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Abstract: Anguilliform locomotion, an efficient aquatic locomotion mode where the whole
body is engaged in fluid–body interaction, contains sophisticated physics. We hypothesized
that data-driven modeling techniques may extract models or patterns of the swimmers’
dynamics without implicitly measuring the hydrodynamic variables. This work proposes
empirical kinematic control and data-driven modeling of a soft swimming robot. The robot
comprises six serially connected segments that can individually bend with the segmental
pneumatic artificial muscles. Kinematic equations and relations are proposed to measure
the desired actuation to mimic anguilliform locomotion kinematics. The robot was tested
experimentally and the position and velocities of spatially digitized points were collected
using QualiSys® Tracking Manager (QTM) 1.6.0.1. The collected data were analyzed offline,
proposing a new complex variable delay-embedding dynamic mode decomposition (CDE
DMD) algorithm that combines complex state filtering and time embedding to extract
a linear approximate model. While the experimental results exhibited exotic curves in
phase plane and time series, the analysis results showed that the proposed algorithm
extracts linear and chaotic modes contributing to the data. It is concluded that the robot
dynamics can be described by the linearized model interrupted by chaotic modes. The
technique successfully extracts coherent modes from limited measurements and linearizes
the system dynamics.

Keywords: bio-inspired locomotion; soft robotics; bio-robotics; data-driven modeling;
CDE DMD

1. Introduction
The agility and energy efficiency of animals’ swimming have triggered roboticists and

researchers to investigate bioinspired locomotion methods for the navigation of robotic
systems within fluidic environments. Furthermore, miniature swimming robots [1,2] or
soft robots [3] are designed to move based on biomimetic propulsion as the conventional
propellers with electric motors are too bulky or heavy for such applications. Nevertheless,
the aquatic locomotion of animals contains complex dynamics as a mirror of interacting
neuromuscular activities and hydrodynamics. In anguilliform swimming, the entire body
participates in the locomotion, which makes the body–fluid interaction sophisticated to
simulate and analyze. Each part of the body contributes to propulsion, unlike in other
forms of undulatory locomotion where only certain body parts might move. Anguilliform
locomotion is generally slower than other types of swimming, such as in the other extreme
of thunniform locomotion seen in tunas and sharks. However, it is highly energy efficient [4]
and allows the animals to navigate complex environments like narrow crevices and dense
vegetation (which is one of the main obstacles for technical drives with rotatory propulsion).
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The efficiency may be attributed to the phenomenon that a wake-induced drag vanishes
while the vortex wake is absent [5]. The propeller drives for boats cannot be used in the
overgrown edge zones of shallow waters, as the plants block the rotational movement
very quickly.

The technical implementation of fish-like propulsion systems is an alternative to
standard engineering solutions. Fish use muscle fibers to bend their bodies. These muscle
fibers actively generate tension on the concave side while passively extending on the convex
side. The most analogous artificial muscle is the McKibben actuator [6], a lightweight and
flexible actuator well-suited for soft swimming robots. In [7], it is discussed that the
pneumatic soft actuators’ force generation characteristics are similar to the natural muscles.
Furthermore, they are well-suited for underwater field applications because of the absence
of metal components and operating with pneumatic actuation. Industrial pneumatic
pressurization enables McKibben actuators to generate sufficient force to operate effectively,
even in the high-density water environment.

In anguilliform swimming, three components including fluid dynamics, neural control,
and the musculoskeletal system interact with each other. While studying the system as
a whole is a formidable task, considerable research has been devoted to different aspects
of anguilliform locomotion. This swimming mode is observed ubiquitously in single-cell
organisms with tiny sizes up to lampreys and eels, covering Reynolds numbers on the
order of 10−3 to 103. Anguilliform locomotion involves complex undulations as a result of
superimposing traveling mechanical waves, as well as stationary waves [8,9]. A complex
traveling wave can be conceptualized as an interplay of the configurations defined by the
real and imaginary components of the wave [10]. The real part becomes apparent when
the temporal modulation of the imaginary part is zero, while the imaginary part emerges
when the temporal modulation of the real part vanishes.

Video recording, followed by video processing and particle image velocimetry (PIV),
seems to be the standard technique to calculate the kinematics of anguilliform swimming of
animals like eels and lampreys [11,12]. The kinematic model can be used for hydrodynamic
simulations to investigate the underlying physics and interaction forces. The bending
kinematic creates vortices in the environment producing negative pressure regions that pull
the fish forward with the suction trust according to [11]. Transsected animals are additional
subjects for studying altered kinematics within the locomotion mode. In healthy lampreys,
the amplitude of the traveling wave increases as it travels along the body, but spinal-
transacted lampreys exhibit a uniform wave with less amplitude and wavelength [12].
Nevertheless, studying transected animals has some complexities and is subject to further
problems such as decreased muscle force and complex neural responses. On the other hand,
bio-inspired robots can serve as manageable devices for mimicking animal kinematics.
Some eel-like robots have been developed by different robotic laboratories worldwide.
Examples include AmphiBot I [13] and II [14,15].

However, the robots consisting of serially jointed rigid links lack the compliance
of natural swimmers. Commonly, the gesture of conventional robots cannot passively
be affected by external forces. On the other hand, emerging rapidly in the last decades,
soft robotics promote compliant-body systems without explicit joints and rigid links of
conventional robots. In recent years, researchers have developed some eel-like soft robots
with pneumatic [16–23] or cable-driven actuation [24,25]. A soft robot is structurally an
infinite dimensional system that deforms due to both actuator force and the interaction
force exerted by the environment. Due to technology limitations, manipulating only a
limited number of active degrees of freedom (DOFs) is conceivable in soft robots. This
makes soft robots underactuated systems that may not outperform real fish. Nevertheless,
a soft-body robot is qualitatively more similar to its natural counterpart, making them
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better candidates for either investigating the swimming principles or replicating the natural
performance within robotics.

Our previous study, ref. [7], showed that complex body–fluid interaction produces
different modes that appear as exotic fluctuations in the swimmers’ midline. The study
employs numerically expensive fluid–solid interaction (FSI) simulations to extract the
system modes. Extracting the rearward moving waves related to the anguilliform locomo-
tion is generally difficult. Such decomposition and analysis are important for evaluating
and modeling the locomotion of the robots, which are still far from the efficiency of their
natural counterparts. Nevertheless, the FSI method has limitations, including modeling
approximations and huge numerical costs. In this work, we investigate a method to ana-
lyze the experimentally measured data without any measurements or calculations of the
fluid environment.

In the case of soft swimming robots, the generation of traveling waves is complex
and comprises ostensibly noisy movements of the robot due to the softness of the robot’s
structure. Coherent structures cannot be visually observable when multiple chaotic modes
or additional parasitic and noisy signals influence the system states. Machine learning (ML)
methods, and especially linearization methods based on dynamic mode decomposition
(DMD) and its variants, can help analyze anguilliform locomotion. Showcase studies in-
clude examining various data from mathematically expressed sinusoidal traveling waves to
videos taken from natural swimmers like eels in experimental water tanks. DMD, originally
derived from Koopman analysis, proposes a linear model for data sequences [26] and is
investigated to analyze fluid dynamics [27,28]. The method acts as a modal decomposi-
tion technique with a separation of temporal and spatial variables, providing a linearized
model that may be used for estimation or control purposes. In [29], the method is used to
linearize a worm robot model. The ability of DMD-based data-driven modeling methods to
extract spatiotemporal patterns from data makes them ideal for analyzing traveling wave
phenomena. When partial state information is available, delay coordinates can be a better
choice of observables to approximate the Koopman operator in establishing a DMD model.

In this work, the swimming kinematics of a soft eel robot is analyzed using pure exper-
imental data. A pneumatic eel robot and its actuation kinematic equations are introduced.
The robot contains six segments that are individually actuated using contraction-type
pneumatic actuators. The robot is experimentally tested and a data-driven algorithm is
proposed to inspect coherent and linear patterns within the exotic fluctuations in the robot.
First, in Section 2.1, the robot structure and the relations that relate actuator contraction
to the traveling mode are presented as the working principle. Section 2.2 explains the
complex delay-embedding DMD algorithm (CDE DMD). Delay embedding is used to make
data-driven models from partial measurements to understand the dynamics of partially
observed systems. The simulation results are presented in Section 3. In Section 4, it is
discussed that the algorithm revealed linear and chaotic modes within the data, enabling us
to partition the system into linear and nonlinear dynamics. The conclusion is summarized
in Section 5.

2. Materials and Methods
2.1. Structure and Actuation Kinematics

The soft robot structure contains a flexible beam and seven rigid parts for connecting
the actuators and balancing the robot on the water surface. Twelve pairs of contraction-type
pneumatic muscles provide lateral bending for each segment of the tethered robot. In
contrast with similar rigid robots in which actuation torque can be exerted on the rotational
joints, the soft robot is driven by linear (i.e., axial) actuators. This brings more similarity
with natural swimmers but requires measurement of the muscle actuation needed for a
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desired kinematic. Inspired by primitive natural swimming, the kinematic relations are
derived with a supposition that the neutral axis of the robot in the steady state follows a
moving sine wave. The schematic kinematic model of the robot is shown in Figure 1. The
horizontal line represents the inactivated initial state of the robot backbone midline. Seven
equally distanced points, A1, A2, . . . A7, represent the position of rigid connectors (also used
as floats). The R1L1, R2L2, . . ., R7L7 are rigidly connected to the flexible backbone, and the
dashed lines represent actuation axes. The actuation state vector

⇀
q = {q1, q2, q3, . . . , q12} is

defined with the Euclidean distances qi i = 1..12.

qi = |RiRi+1| , qi+6 = |LiLi+1| i = 1..6 (1)
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Figure 1. Geometrical model of the robotic fish. The solid lines represent the robot backbone midline,
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Geometric relations are used to obtain the actuator lengths for the given desired
deformation to generate a locomotion pattern. Supposing the desired deformation of the
neutral axis is shown as:

f (x, t) = φ(x) Sin(2πm
x − t v(t)

l
) (2)

where φ(x) is the waveform, l is the backbone length, and v(t) is the relative wave velocity.
As the backbone length is constant during bending, we have

∫ xA(i+1)
xAi

 1 + (
∂φ

∂x
Sin(2πm

x − t v(t)
l

)+

φ(x) (
2πm

l
)Cos(2πm

x − t v(t)
l

))2

 dx = l/6
(3)

This equation is numerically solved to obtain the position of Ai points. Consequently,
coordinates of Ri points are obtained readily as

xRi = xAi + (n̂.î)di = xAi − di
∂ f /∂x√

1+∂2 f /∂x2

∣∣∣∣∣ x = xAi

yRi = yAi + di(n̂. ĵ) = yAi +
di√

1+∂2 f /∂x2

∣∣∣∣∣ x = xAi

(4)

Likewise, for the Li points, we will have

xLi = xAi + di
∂ f /∂x√

1+∂2 f /∂x2

∣∣∣∣∣ x = xAi

yLi = yAi − di√
1+∂2 f /∂x2

∣∣∣∣∣ x = xAi

(5)



Biomimetics 2025, 10, 60 5 of 19

Thus, the system states are obtained for i = 1..6 using

qi =
(
(xR(i+1) − xRi)

2 + (yR(i+1) − yRi)
2
)0.5

qi+6 =
(
(xL(i+1) − xLi)

2 + (yL(i+1) − yLi)
2
)0.5 (6)

Finally, the state vector
⇀
q is numerically measured for one cycle in N steps and is

saved as a matrix Q =
[
⇀
q 1

∣∣∣⇀q 2

∣∣∣⇀q 3

∣∣∣ . . .|⇀q N

]
. Matrix Q is the desired actuators’ length

corresponding to the desired anguilliform gait. The matrix can be normalized to represent
contraction rates for the McKibben actuators. The ‘offline’ calculated matrix is repeatedly
given to the robot actuators with the desired frequency to repeat the gait. (Note that the
relation between the actuator length (or the contraction rate) and pressure is supposed to be
linear. The maximum contraction (10 percent) corresponds to maximum pressure (7 MPa)
and the interval values can be expressed with pulse width modulation (PWM), which is
given as the input signal to the solenoid valves.

The kinematic equations can be used for different reasons, especially explanations of
the robot’s working principles, and geometric design. The equations are used to demon-
strate the robot’s performance before fabrication graphically. They can be used for opti-
mization, e.g., maximizing the bending amplitude. Nevertheless, a desired kinematic may
differ from the actual observation. In practice, the robot’s kinematic properties and motion
arise from the interactions of modes and cannot be fully explained by considering the
individual robot. Emergent phenomena often exhibit behavior or characteristics that are
not predictable from the properties of the parts in isolation. On the other hand, control of a
pneumatic system, i.e., air pressure control, is hard. The actual kinematics can be different
from the desired kinematics due to random factors (such as leakage, fault, etc.) and the
fluid interplay with the compliant body. Even the existence or dominance of a traveling
wave within the robot swimming can be vailed under such circumstances. We propose
data analysis to obtain insight into such phenomena.

2.2. Proposed CDE DMD Algorithm

Suppose the lateral position and velocity of s digitized points of the robot midline are
recorded as y ∈ Rs×1 and v ∈ Rs×1 in discrete time intervals, ∆t. A filtered velocity vector
v is defined for the discrete signal v using a canonical discrete filter model

v,k ≃ v[k] =
d−1

∑
i=0

v[k − i].h[i] (7)

where the filter kernel is chosen h[i] = 1
d , d ∈ N for a moving average filtration. The

complex state vector at time t = k∆t is shown by z,k ∈ Cs×1 and is defined as

z,k = y,k + jv,k (8)

Note that in this context, the ith entry of a vector like z,k is denoted as zi,k (and
similarly, for representing the ith entry over all the times, we use zi,). The time-resolved
matrix, Z ∈ Cs×n, is constructed with the complex state vectors as its columns, that is

Z =

 | |
z,1 z,2

| |

|
· · · z,n

|

 (9)



Biomimetics 2025, 10, 60 6 of 19

The time-delay embedded matrix H ∈ Cs(d+1)×(n−d) with the embedding dimension
number d is constructed as follows

H =



z,1+d z,2+d . . . z,n

z,d z,1+d . . . z,n−1

. . .

. . . . . .

. . .
z,1 z,2 . . . z,n−d


(10)

Based on a linear approximation of the Koopman operator, the DMD approach as-
sumes a linear mapping that approximates snapshots of the system dynamics one timestep
forward. The DMD algorithm takes the matrices of snapshots

X =

 |
h,1

|

|
h,2

|
. . .

|
h,n−d

|

, X+ =

 |
h,2

|

|
h,3

|
. . .

|
h,n−d+1

|

 (11a)

where h,k represents column k of the H. It is supposed that a linear operator, as matrix
A ∈ Cs(d+1)×s(d+1), maps the column data to the next snapshot as in h,k+1 = Ah,k. The
best-fit solution relates the data matrices as

X+ = AX (11b)

Next, the method involves the SVD decomposition of the X matrix and order reduction,
with truncation order r and matrices U ∈ Cs(d+1)×r, Σ ∈ Cr×r, and W ∈ C(n−d−1)×r

X = UΣW∗ =

 |
u,1

|

|
u,2

|
. . .

|
u,r

|




σ1 0
. . .

0 σr


 |

w,1

|

|
w,2

|
. . .

|
w,r

|


∗

(12)

where W∗ represents the conjugate transpose of matrix W. Note that the reconstruction of
the data is given by

b
aX = ∑b

i=a u,iσiwi, , a = 1 , b = r (13)

where wi, represents the complex conjugate of vector w,i. It follows that the DMD operator
can be expressed as

A = X+D , D = WΣ−1U∗ (14)

We can suppose a partitioning of D into LD and N D so that

D = LD + N D (15)

where
LD = ∑k

i=1 w,iσ
−1
i ui, , N D = ∑r

i=k+1 w,iσ
−1
i ui, (16)

Supposing LD contains selected modes with some properties of interest, in the linearity
in this context, we can extract a L A matrix that captures the properties, using a partitioning
A = L A + N A, so that

L A = X+ LD (17)

Then, an eigen decomposition L A = ΨΛΨ−1 is performed, where Ψ contains the
eigenvectors as its columns and Λ is a diagonal matrix of the eigenvalues. Following
an order reduction, Ψm and Λm are rewritten, keeping only m first eigenvectors and



Biomimetics 2025, 10, 60 7 of 19

eigenvalues correspondingly. To obtain f,k, the system state in the eigenbasis, h,k, is
transformed into a new coordinate system defined by the eigenvectors with the following
relation f,k = Ψ−1

m h,k. Then, in the modal space, we will have

f,k+1 = ΨmΛm f,k (18)

Note that by transforming back to the original (delayed) basis, the solution can be
represented as

h,k = ΨmΛmΨ−1
m h,0 (19)

Finally, a matrix Ã ∈ Cs×s(d+1) containing s rows of L A returns the predicted position
data one timestep forward by the following relation

y,k+1 ≈ real(Ãh,k) (20)

As a numerical method of discovering the patterns and underlying modes, the success
of finding coherent structures depends, undeniably, on the physics of the system, in addition
to the algorithm’s ability and the data’s quality and quantity. Therefore, simulation is an
inseparable part of the method. The simulations and visualizations given in Section 3.2
are used to accomplish this exploration. In finding the delay embedding order, simulation
results are intuitively useful. By increasing the number of delay coordinates, the embedding
captures a larger portion of the system’s past dynamics, which in turn enhances the ability
to reconstruct the underlying state-space representation. This is particularly useful for
nonlinear systems with multi-scale behavior or chaotic dynamics. Nevertheless, excessive
delay embedding might introduce redundant information if the system dynamics are
inherently low-dimensional.

3. Results
3.1. The Eel Robot

Like flying propulsors, anguilliform swimmers such as eels and lampreys have flexible
bodies bent by the contraction of lateral muscles. The muscles on the concave side are
actively contracting in concentric mode, while those on the convex side exhibit reduced
activity in the eccentric mode, forming antagonistic muscle systems. Inspired by this
principle, we propose a soft structure, as shown in Figure 2. The robot contains a highly
flexible beam with seven floats (the green components). The structure includes six segments
that bend by two pairs of McKibben soft actuators. Seven markers (the gray balls in Figure 2)
are used to track the backbone’s equally distanced points. The actuation geometry for
steady swimming is simulated and graphically presented in Figure 3. Note that acceleration
from rest, in contrast to steady swimming, can be associated with different kinematics, as
reported about lampreys swimming [30]. Nevertheless, in this study, only a monotone
input for steady swimming was applied to the robot from zero initial conditions.



Biomimetics 2025, 10, 60 8 of 19

Biomimetics 2025, 10, x FOR PEER REVIEW 8 of 20 
 

 

flexible beam with seven floats (the green components). The structure includes six seg-
ments that bend by two pairs of McKibben soft actuators. Seven markers (the gray balls 
in Figure 2) are used to track the backbone’s equally distanced points. The actuation ge-
ometry for steady swimming is simulated and graphically presented in Figure 3. Note that 
acceleration from rest, in contrast to steady swimming, can be associated with different 
kinematics, as reported about lampreys swimming [30]. Nevertheless, in this study, only 
a monotone input for steady swimming was applied to the robot from zero initial condi-
tions. 

 
(a) 

  

(b) 

Figure 2. Mechanical drawings: (a) 3D model of the robot; (b) the segmental assembly parts and 
balancing bladders. 

The graphs in Figure 3 present the MATLAB® R2022b (MathWorks®, Natick, MA, 
USA) simulations of the equations and relations in Section 2.1. They can be used to verify 
the functionality principle, particularly the structure design’s compatibility. The dashed 
lines, representing the actuation axis, touch the ‘backbone’ at the maximum bending due 
to the opposite actuator. The minimum and maximum lengths of the dashed line are, re-
spectively, equal to the length of an actuated muscle with the maximum pressure and the 
nominal length of an inactive muscle (as mentioned before, such a measurement can be 
performed within an optimization technique such as the genetic algorithm, which is not 
within the scope of this article). Nevertheless, the actual kinematics, i.e., the position and 
backbone curvature evolution, is highly influenced during a real swimming test. We are 
more interested in swimming kinematics and investigating the experimental data in this 
context. The experimental setup used for this purpose is explained in Appendix A. The 
data collected from a swimming test of the robot is illustrated in Figure 4, representing 
the tracking markers’ lateral displacement and velocities in the time domain. The veloci-
ties were calculated using differentiation of the measured position data. The time series 

Figure 2. Mechanical drawings: (a) 3D model of the robot; (b) the segmental assembly parts and
balancing bladders.

Biomimetics 2025, 10, x FOR PEER REVIEW 9 of 20 
 

 

plots are given for the seven tracking markers, A1 to A7. The visualization suggests a peri-
odic motion with overall repetition expected from steady swimming. 

  
1 2 

  
3 4 

  
5 6 

Figure 3. Geometrical representation of the desired actuator lengths calculations with a wave trav-
eling left to right from 1 to 6. The blue curve represents the robot backbone axis versus the initial 
state, i.e., the straight blue line. The dashed lines represent the soft actuators’ axes. 

 

Figure 4. The experimental data. The robot’s undulation period is 1.1 s. 

Figure 3. Geometrical representation of the desired actuator lengths calculations with a wave traveling
left to right from 1 to 6. The blue curve represents the robot backbone axis versus the initial state, i.e.,
the straight blue line. The dashed lines represent the soft actuators’ axes.



Biomimetics 2025, 10, 60 9 of 19

The graphs in Figure 3 present the MATLAB® R2022b (MathWorks®, Natick, MA,
USA) simulations of the equations and relations in Section 2.1. They can be used to verify
the functionality principle, particularly the structure design’s compatibility. The dashed
lines, representing the actuation axis, touch the ‘backbone’ at the maximum bending due
to the opposite actuator. The minimum and maximum lengths of the dashed line are,
respectively, equal to the length of an actuated muscle with the maximum pressure and the
nominal length of an inactive muscle (as mentioned before, such a measurement can be
performed within an optimization technique such as the genetic algorithm, which is not
within the scope of this article). Nevertheless, the actual kinematics, i.e., the position and
backbone curvature evolution, is highly influenced during a real swimming test. We are
more interested in swimming kinematics and investigating the experimental data in this
context. The experimental setup used for this purpose is explained in Appendix A. The
data collected from a swimming test of the robot is illustrated in Figure 4, representing the
tracking markers’ lateral displacement and velocities in the time domain. The velocities
were calculated using differentiation of the measured position data. The time series plots
are given for the seven tracking markers, A1 to A7. The visualization suggests a periodic
motion with overall repetition expected from steady swimming.
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A valuable tool for diagnosing mechanical behavior and analyzing vibratory systems
is a phase plot. A phase plot is a graphical representation used in dynamical systems
analysis to visualize the state of a system in phase space. It provides insights into the
relationship between key dynamic variables, such as position and velocity when the system
evolves in time. In the context of system dynamics, the phase plot is particularly useful
for examining oscillatory or non-linear behavior, offering a concise way to understand
the motion without explicitly referencing time. To construct a phase plot, one requires
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time-series data of the system’s position and velocity. The real axis represents the position,
while the imaginary axis represents the velocity. By treating position as the horizontal
component and velocity as the vertical component, the trajectory in the phase space is
plotted as the system evolves. Each point on the curve corresponds to a unique state of the
system at a particular moment in time. This method is especially effective for oscillatory
systems, where periodic motion appears as closed loops, indicating energy conservation,
while spiraling trajectories may suggest dissipative effects or damping.

The phase plot of the experimentally measured values is illustrated in Figure 5. The
graph represents the complex states zi, for the 7 tracking markers (i = 1..7). The advantages
of using a phase plot include its ability to highlight the system’s characteristics. It can
visually reveal attractors, periodicity, or chaotic behavior. Unlike time-domain plots, which
may obscure the interplay between variables, phase plots emphasize their relationship
directly, enabling a more intuitive understanding of system dynamics. Nevertheless, the
phase graphs of the experimental data do not illustrate coherent structures. At first look,
it seems impossible to draw a deduction about the system dynamics or contribution of
nonlinearity, stochastic, noise, or chaotic phenomena. In the CDE DMD, we look for a new
coordinate system where coherent structures or patterns are revealed.
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Figure 5. Phase plot of the experimental data.

3.2. CDE DMD Analysis Results

The phase plot reveals strange behavior of the system that, at first look, may be
attributed to random, chaotic, or noisy phenomena within the robot or its interaction with
the environment. We expect the phase plots to appear as perfect circular shapes for a
perfectly swimming system exhibiting a smooth sinusoidal wave. On the other hand, with
chaotic (but not random) systems, smooth trajectories where each point does not go back
to its place in the previous period, resulting in repeating coherent curves, are anticipated.
Previous studies attributed the exotic dynamic to the system modes are measured from
the FSI model and simulations [7,31]. Such simulations are numerically expensive and
need modeling assumptions and approximations. This study proposes the CDE DMD
analysis described in the method to discover the underlying modes that may explain the
system behavior based on the experimental data. For this aim, calculations with different
embedding dimension, d, were conducted. The phase plot of the dynamic variables for
d = 30 and 110 are shown in Figures 6 and 7. Increasing the delay steps yields more circular
shapes, revealing coherent attractors in the leading modes in the CDE coordinates. Note
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that the sampling time was ∆t = 0.005 s, and the robot actuation period was T = 1.1 s.
Therefore, the delay number d = 110 corresponds to a half cycle of the undulation.
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Figure 6. Phase plot of the dynamic variables with d = 30.
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Figure 7. Phase plot of the dynamic variables with d = 110.

The circular graph of the first two variables, w1, and w2,, in Figure 7 indicates the
presence of two harmonic oscillations in the CDE coordinates. The phase plots represent
the temporal modes that construct the overall dynamics. Coherent patterns and structures
appear in the ‘CDE coordinate system’ (in contrast to the ‘physical coordinate system’
where the measurement is performed). Delay embedding contains some limitations, ne-
cessitating numerical assessment to verify the method for a specific application. High
dimensionality, unknown delay number, and noise handling may be limitations, depending
on the underlying physics of a particular application. Note that increasing the embedding
dimensions by more delay steps increases the matrix size and unnecessary calculation com-
plexity and noise. The right number of delay steps, which is often unknown, is estimated
using simulations and observing the modes. The number is increased and the evolution of
the first two modes is considered as an optimization criterion. As shown in Figure 8, by
diverging from the optimal value (Figure 8e), the graphs start to show ovality.
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Figure 8. Evolution of the first two modes with embedding dimension: (a) Standard DMD; (b) CDE
DMD with d = 30; (c) d = 60; (d) d = 85; (e) d = 110; (f) d = 140; (g) d = 170.

The working principle of the CDE DMD method is shown abstractly in Figure 9.
The measured data, in the physical coordinate system, is first encoded by projecting the
data to the CDE coordinates. Encoding involves increasing the dimensionality due to the
large size of the Hankel matrix. Then, superimposing linear modes, in the decoding stage,
provides the linear dynamics. Similarly, nonlinearities can be obtained by com-posing the
nonlinear modes.
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Figure 9. Conceptualization of the linearization technique. Measurement data are projected to the
CDE coordinates, in the encoding stage. Consequently, the linear (and nonlinear) portion is obtained
by superimposing the linear (and nonlinear chaotic) modes, in the decoding stage.

The corresponding time history of the variables visualized in Figure 10 indicates
the linearity property within the dominant modes. The first two modes present smooth
oscillations with a constant amplitude typical in mass-spring and linear vibration systems.
The phase shift, comparing mode one and mode two, is attributed to traveling wave
phenomena. It is inferred from the results that the temporal modes consist of nearly linear
oscillators disturbed by chaotic modes. This fact suggests partitioning the system dynamics
into an approximate linear subsystem and a highly nonlinear chaotic subsystem. Therefore,
the reconstruction of the model with the linear modes results in a linear surrogated system
model. Reconstruction of the data with the linear and nonlinear subsystems is shown in
Figures 11 and 12. The linear dynamics, shown in Figure 11, is composed of the first two
modes, corresponding to 2

1X in Equation (13). In Figure 12, the full reconstruction, from
12
1 X , as well as the nonlinearity portion, corresponding to 12

3 X , is demonstrated. The graphs
contain the experimental data for comparison.
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Figure 12. Comparison of the reconstructed data, the nonlinearity contribution, and the measurements.

Therefore, the CDE DMD provides a linearized model by including the first modes.
The simulation results of the linearized model Equation (20) are shown in Figure 13. In the
numerical calculations, H was a 777 by 2890 matrix with a rank of 777 calculated after the
construction of the matrix. With 7 sensed points, s = 7, and 110 delays, d = 110, the number
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of rows of H became s(d + 1) = 777. Likewise, with the measurement sampling time of
0.005 s and a total time of 15 s, n = 15/0.005 = 3000, the number of columns will be equal to
n − d = 2890. The L A and A matrices are of size 777 by 777, while Ã is a 7 by 777 matrix.
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3.3. CDE DMD’s Noise Handling

The CDE DMD handles noise effectively by leveraging delay embedding to distribute
noise across dimensions, applying low-rank approximations via SVD and isolating dom-
inant modes. These properties make it a robust tool for analyzing noisy measurements,
particularly when the signal-to-noise ratio is moderate to high. In this Section, the ability
of the method to handle noisy data is examined by simulation. As the measurement was
achieved with a precise laboratory setup, a random signal was added to simulate the
corruption of the original signal by the artificial noise. The noisy signal and the probability
density function (PDF) of the added noise are shown in Figure 14. In this case, the noise
contains Gaussian signals with a mean of zero and standard deviations of 12.

The influence of added noise on the dynamic variables, i.e., the CDE modes, is shown
by simulation. Figure 15 illustrates the results for the original signal (top phase plots) and
the corresponding modes for the noisy signal (bottom plots). A comparison of the plots
shows that the first two modes remain similar, before and after the noise injection. In fact,
the noise is projected to higher modes due to its high-frequency nature.
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Figure 14. Data with injected noise: (a) The original and corrupted data; (b) Histogram of the
added noise.
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Figure 15. Comparison of the dynamic variables of the original (top) and the corrupted (bottom) data.

It is also worth mentioning that random and chaotic signals are distinguishable in
such graphs. Chaos exhibits repeating and smooth modes while random signals do not
show such deterministic and predictable patterns.

The performance of the CDE DMD linearized model with the noisy data is shown in
Figure 16. The results represent the ability of linearization in the presence of highly noisy
data. This advantage can be useful with inherently noisy measurement systems, such as
inertial measurement units (IMUs), or in-field measurements where extra environmental
noise and vibrations are inevitable.



Biomimetics 2025, 10, 60 16 of 19

Biomimetics 2025, 10, x FOR PEER REVIEW 16 of 20 
 

 

 

Figure 15. Comparison of the dynamic variables of the original (top) and the corrupted (bottom) 
data. 

It is also worth mentioning that random and chaotic signals are distinguishable in 
such graphs. Chaos exhibits repeating and smooth modes while random signals do not 
show such deterministic and predictable patterns. 

The performance of the CDE DMD linearized model with the noisy data is shown in 
Figure 16. The results represent the ability of linearization in the presence of highly noisy 
data. This advantage can be useful with inherently noisy measurement systems, such as 
inertial measurement units (IMUs), or in-field measurements where extra environmental 
noise and vibrations are inevitable. 

 

Figure 16. Comparison of the CDE DMD results with the noisy data. 

4. Discussion 
The results of this study demonstrated that the experimental (raw) data reflect the 

robot’s compliance (i.e., influenceability by the external loads) but do not display smooth 
oscillations. As a side effect of compliance, the system is prone to deformations due to any 
external loads or faults within the system. Attributing such fluctuations to random or cha-
otic phenomena does not appear straightforward. The delay embedding results, on the 
other hand, reveal coherent structures and oscillators within the system dynamics. In par-
ticular, the phase plots reveal linear and chaotic influences that are typically observed in 

0

Re.

-0.02

0

0.02

Im
.

0

Re.

-0.02

0

0.02

Im
.

0

Re.

-0.02

0

0.02

Im
.

0

Re.

-0.02

0

0.02

Im
.

0

Re.

-0.02

0

0.02

Im
.

0

Re.

-0.02

0

0.02

Im
.

0

Re.

-0.02

0

0.02

Im
.

0

Re.

-0.02

0

0.02

Im
.

0

Re.

-0.02

0

0.02

Im
.

0

Re.

-0.02

0

0.02

Im
.

0

Re.

-0.02

0

0.02

Im
.

0

Re.

-0.02

0

0.02

Im
.

0

Re.

-0.02

0

0.02

Im
.

0

Re.

-0.02

0

0.02

Im
.

0

Re.

-0.02

0

0.02

Im
.

0

Re.

-0.02

0

0.02

Im
.

0 5 10 15

-20
0

20

y
1

 (m
m

)

0 5 10 15

-20
0

20

y
2

 (m
m

)

0 5 10 15

-20
0

20

y
3

 (m
m

)

0 5 10 15

-20
0

20

y
4

 (m
m

)

0 5 10 15

-20
0

20

y
5

 (m
m

)

0 5 10 15

-20
0

20

y
6

 (m
m

)

0 5 10 15

Time (s)

-20
0

20

y
7

 (m
m

)
Noisy data

CDE DMD

Figure 16. Comparison of the CDE DMD results with the noisy data.

4. Discussion
The results of this study demonstrated that the experimental (raw) data reflect the

robot’s compliance (i.e., influenceability by the external loads) but do not display smooth
oscillations. As a side effect of compliance, the system is prone to deformations due to
any external loads or faults within the system. Attributing such fluctuations to random
or chaotic phenomena does not appear straightforward. The delay embedding results, on
the other hand, reveal coherent structures and oscillators within the system dynamics. In
particular, the phase plots reveal linear and chaotic influences that are typically observed
in many fluid dynamic problems. Within the phase plot of the experimental data, coherent
structures are not visible, and the interplay of noise or chaos is not discoverable. The delay
embedding and recovering the model with the linear modes resulted in a linearized model
of the system. The simulation results showed that the linearized model captures a large
portion of the system dynamics, compared with the experimental results. Additionally, the
method can separate the nonlinearity effect, which is useful in signal filtering.

From the phase lag within the time series plot of the first two modes, it is inferred
that the modes construct the traveling wave along the robot body. This conclusion was
drawn similarly in the previous research using intensive FSI simulations. The linearized
model, introduced as the CDE DMD model, matches well with the experimental data.
Such a model has different applications. The first goal of the linearization, in this study,
was to investigate the existence of a traveling wave within the robot locomotion and
explain the disorder. The linear model acts as a predictor that has many applications in
robotics. Firstly, the predictor can be used for prediction purposes as in fault detection and
outlier recognition. Faults in pneumatic actuators (leakage) and outliers (missed points
during tracking) within measurements are common problems, which can be detected by
comparison of the measured data with the predicted data. Secondly, the model is potentially
useful for navigation (path following). Classic control deals with stabilization around zero,
which is extended to control over a desired path. Similarly, the anguilliform swimmer
oscillates along a curve (path), which is considered a straight line in the first step. The linear
model works as a filter that can be used to eliminate nonlinearity effects. Another question
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that the results can explain, at least as a lateral conclusion, is related to the repeatability of
the measurements. A classic question to be answered within any scientific measurement
in general and for aquatic locomotion, in particular, is how the experimental observation
is repeated in different runs. Chaotic and random signals are known to be notoriously
unrepeatable. The results show that robot locomotion is mainly ruled by approximately
linear dynamics disturbed by ‘small’ chaotic modes. This means that the gross motion of
the robot is approximately predictable and repeatable, while the minor fluctuations are not.
Simulations with added noise show the CDE DMD’s capability of handling excessive noise.
The method is proposed to extract the main modes of body undulation, especially for soft
robots, which are highly influenced by additional modes and environmental vibrations.
Soft robots, in contrast to rigid robots, are prone to deformation due to water interaction.
Application for other types of aquatic locomotion is to be investigated as future work, but
it is imaginable that carangiform and thunniform swimming contain a single linear mode
(compared to two linear modes in anguilliform swimming).

5. Conclusions
This paper investigates the kinematics of a soft eel robot actuated by pneumatic mus-

cles. The experimental results of the swimming test were used as the raw data for further
analysis using a DMD-based algorithm. The algorithm employs the delay embedding
technique to cope with the limitation of measurement points, compared to the infinite
dimensionality of the system. The simulations showed that coherent structures are revealed
with sufficient embedding order (here, 110 lags is equivalent to a half period of the robot
undulation) in the complex delay embedded (CDE) coordinate systems. In particular, two
linear oscillators were detected, which were attributed to the traveling wave (anguilliform
undulation). The two modes compose the linearized model, which captures the gross
motion of the robot. Additionally, the nonlinearity is composed of chaotic modes. It is
discussed that the CDE DMD provides a prediction model that can be used in various
applications such as data filtering, fault detection, or navigation applications as the future
works. The CDE DMD’s ability to analyze anguilliform locomotion characteristics in the
presence of noise and body fluctuations makes it proper for studying soft-bodied swimmers,
particularly soft robots.
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Appendix A
The experimental setup used in this research is shown in Figure A1. The measurement

system contains a QualiSys® Tracking Manager (QTM) 1.6.0.1, which collects the position
of tracking markers in ∆t = 0.005 s intervals. The position data are saved as ‘.tsv’ files and
are post-processed offline using Python 3.8.19 within the Spyder 5.5.1 integrated develop-
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ment environment and imported in MATLAB® R2022b. The velocities were obtained by
calculation (differentiation).

Biomimetics 2025, 10, x FOR PEER REVIEW 18 of 20 
 

 

presence of noise and body fluctuations makes it proper for studying soft-bodied swim-
mers, particularly soft robots. 

Author Contributions: Conceptualization, M.S. and H.W.; methodology, M.S.; software, M.S.; val-
idation, M.S. and H.W.; formal analysis, M.S.; investigation, M.S. and H.W.; resources, M.S. and 
H.W.; data curation, M.S. and H.W.; writing—original draft preparation, M.S.; writing—review and 
editing, H.W.; visualization, M.S.; supervision, H.W.; project administration, M.S. and H.W.; fund-
ing acquisition, H.W. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Data Availability Statement: The original contributions presented in the study are included in the 
article; further inquiries can be directed to the corresponding author. 

Conflicts of Interest: The authors declare no conflicts of interest. 

Appendix A 
The experimental setup used in this research is shown in Figure A1. The measure-

ment system contains a QualiSys® Tracking Manager (QTM) 1.6.0.1, which collects the 
position of tracking markers in 0.005tΔ =  s intervals. The position data are saved as 
‘.tsv’ files and are post-processed offline using Python 3.8.19 within the Spyder 5.5.1 inte-
grated development environment and imported in MATLAB® R2022b. The velocities were 
obtained by calculation (differentiation). 

 

Figure A1. The measurement setup. 

  

Figure A1. The measurement setup.

References
1. Wang, Y.; Chen, H.; Law, J.; Du, X.; Yu, J. Ultrafast miniature robotic swimmers with upstream motility. Cyborg. Bionic. Syst. 2023,

4, 0015. [CrossRef] [PubMed]
2. Hu, N.; Li, B.; Bai, R.; Xie, K.; Chen, G. A torsion-bending antagonistic bistable actuator enables untethered crawling and

swimming of miniature robots. Research 2023, 6, 0116. [CrossRef]
3. Wu, M.; Afridi, W.H.; Wu, J.; Afridi, R.H.; Wang, K.; Zheng, X.; Wang, C.; Xie, G. Octopus-inspired underwater soft robotic

gripper with crawling and swimming capabilities. Research 2024, 7, 0456. [CrossRef] [PubMed]
4. van Ginneken, V.; Antonissen, E.; Müller, U.K.; Booms, R.; Eding, E.; Verreth, J.; van den Thillart, G. Eel migration to the Sargasso:

Remarkably high swimming efficiency and low energy costs. J. Exp. Biol. 2005, 208, 1329–1335. [CrossRef]
5. Vorus, W.S.; Taravella, B.M. Anguilliform fish propulsion of highest hydrodynamic efficiency. J. Mar. Sci. Appl. 2011, 10, 163–174.

[CrossRef]
6. Sayahkarajy, M.; Witte, H.; Faudzi, A.A.M. Chorda Dorsalis System as a Paragon for Soft Medical Robots to Design Echocardiog-

raphy Probes with a New SOM-Based Steering Control. Biomimetics 2024, 9, 199. [CrossRef]
7. Sayahkarajy, M.; Witte, H. Analysis of Robot–Environment Interaction Modes in Anguilliform Locomotion of a New Soft Eel

Robot. Actuators 2024, 13, 406. [CrossRef]
8. Tytell, E.D.; Hsu, C.-Y.; Williams, T.L.; Cohen, A.H.; Fauci, L.J. Interactions between internal forces, body stiffness, and fluid

environment in a neuromechanical model of lamprey swimming. Proc. Natl. Acad. Sci. USA 2010, 107, 19832–19837. [CrossRef]
9. McMillen, T.; Holmes, P. An elastic rod model for anguilliform swimming. J. Math. Biol. 2006, 53, 843–886. [CrossRef]
10. Feeny, B. A complex orthogonal decomposition for wave motion analysis. J. Sound Vib. 2008, 310, 77–90. [CrossRef]
11. Gemmell, B.J.; Fogerson, S.M.; Costello, J.H.; Morgan, J.R.; Dabiri, J.O.; Colin, S.P. How the bending kinematics of swimming

lampreys build negative pressure fields for suction thrust. J. Exp. Biol. 2016, 219, 3884–3895. [CrossRef] [PubMed]
12. Fies, J.; Gemmell, B.J.; Fogerson, S.M.; Morgan, J.R.; Tytell, E.D.; Colin, S.P. Swimming kinematics and performance of spinal

transected lampreys with different levels of axon regeneration. J. Exp. Biol. 2021, 224, jeb242639. [CrossRef]
13. Crespi, A.; Badertscher, A.; Guignard, A.; Ijspeert, A.J. AmphiBot I: An amphibious snake-like robot. Robot. Auton. Syst. 2005, 50,

163–175. [CrossRef]

https://doi.org/10.34133/cbsystems.0015
https://www.ncbi.nlm.nih.gov/pubmed/36939416
https://doi.org/10.34133/research.0116
https://doi.org/10.34133/research.0456
https://www.ncbi.nlm.nih.gov/pubmed/39206446
https://doi.org/10.1242/jeb.01524
https://doi.org/10.1007/s11804-011-1056-3
https://doi.org/10.3390/biomimetics9040199
https://doi.org/10.3390/act13100406
https://doi.org/10.1073/pnas.1011564107
https://doi.org/10.1007/s00285-006-0036-8
https://doi.org/10.1016/j.jsv.2007.07.047
https://doi.org/10.1242/jeb.144642
https://www.ncbi.nlm.nih.gov/pubmed/27974534
https://doi.org/10.1242/jeb.242639
https://doi.org/10.1016/j.robot.2004.09.015


Biomimetics 2025, 10, 60 19 of 19

14. Crespi, A.; Ijspeert, A.J. AmphiBot II: An amphibious snake robot that crawls and swims using a central pattern generator. In
Proceedings of the 9th international conference on climbing and walking robots (CLAWAR 2006), Brussels, Belgium, 12–14
September 2006; pp. 19–27.

15. Liu, Y.; Liu, Z.; Fang, Y.; Liu, H.; Guo, X. A Novel Design Methodology of CPG Model for a Salamander-like Robot. IEEE Robot.
Autom. Lett. 2024, 9, 6115–6122. [CrossRef]

16. Milana, E.; Van Raemdonck, B.; Cornelis, K.; Dehaerne, E.; De Clerck, J.; De Groof, Y.; De Vil, T.; Gorissen, B.; Reynaerts, D.
EELWORM: A bioinspired multimodal amphibious soft robot. In Proceedings of the 2020 3rd IEEE International Conference on
Soft Robotics (RoboSoft), New Haven, CT, USA, 15 May–15 July 2020; pp. 766–771.

17. Nguyen, D.Q. Kinematic evaluation of a series of soft actuators in designing an eel-inspired robot. In Proceedings of the 2020
IEEE/SICE International Symposium on System Integration (SII), Honolulu, HI, USA, 12–15 January 2020; pp. 1288–1293.

18. Chen, Y.; Wang, T.; Wu, C.; Wang, X. Design, control, and experiments of a fluidic soft robotic eel. Smart Mater. Struct. 2021, 30,
065001. [CrossRef]

19. Nguyen, D.Q.; Ho, V.A. Anguilliform swimming performance of an eel-inspired soft robot. Soft Robot. 2022, 9, 425–439. [CrossRef]
[PubMed]

20. Nguyen, D.Q. Evaluation on swimming efficiency of an eel-inspired soft robot with partially damaged body. In Proceedings of
the 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 12–16 April 2021; pp. 289–294.

21. Dang, R.; Gong, H.; Wang, Y.; Huang, T.; Shi, Z.; Zhang, X.; Wu, Y.; Sun, Y.; Qi, P. Bionic body wave control for an eel-like robot
based on segmented soft actuator array. In Proceedings of the 2021 40th Chinese Control Conference (CCC), Shanghai, China,
26–28 July 2021; pp. 4261–4266.

22. Cervera-Torralba, J.; Kang, Y.; Khan, E.M.; Adibnazari, I.; Tolley, M.T. Lost-Core Injection Molding of Fluidic Elastomer Actuators
for the Fabrication of a Modular Eel-Inspired Soft Robot. In Proceedings of the 2024 IEEE 7th International Conference on Soft
Robotics (RoboSoft), San Diego, CA, USA, 14–17 April 2024; pp. 971–976.

23. Trinh, H.X.; Nguyen, B.N.; Nguyen, A.T.; Kien, H.T.; Nguyen, Q.D. Dynamics Modeling and Validation of a Bio-Inspired Soft Eel
Robots for Underwater Motion. In Proceedings of the 2024 IEEE/SICE International Symposium on System Integration (SII), Ha
Long, Vietnam, 8–11 January 2024; pp. 233–238.

24. Wang, Q.; Hong, Z.; Zhong, Y. Learn to swim: Online motion control of an underactuated robotic eel based on deep reinforcement
learning. Biomim. Intell. Robot. 2022, 2, 100066. [CrossRef]

25. Hall, R.; Espinosa, G.; Chiang, S.-S.; Onal, C.D. Design and Testing of a Multi-Module, Tetherless, Soft Robotic Eel. In Proceedings
of the 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13–17 May 2024; pp. 8821–8827.

26. Schmid, P.J. Dynamic mode decomposition and its variants. Annu. Rev. Fluid Mech. 2022, 54, 225–254. [CrossRef]
27. Meng, T.; Wang, Y.; Qin, S.; Liu, P.; Wang, Y.; Tao, C.; Liu, Z. Complex flow field analysis in Multi-Shaft stirred Reactors: Dynamics

of Wave-Vortex coupling revealed by POD and DMD methods. Chem. Eng. Sci. 2025, 301, 120753. [CrossRef]
28. Long, Y.; Guo, X.a.; Xiao, T. Research, Application and Future Prospect of Mode Decomposition in Fluid Mechanics. Symmetry

2024, 16, 155. [CrossRef]
29. Rahmani, M.; Redkar, S. Optimal DMD Koopman Data-Driven Control of a Worm Robot. Biomimetics 2024, 9, 666. [CrossRef]
30. Du Clos, K.T.; Dabiri, J.O.; Costello, J.H.; Colin, S.P.; Morgan, J.R.; Fogerson, S.M.; Gemmell, B.J. Thrust generation during steady

swimming and acceleration from rest in anguilliform swimmers. J. Exp. Biol. 2019, 222, jeb212464. [CrossRef]
31. Sayahkarajy, M.; Witte, H. Temporal Evolution of the Hydrodynamics of a Swimming Eel Robot Using Sparse Identification:

SINDy-DMD. J 2025, 8, 2. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/LRA.2024.3399999
https://doi.org/10.1088/1361-665X/abf5ef
https://doi.org/10.1089/soro.2020.0093
https://www.ncbi.nlm.nih.gov/pubmed/34134542
https://doi.org/10.1016/j.birob.2022.100066
https://doi.org/10.1146/annurev-fluid-030121-015835
https://doi.org/10.1016/j.ces.2024.120753
https://doi.org/10.3390/sym16020155
https://doi.org/10.3390/biomimetics9110666
https://doi.org/10.1242/jeb.212464
https://doi.org/10.3390/j8010002

	Introduction 
	Materials and Methods 
	Structure and Actuation Kinematics 
	Proposed CDE DMD Algorithm 

	Results 
	The Eel Robot 
	CDE DMD Analysis Results 
	CDE DMD’s Noise Handling 

	Discussion 
	Conclusions 
	Appendix A
	References

