marvin Wright [28] analyzed the thrust
performance of fixed and pitching elastic plates across a parameter space considering differ-
ent material stiffnesses and pitching frequencies. The results provide valuable insights into
the transient hydrodynamics and thrust generation of flexible appendages (such as BCF
propulsion) and highlight performance differences under various material properties and
driving parameters. Mannam et al. [29] examined the thrust generation and efficiency of
flapping wings under different parameter variations through experiments and numerical
simulations, offering a comparative analysis of the hydrodynamic performance between
rigid and flexible flapping wings. Su et al. [30] investigated the hydrodynamic performance
of a tuna-inspired robotic swimmer and conducted a detailed analysis of how flexible tail
fin motion parameters influence the robot’s swimming performance.

In summary, researchers have conducted extensive studies on fish swimming through
theoretical analysis, experimental testing, and numerical simulations, yielding a wealth of
research results. However, the aforementioned studies lack a comprehensive investigation
into the flexible characteristics of tail fins, and the majority of motion studies have focused
on conventional symmetric motion patterns. To comprehensively explore the effects of
tail fin structure and motion patterns on propulsion performance, this study adopts the
dolphin as a bionic model, analyzing the structural characteristics of dolphin tail fins
(including geometric and material properties). Through simulating the motion patterns of
dolphins, a bidirectional fluid–structure interaction (FSI) numerical simulation is conducted
to systematically investigate the hydrodynamic performance of bionic dolphin tail fins
under different structural geometries, material properties, and motion patterns. The
findings provide new insights for the design of bionic propulsion systems and offer practical
guidance for their application in various motion scenarios.

2. Models and Methods
2.1. Geometric Model of the Tail Fin

This study references biological dolphin tail fin specimens (Figure 1a) to establish a
bionic dolphin tail fin model. The 3D model of the tail fin is shown in Figure 1b, with a
chord length C = 0.138 m, span E = 0.432 m, and a projected area S = 0.03 m2. According to
the literature [31], the airfoil cross-section of the tail fin model is assumed to be NACA0021.
To minimize the interference of the tail fin with the flow field during numerical simulations,
the tail fin model was subjected to smoothing treatment.
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Figure 1. (a) Dolphin tail fin specimen and (b) bionic dolphin tail fin model. Figure 1. (a) Dolphin tail fin specimen and (b) bionic dolphin tail fin model.

2.2. Tail Fin Motion Model

In the process of steady-state dorsal–ventral propulsion, the trajectory of the dolphin’s
tail fin can be considered as a sinusoidal curve (as shown in Figure 2), and this curve
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exhibits symmetry in both time and space (along the body’s longitudinal axis). It is
generally believed that the movement of the tail fin is a combination of pitching motion
and heaving motion. Heaving motion primarily generates the propulsive strokes, while the
pitching motion of the tail fin around the tail base joint primarily provides an appropriate
angle of attack for the propulsive strokes.
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Figure 2. Schematic diagram of the steady-state dorsal–ventral motion trajectory of the dolphin.

In numerical simulations, we convert the forward speed of the tail fin into incoming
flow velocity [26], which can improve solution accuracy and efficiency. The motion model
of the tail fin is shown in Figure 3, where the incoming flow velocity in the y+ direction is
V, and the dorsal–ventral motion of the tail fin is decomposed into pitching motion around
the x-axis and heaving motion along the z-axis. Let z(t) and θ(t) represent the position and
orientation, respectively, of the tail fin at time t. Therefore, the periodic kinematics of the
tail fin can be expressed using sine functions:

z(t) = z0 sin(2π f t) (1)

θ(t) = θ0 sin(2π f t − φ) (2)

where f represents the motion frequency of the tail fin, z0 and θ0 denote the maximum
amplitude and pitch angle, respectively, and φ represents the phase difference between
heaving motion and pitching motion. According to related literature [31], a phase difference
of 90◦ in dolphin tail fin motion yields the highest efficiency.
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Figure 3. Tail fin motion model.

To quantitatively assess the propulsion performance of the bionic tail fin, non-
dimensional thrust coefficient Cy(t), non-dimensional lateral force coefficient Cz(t), and
moment coefficient Cm(t) are defined based on the simulation model’s XYZ coordinate
system as follows:

Cy(t) =
2Fy(t)
ρ f SV2 Cz(t) =

2Fz(t)
ρ f SV2 Cm(t) =

2Mx(t)
ρ f SV2 (3)

where Fy(t) represents thrust, Fz(t) represents lateral force, Mx(t) represents the instanta-
neous moment about the x-axis in pitching motion, and ρ is the density of the fluid medium.
From the perspective of energy conversion, the input power Pin is used to overcome the
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lateral force Fz(t) and moment Mx(t), while the output power Pout can be defined as the
energy from thrust Fy(t) pushing the tail fin forward at velocity V.

Pout =
1
T

∫ T

0
Fy(t)Vdt (4)

Pin =
1
T

∫ T

0
[Fz(t)z′(t) + Mx(t)θ′(t)]dt (5)

where z′(t) and θ′(t) represent the velocities of the tail fin’s heaving motion along the z-axis
and pitching motion around the x-axis, respectively.

The average thrust coefficient CT , average pitching moment coefficient CM, and the
average input power coefficient CP are defined as follows:

CT =
1
T

∫ T

0
Cy(t)dt (6)

CM =
1
T

∫ T

0
Cm(t)dt (7)

Cp =
Pin

0.5ρ f SV3 (8)

The propulsion efficiency η of tail fin motion can be expressed as the ratio of the
average thrust coefficient CT to the average input power coefficient CP.

η =
Pout

Pin
=

CT
CP

(9)

2.3. Introduction to Numerical Methods

The Reynolds-averaged Navier–Stokes (RANS) model, continuity equation, and mo-
mentum equations are as follows [32]:

∂ρ f

∂t
+∇ · (ρ f U) = 0 (10)

∂(ρ f U)

∂t
+∇(ρ f UU) = −∇ · P +∇ · τ + ρ f g (11)

where in the effective shear stress tensor of the fluid τ:

τ = (µ(∇U + (∇U)T)− 2
3
(∇ · U)I) (12)

where U represents fluid velocity, P represents fluid pressure, t represents time, g represents
gravitational acceleration, and I represents the identity matrix.

The turbulence model selected is the SST model [33],

∂(ρ f k)
∂t +∇ · (ρ f Uk)

= ∇ · ((µ + µt
σk
)∇k) + Pk − ρ f β∗kω,

∂(ρ f k)
∂t +∇ · (ρ f Uω) = ∇ · ((µ + µt

σk
)∇ω)

+Pω − ρ f βω2 + 2.336(1 − F1)
ρ f
ω

∂k
∂xj

∂ω
∂xj

(13)

Turbulent viscosity coefficient µt:

µt =
a1ρ f k

max(a1ω, SF2)
(14)
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where k represents turbulent kinetic energy, Pk represents the production term of turbulent
kinetic energy caused by the mean velocity gradient, represents the dissipation rate of
turbulent kinetic energy, Pω is generated by the special turbulent kinetic energy dissipation
rate ω, S represents the tensor modulus of the mean strain rate, F1, F2 represents the mixing
function, and β and β∗ represent coefficients in the turbulence model, while a1 represents
the turbulence model constants.

The following equations are involved in the solid domain solution. Solid transient
dynamic equilibrium equations [34]:

ρs
d2ds

dt2 = ∇ · σs + ρsg (15)

Solid strain compatibility equations:

∇× Γs ×∇ = 0 (16)

where ds represents the displacement vector, σs represents the Cauchy stress tensor, g
represents the gravity acceleration vector, and ρs represents the solid density.

According to the generalized Hooke’s law, the strain tensor Γs is:

Γs =
1 + vs

E
σs −

vs

E
ITr(σs) (17)

where E represents Young’s modulus, νs represents Poisson’s ratio, and Tr(σs) represents
the trace of the stress tensor.

This study employs the Ansys bidirectional implicit interaction method for bidirec-
tional fluid–structure interaction simulation (Figure 4). Fluent and Transient Structural
perform implicit iterative solutions for the flow field and structural field, respectively, at
each time step, and data are transferred through a pre-defined fluid–structure interaction
interface. Waiting for the data transmitted at the fluid–structure interaction interface to con-
verge before proceeding to the next time step until the final computation is completed, this
method greatly enhances solution speed and convergence while ensuring solution accuracy.
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The above process requires two mathematical boundary conditions based on stress con-
tinuity and velocity continuity. Stress continuity boundary conditions for solid mechanics
calculations [34]:

−pn + τ · n = σs · n (18)
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The left side of the equation consists of the effective components of pressure and shear
transmitted from the fluid domain on the FSI surface, while the right side consists of the
effective components of the solid Cauchy stress tensor on the FSI surface.

Velocity continuity boundary conditions for fluid calculations:

u =
dds

dt
(19)

The left side of the equation represents the fluid velocity on the FSI surface, while
the right side represents the displacement velocity of the solid FSI surface. In addition
to solving the fluid flow equations, this velocity is also used to compute and update the
moving mesh.

2.4. Computational Domain and Mesh Generation

The numerical simulation involves the rigid and flexible deformation motions of the
surface mesh of the study object, which lead to changes in the topological structure of the
computational domain mesh. Therefore, a dynamic mesh method is required to update
the internal computational mesh in real time. The spring smoothing method is employed
to control the overall deformation of the computational domain mesh associated with the
deformed regions. For meshes with significantly degraded quality due to excessive local
deformation, a local mesh reconstruction method is utilized. The dolphin’s dorsal–ventral
motion (including heaving and pitching motions) is simulated by applying kinematic joints
to the tail fin model within the solid module.

As shown in Figure 5a, the computational domain in this study is a rectangular domain
of 14C × 4C × 8C, the SST k − ω model is chosen for the turbulence model, with the left
boundary of the rectangle serving as the fluid inlet where the inflow velocity is fixed, and
the right boundary as the pressure outlet with pressure set to 0. The origin of the coordinate
system is located at the center of the leading edge of the tail fin, with the distance between
the leading and trailing edges of the tail fin and the front and rear boundaries in a ratio
of 2:11, allowing sufficient space for the wake vortex structure to be displayed. To avoid
interference from ground effects, the center of the tail fin’s leading edge is situated at a
distance of 2C from the upper and lower boundaries. The tail fin surface is set to a no-slip
condition, while the surrounding walls are set to slip conditions. The mesh of the fluid
domain is shown in Figure 5b. In fluid calculations, the mesh near the tail fin surface
needs to be refined, with sparse mesh sizes of 20 mm and fine mesh sizes of 2 mm. A
tetrahedral sparse mesh with a size of 5 mm is used for partitioning the solid regions, which
helps to improve computational efficiency. Given that the tail fin motion involves flexible
deformations, a fine tetrahedral mesh is used. A grid-independent algorithm is adopted,
limiting the minimum mesh size to 0.5 mm, with additional mesh refinement applied to
the edges of the tail fin.
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3. Verification of Numerical Methods
3.1. Sensitivity Test

Before conducting numerical simulations, it is essential to validate grid independence
and the sensitivity of the time step. An appropriate number of grid cells and a suitable
time step can make the computational results more accurate and reliable. The parameters
for this case are as follows: f = 0.5 hz, z0 = 0.5 C, θ = 25◦, φ = 90◦, V = 0.2 m/s.

In theory, the smaller the time step, the higher the solution accuracy; however, smaller
time steps result in larger computational loads and lower solution performance. In this
section, three time steps (0.001, 0.005, and 0.01) were selected for numerical simulations.
Figure 6 presents the variation curves of instantaneous thrust coefficients and instantaneous
lateral force coefficients under the three time steps. The simulation results for 0.001 and
0.005 are nearly identical, while the simulation result for 0.01 shows some discrepancies
compared to the results for 0.001 and 0.005. Therefore, in the subsequent simulations, the
time step was set to 0.005.

3.2. Independence Verification

Further research was conducted on the number of fluid domain grids by using three
different computational meshes for grid independence verification, namely coarse mesh,
medium mesh, and fine mesh. Figure 7 presents the variation curves of instantaneous thrust
coefficients and instantaneous lateral force coefficients under the three mesh densities. It
can be seen that the curves for the medium mesh and fine mesh are almost identical, while
the coarse mesh results exhibit some discrepancies compared to the first two. Considering
computational accuracy and performance, the medium mesh with a grid count of 3,199,585
was selected for the subsequent simulations.

3.3. Reliability Verification

To verify the reliability of the simulation methods used in this study, a series of
hydrodynamic experiments simulating dolphin tail fin motion were conducted. The hydro-
dynamic experiment platform, shown in Figure 8, consists of a water tank, a SCARA robot,
an SRI multi-axis force sensor, and a bionic dolphin tail fin. The water tank provides a static
water environment, and the SCARA robot is programmed to drive the bionic tail fin in
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sinusoidal motion. The sensor model used is the M3816D, developed by SRI International.
During force measurements, the error typically does not exceed ±0.1 N, with a resolution of
0.01 N. For torque measurements, the error is within ±0.01 Nm, and the resolution reaches
0.001 Nm. This SRI multi-axis force sensor is used to measure the thrust along the y-axis,
the lateral force along the x-axis, and the moment around the z-axis. A data acquisition
card (M8128) is used to measure and process force sensor data at a rate of 1000 samples per
second. The bionic tail fin was fabricated using 3D printing technology with black PLA
resin as the material. The material properties include a Young’s modulus of 3.0 GPa and a
Poisson’s ratio of 0.35, and no deformation occurred during the experiment, indicating that
the tail fin has sufficient stiffness. The heaving motion ranges from z0 = 0.1 − 1.0 C, and
the other parameters are as follows: f = 0.5 Hz, θ = 25◦, φ = 90◦, V = 0.2 m/s.
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Figure 9a,b shows the time-varying curves of Cx and Cy during the motion cycle at
z0 = 0.5 C for both simulation and experiment. It can be observed that at z0 = 0.5 C, while
there is a certain degree of error between the simulation and experimental curves, the
overall variation trends are consistent. From Figure 10, it can be seen that at z0 = 0.5 C, the
average thrust coefficient error between the simulation and experiment is approximately
30%. However, as the amplitude of the undulating motion increases, the error between the
two decreases, reaching only 4.15% at z0 = 1 C. This indicates that the numerical method
employed in this study provides the required level of accuracy for the solution.

(1) In the experiment, the connection between the tail fin and the robot interacts with
the water, affecting the measurement of mechanical parameters, especially when the
amplitude is small. As shown in Figure 10, the discrepancies between experimental
and simulation values are more significant when z0/C ≤ 0.4.

(2) In the simulation, periodic boundary conditions were applied, whereas in the ex-
periment, the finite boundaries of the water tank may have caused reflection and
interference effects in the flow field near the tail fin.
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(3) The PLA material model used in the simulation is based on the typical mechanical
parameters reported in the literature. However, the actual PLA material used in the
experiment may exhibit non-uniformity (e.g., insufficient interlayer bonding strength
in 3D-printed components), leading to discrepancies between the mechanical response
of the material in the experimental results and the simulation model.

(4) During the measurement of thrust and flow fields in the experiment, the resolution
and installation accuracy of the equipment may introduce uncertainties. To minimize
the impact of such errors, multiple experimental measurements were conducted to
reduce random errors.
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4. Results and Discussions
Vortices play a crucial role in the propulsion process of the tail fin. The vortices

generated during the oscillation of the tail fin are not merely disturbances in the fluid; they
directly influence the generation of thrust, efficiency, and overall propulsion effectiveness
of the tail fin. When the tail fin oscillates, a velocity difference occurs in the fluid on both
sides of the tail fin, leading to the formation of vortices. These vortices, in turn, exert
reactive forces on the fluid, pushing the tail fin forward and thereby generating thrust. The
formation and shedding of vortices actually constitute one of the primary mechanisms for
thrust generation during the oscillation of the tail fin.

As shown in Figure 11, we analyze the vortex structures formed during the oscillation
process of bionic dolphin tail fins within one motion cycle. At (N + 1/4)T, the vortex
structure behind the tail fin is relatively weak, and the tail fin is at the upper extreme
position in the oscillation direction. At this time, the generation of tail fin vortices is
minimal, new vortices have not yet formed, and previously formed vortices gradually shed
and enter the wake. The rate of vorticity generation is slow, and after vortex shedding,
the fluid gradually stabilizes, resulting in minimal force from the tail fin on the fluid. At
(N + 1/2)T, the tail fin reaches the middle position, and a strong vortex pair is generated
behind the tail fin. At this time, the rate of vorticity generation is the fastest, the tail fin’s
movement speed reaches its maximum, and significant shear effects are produced. The
strong vortex pair structure is clear and begins to gradually shed, with the most significant
fluid disturbances and the most evident tail fin water-pushing effect. The intense vortex
field supports the peak thrust. At (N + 3/4)T, the tail fin moves to the extreme position on
the other side, and the vortex pair structure behind the tail fin gradually moves away from
the tail fin, entering the wake area. The generation of new vortices weakens, resulting in a
sparser vortex field. Thrust approaches zero or becomes negative again, and the system
enters the reverse switching phase. At (N + 1)T, after the tail fin switches direction and
accelerates, vortex generation gradually increases, and the vortex field becomes clearer and
stronger. Vortices gradually form, thrust increases, the tail fin resumes pushing the water
flow, and new vortex pairs are generated. At this moment, the tail fin returns to the middle
position again.
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4.1. Material Properties of Dolphin Tail Fin

According to the study by Sun et al. [35], the structure of the dolphin tail fin is similar
to a sandwich composite beam, primarily composed of an external ligament layer (LL)
with a high tensile modulus and an internal dense connective tissue (DCT) with a high
compressive modulus, as shown in Figure 12 [36]. The study found a linear relationship
between the thickness of the external ligament layer TLL and the total thickness of the tail
fin TF [37].

TLL = 0.843 + 0.11TF (20)

Eeq =
2
{∫ TF/(2−TLL)

0 EDCTx2dx +
∫ TF/2

TF/(2−TLL)
ELLx2dx

}
∫ TF/2
−TF/2 x2dx

(21)

Sun et al. [35] conducted tensile and compression experiments by collecting biological
samples of deceased dolphin tail fin, obtaining the Young’s moduli ELL = 166.54 Mpa and
EDCT = 12.05 Mpa in the spanwise direction for LL and DCT, respectively. Using Equation
(21), we can obtain the equivalent Young’s modulus Eeq = 108 Mpa of the biological
dolphin tail fin.
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4.2. Effect of Structural Parameters on Propulsion Performance

To study the effect of structural parameters on the propulsion performance of bionic
dolphin tail fins, in addition to the bionic tail fin with a variable-thickness structural
shape mentioned above, we also designed an equal-thickness flat structural bionic dolphin
tail fin. In terms of materials, besides the equivalent characteristic materials of the dol-
phin tail fin, we also selected PE materials and structurally rigid materials, with material
properties shown in Table 1. Finally, simulation analyses were conducted on six types of
tail fins: an equal-thickness structural steel tail fin (ES), equal-thickness PE tail fin (EM),
equal-thickness bionic material tail fin (EF), variable-thickness structural steel tail fin (VS),
variable-thickness PE tail fin (VM), and variable-thickness bionic material tail fin (VF). To
eliminate the influence of other physical factors, the following parameters were set in the
numerical simulation: f = 0.5 Hz/0.8 Hz/1 Hz, z0 = C, θ = 25◦, φ = 90◦, V = 0.7 m/s.

Table 1. Material properties of the bionic tail fin.

Young’s Modulus (Pa) Poisson’s Ratio

Bionic material 1.08 × 108 0.45
PE 5 × 108 0.42

Structural steel 2 × 1011 0.3

As shown in Figure 13 and Table 2, we analyze the thrust coefficients and propulsion
efficiencies of six types of bionic dolphin tail fins at different motion frequencies. At
a motion frequency of 0.5 Hz, material properties have little impact on the propulsion
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performance of tail fins with identical structural shapes. At motion frequencies of 0.8 Hz
and 1 Hz, the propulsion performance rankings of the tail fins are VF > VM > VS and
EF > EM > ES, respectively. At these motion frequencies, regardless of equal thickness or
variable thickness, bionic-material tail fins exhibit better propulsion performance. This
conclusion, from a bionic perspective, aligns with the oscillation characteristics of dolphins.
At motion frequencies of 0.8 Hz and 1 Hz, the Strouhal numbers of bionic dolphin tail fins
are 0.32 and 0.4, respectively, which fall within the real dolphin’s Strouhal number range
(0.2–0.45). Under the same motion frequency, variable-thickness tail fins with identical
material properties have higher average thrust coefficients than equal-thickness tail fins.
The analysis shows that this is due to the leading-edge suction effect: when fluid flows over
the leading edge of a variable-thickness tail fin, the flow velocity in that region increases,
thereby creating a low-pressure zone, generating leading-edge suction, and providing part
of the thrust to propel the tail fin forward. In the red-circled areas of Figure 13a–c, the tail
fin is in a horizontal position relative to the motion direction, and the effect of leading-
edge suction on instantaneous thrust is most apparent. In summary, we believe that the
structural parameters of VF are more conducive to enhancing the propulsion performance
of bionic dolphin tail fins.
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Figure 13. Variation curves of thrust coefficients of each tail fin at different motion frequencies:
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Table 2. Average thrust coefficients of each tail fin at different motion frequencies.

Motion Frequencies
(Hz)

Average Inference Coefficient CT

VF VM VS EF EM ES

0.5 0.11178 0.11264 0.11331 0.04057 0.03989 0.03997
0.8 0.56607 0.5829 0.59252 0.45624 0.46011 0.46976
1 0.88663 0.94834 0.9937 0.74296 0.76869 0.81563

4.3. Effect of Asymmetric Motion Modes on Propulsion Performance

Based on the above research findings, we take VF as the subject to study the effect
of asymmetry in dolphin motion frequency and amplitude on propulsion performance.
We define the frequency ratio F and amplitude ratio H, with values as shown in Table 3.
Among them, all frequency ratios F correspond to equal tail fin oscillation periods and
amplitudes; all amplitude ratios H correspond to equal tail fin oscillation periods and
peak-to-peak amplitudes. In the numerical simulations, the parameters for symmetric
motion are set consistently with the above, with f = 1 Hz.

Table 3. Ratio parameter settings.

F H

3/7, 4/6, 5/5, 6/4, 3/7 1/5, 2/4, 3/3, 4/2, 5/1

4.3.1. Analysis of Frequency Ratio Effects

Figure 14 shows the influence curves of frequency ratio F on hydrodynamic parameters.
From Figure 14b, within the examined range, the average thrust coefficient CT exhibits
a roughly symmetrical distribution with respect to the frequency ratio F, and the larger
the frequency difference between the upward swing and downward swing of the tail
fin, the greater the CT . From Figure 14d, when performing symmetric tail oscillation
(F = 5/5), the average pitching moment coefficient CM is minimized, indicating that
symmetric motion suppresses pitching moments, and the closer F is to 1, the better the
suppression effect. From Figure 14a,c, the peak moments of the instantaneous thrust
coefficient and instantaneous pitching moment coefficient occur during the high-frequency
tail oscillation phase. Asymmetric motion exacerbates the amplitude of the instantaneous
thrust coefficient peaks, which is the main factor for thrust enhancement. However, this
also increases pitching moments, affecting the stability of motion.
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Figure 14. Hydrodynamic parameter figures under different frequency ratios F: (a) thrust coef-
ficient, (b) average thrust coefficient, (c) pitching moment coefficient, and (d) average pitching
moment coefficient.
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4.3.2. Analysis of Amplitude Ratio Effects

Figure 15 shows the influence curves of amplitude ratio H on hydrodynamic pa-
rameters. From Figure 15b, it can be seen that the average thrust coefficient CT also
approximately exhibits a symmetrical distribution with respect to the amplitude ratio H,
and asymmetric amplitude motions help to increase thrust. CT increases as the difference
in amplitude between the upward and downward swings increases, and when H < 1, it
is more favorable for enhancing thrust, due to the influence of the water depth pressure
gradient. The trend of CM changes is similar to that of CT . From Figure 15a,c, it can be seen
that the abrupt changes in the instantaneous thrust coefficient curves and instantaneous
pitching moment coefficient curves occur during the large-amplitude phase; the greater the
difference in amplitude between the upward and downward swings, the more drastic the
curve changes. These drastic changes enhance thrust but also exacerbate motion instability.
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Based on the above research findings, symmetric motion is suitable for dolphins in
steady horizontal cruising, while asymmetric motion is more suitable for movement in the
vertical plane. The average pitching moment of asymmetric amplitude motion is greater
than that of asymmetric frequency motion, indicating that asymmetric amplitude motion is
more suitable for dolphins’ movement in the vertical direction. This conclusion also aligns
with the actual movement behavior of dolphins.

Therefore, to avoid the impact of asymmetric motion on the stability of the robot during
cruising, we suggest introducing a closed-loop feedback control system for underwater
bionic robots. Sensors can be used to monitor the dynamic behavior of the tail fin in
real time, and motion parameters can be adjusted using PID control or adaptive control
algorithms to prevent asymmetric motion during cruising. Furthermore, a multi-mode
switching control algorithm should be developed to allow switching between motion modes
based on operational requirements. This enables optimized motion in different states and
effectively prevents the dynamic instability caused by asymmetric motion during cruising.

5. Conclusions
In this study, we used a bidirectional fluid–structure interaction (FSI) technique to

numerically analyze the hydrodynamic characteristics of a biomimetic dolphin tail fin
simulating the dorsal–ventral motion of the dolphin tail fin. The results show that altering
the flexibility of the tail fin can improve its propulsion performance, particularly with
tail fins made from biomimetic materials, which exhibit outstanding performance within
the Strouhal number (St) range of biological dolphins. At the same motion frequency, the
propulsion of thickened tail fins with identical material properties generally outperforms
that of uniform-thickness tail fins. This suggests that biomimetic structures have more
advantages when it comes to designing underwater propulsion devices. Asymmetric
motion modes have a boosting effect but also increase the instability of the movement,
making them only suitable for dolphins’ motion in the vertical plane.

This study not only reveals the core factors behind the propulsion mechanism of the
tail fin but also provides important guidance for the optimization of biomimetic dolphin tail
fins, with broad application potential, especially in the design of underwater robots and the
development of biomimetic propulsion systems. Future research can further investigate the
impact of different material and structural combinations on propulsion performance, along
with experimental validation in real-world scenarios, to achieve more efficient and stable
biomimetic propulsion devices. Additionally, integrating intelligent control technologies
with biomimetic tail fins is another promising research direction to explore in the future.
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