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Abstract: Face recognition technology, despite its widespread use in various applications,
still faces challenges related to occlusions, pose variations, and expression changes. Three-
dimensional face recognition with depth information, particularly using point cloud-based
networks, has shown effectiveness in overcoming these challenges. However, due to the
limited extent of extensive 3D facial data and the non-rigid nature of facial structures,
extracting distinct facial representations directly from point clouds remains challenging. To
address this, our research proposes two key approaches. Firstly, we introduce a learning
framework guided by a small amount of real face data based on morphable models with
Gaussian processes. This system uses a novel method for generating large-scale virtual face
scans, addressing the scarcity of 3D data. Secondly, we present a dual-branch network that
directly extracts non-rigid facial features from point clouds, using kernel point convolution
(KPConv) as its foundation. A local neighborhood adaptive feature learning module
is introduced and employs context sampling technology, hierarchically downsampling
feature-sensitive points critical for deep transfer and aggregation of discriminative facial
features, to enhance the extraction of discriminative facial features. Notably, our training
strategy combines large-scale face scanning data with 967 real face data from the FRGC
v2.0 subset, demonstrating the effectiveness of guiding with a small amount of real face
data. Experiments on the FRGC v2.0 dataset and the Bosphorus dataset demonstrate the
effectiveness and potential of our method.

Keywords: 3D face recognition; deep learning; point clouds

1. Introduction
Face recognition, including 2D and 3D recognition, has attracted a lot of interest re-

cently because of its unique features. It is being used extensively in a variety of sectors,
including affective computing, border control, criminal detection, mobile device user iden-
tification, and video surveillance [1–3]. Ongoing research is being carried out to develop
new theories and methods with the aim of enhancing the accuracy of face recognition while
ensuring its availability. Current techniques fall into two categories: deep learning-based
and classic methods. Classic techniques frequently use feature extractors that were artifi-
cially created, like EigenFace [4], Fisher-Face [5], and LBP Face [6], which are well known
among the well-established solutions. In contrast, deep learning techniques that naturally
learn features during the training process without the need for an artificially constructed
feature extractor are more popular.
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Despite the success of 2D face recognition, it is still affected by occlusion, light changes,
camera type, and resolution. Consequently, 3D face recognition has received more and
more attention, though it is still in its infancy [3]. The problems of 3D face recognition
based on deep learning are mainly reflected in the following two aspects:

(1) Deep learning methods mostly rely on data, necessitating large-scale training datasets
for optimal outcomes. However, the largest available 3D face dataset currently con-
tains only tens of thousands of training images, paling in comparison to the nearly
one million images in 2D face recognition datasets like ArcFace [7], MS-Celeb-1M [8],
and FaceNet [9].

(2) Developing effective network models is the foundation of deep learning methods.
Existing models often operate on 2D images, neglecting the characteristics of 3D data.
Point clouds, often representing 3D face data, exhibit rich geometric information and
an unstructured data format. While some researchers have endeavored to employ
existing deep learning networks directly on point cloud data [10–15], the efficacy of
such models has primarily been demonstrated on rigid objects like chairs and tables.
The uncertainties associated with face data, stemming from its unique expression and
posture changes, pose significant challenges for feature extraction. This complexity
underscores the need for specific deep learning network models when applied to 3D
face point cloud data.

In response to the challenges encountered by 2D face recognition, such as inaccuracies
due to occlusion, pose, and expression transformations, we have opted to explore 3D
face recognition methods grounded in deep learning techniques. While these methods
are promising, the field still has insufficient 3D face data and a lack of a network model
specifically designed for 3D face data. While existing approaches have shown promise,
many rely on limited training data or extensive manual preprocessing. For instance, notable
methods like the one proposed by Cai et al. [16] have demonstrated significant efficacy but
heavily rely on manual data preprocessing, which constrains the model’s adaptability to
diverse facial structures and feature distributions, resulting in diminished performance on
other datasets. Similarly, Zhang et al.’s [17] approach employs transfer learning but lacks
a specifically designed network model for 3D face data, making it difficult to achieve the
desired effect in real-world applications due to sample uncertainty. To address these issues,
we propose a novel network model tailored to the characteristics of facial data, enabling
direct processing of original 3D face point cloud data. Leveraging the distinct features
of 3D face data, including varied expressions and complex postural changes, we extract
3D information representations efficiently without information loss [18–23]. To overcome
data scarcity problems, we leverage synthetic methods [24], employing a Gaussian Process
Morphable Model (GPMM) to generate large-scale [25], diverse face scans. With the GPMM,
we create faces with random shapes, expression coefficients, and pose transformations, fa-
cilitating effective network training with minimal real-world data. Our approach, inspired
by KPConv [10], presents a dual-branch network structure; these branches are tailored
to handle positive neutral faces and non-neutral faces showing expression and posture
changes, leveraging the advantages of dual-branch feature fusion to enhance face recogni-
tion performance. Additionally, our method incorporates a local adaptive feature learning
module and employs context sampling technology to address the unique challenges posed
by 3D face recognition. This approach establishes a comprehensive framework for 3D
face recognition tasks, beginning with point clouds. The custom network model based
on KPConv is designed to tackle the intricacies of 3D face recognition, presenting a novel
solution in this evolving field.

The main contributions of this work are as follows:



Biomimetics 2025, 10, 70 3 of 21

(1) To diversify the training data for 3D face recognition, encompassing various identities,
expressions, and poses, we introduce a data-enhanced learning framework guided
by a Gaussian Process Morphable Model (GPMM). This framework enables effective
network training, even with a limited amount of real data.

(2) We propose a dual-branch network structure based on KPConv, adding a local neigh-
borhood adaptive feature learning module designed for direct facial feature extraction
from point clouds.

(3) We conduct extensive experiments on established 3D face recognition benchmarks.
The results show the competitiveness of our 3D face recognition method and its
efficacy in addressing challenging face identification tasks in 3D space.

The rest of this paper is organized as follows:
Section 2 provides an overview of related work, while Section 3 outlines our proposed

methodology. Specifically, Section 3.1 details the synthesis of a substantial volume of 3D
facial scans through the GPMM in the data generator module. Our approach uses a data-
augmented learning framework guided by real data, enhancing the realism of synthetic
face scans. Distinguished by its efficiency in both memory and time, our method stands
out among other data creation techniques. In Section 3.2, we elaborate on our strategy to
utilize a KPConv-based network for extracting 3D facial representations. KPConv learns
the local geometric mode of the point cloud by designing the weight of the moving kernel
point, but the low-dimensional spatial coordinate relationship does not have enough
ability to describe the association of adjacent points. For instance, points with the same
relative position may have different semantic relations. In order to better capture facial
representations, we designed a novel dual-branch network structure and added an adaptive
feature learning module to replace the radius neighborhood sampling strategy of KPConv,
which is used to calculate the similarity between inputs and find points and interactions
between points, thereby improving the discriminability of the face recognition model in the
eigenvector space and the recognition accuracy. Section 4 presents an ablation study and
reports identification results on the Bosphorus [26] and FRGC v2.0 [27] datasets. The paper
concludes in Section 5.

2. Related Work
2.1. On 3D Face Recognition

Li et al. [28], Guha et al. [29], and Zhang et al. [17] have contributed extensive insights
into diverse 3D face recognition (3DFR) techniques. The field of 3DFR has evolved into
a useful tool for facial feature identification over recent decades. These approaches are
divided into two categories, classical and modern, depending on the technological pro-
cedures utilized in recognition. The classical methods focus on extracting distinct facial
features—global, local, and hybrid—to facilitate matching. The global feature extraction
method seeks to match all the surface features sensitive to facial expressions, such as
the baseline algorithm Iterative Closest Point (ICP) introduced by Besl and McKay [30].
Yu et al., through the integration of resampling and denoising procedures into the sparse
ICP algorithm, enhanced the accuracy and robustness of facial verification [31]. Local
feature-based approaches, as opposed to global features, usually capture unique, compact
features that reflect 3D local face information [32,33]. Guo and Da [34] focus on the investi-
gation of a method centered on local descriptors that aims to strengthen systems’ resistance
to changes in local descriptors. Hybrid feature techniques combine both global point cloud
registration and local feature matching [35]. These methods represent the diversity in
classical approaches for 3D face recognition, providing valuable insights into global and
local feature extraction methods for matching facial features.



Biomimetics 2025, 10, 70 4 of 21

The deep learning approach uses complex network architectures and extensive train-
ing datasets to derive high-level, meaningful facial features from low-level information.
This approach can be divided into three main types: conversion of data from three dimen-
sions to two dimensions, advancement in network architectures, and techniques for facial
reconstruction. When converting three-dimensional data to two-dimensional data, it is
common to employ depth images for recognition [36,37]. Network performance has been
improved by designing deep loss functions with attribute-aware loss functions, such as
the one proposed by Jiang et al. [38], and incorporating face attributes like age, gender,
and ethnicity into the training process. Additionally, a novel deep learning network with
3D voxel representation methods has also been used for 3D shape recognition [22], which
has high memory requirements. Some approaches integrate 3D face reconstruction with
deep learning, identifying features from a 3D Morphable Model (3DMM), generating dense
deformable models, or locating face landmarks [39,40]. Liu et al. [41] use a cascaded regres-
sion approach to reconstruct 2D landmark location estimates along with 3D shapes. Despite
their utility, these methods tend to lose 3D geometric structure information. Therefore, we
design a 3D face recognition network based on point clouds using deep neural networks
with 3D geometric data.

2.2. Deep Learning on Point Clouds

In recent years, there has been a significant surge in the application of deep learning
techniques to process point clouds, addressing various challenges in this field [11–15].
Despite these advancements, there remains a substantial need for further exploration in
the realm of deep learning on point clouds given the unique complexities associated with
using deep neural networks for point cloud processing. Deep learning networks were
first used for 3D point cloud processing by PointNet [11]. Using an asymmetric function,
PointNet aggregated point-wise features, ensuring that they were unaffected by input point
permutations. Building upon PointNet, PointNet++ [12] uses a recursive and hierarchical
approach to extract both global and local characteristics from point clouds. The integra-
tion of graph CNN into point cloud processing was brought about by techniques like
DGCNN [14] and SpecGCN [42]. The EdgeConv technique, which is similar to a convo-
lution, was used in DGCNN to generate a local neighborhood graph and extract relevant
local geometric information. Each layer expanded its corresponding region on the graph
by considering the nearest neighbors in the feature space. Thomas et al. [10] established
stiff and deformable kernel point convolution (KPConv) operators designed specifically for
3D point clouds. Without explicit optimization for facial structures, Bhople et al. [43,44]
introduced identification using PointNet, which was originally designed for 3D objects
(such as an airplane, chair, and desk). Obviously, it did not work out so well. Our approach
builds upon the strengths of KPConv, demonstrating superior effectiveness. We devise a
dual-branch network model, utilizing KPConv as the foundation, and introduce a local
neighborhood adaptive feature learning module to enhance the extraction of intricate facial
details, thus improving the accuracy of 3D face recognition.

2.3. On 3D Face Generation

The efficacy of deep learning outcomes is heavily reliant on the quality of training data.
Due to the difficulty of 3D data acquisition, it is largely dependent on hardware devices,
which brings challenges to the direct application of deep learning to 3D data. Existing
approaches either utilize pre-existing face models or reconstruct 3D faces from images
to construct training datasets [45–47]. For instance, Blanz and Vetter [46] enabled the
generation of diverse facial models by adjusting parameters, named 3DMM, and devel-
oping a flexible and precise method to achieve fine control of face shape and appearance
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during synthesis. Deng et al. [45] presented a weakly supervised learning method for
accurate 3D face reconstruction, while Guo et al. [47] presented an optimization tech-
nique. Gilani and Mian [48] presented a method for simultaneous interpolation across
face identity and expression spaces. To address limitations in accuracy and diversity,
Bhople et al. [43,44] proposed point cloud-level augmentation methods. However, these
methods have constraints such as reconstruction accuracy and dense correspondence es-
tablishment. Yu et al. [49] used the GPMM method to generate training data, but they
only considered shape and expression coefficients in the process of data generation and
did not consider the influence of recognition pose variations. In our work, we adopt a
learn-from-synthesize methodology, inspired by Yu et al. [49], aiming to automatically
generate a substantial collection of annotated 3D facial scans with diverse identities. Unlike
Yu et al. [49], who solely consider shape and expression coefficients in their data generation
process, we extend the GPMM method by incorporating a rotation matrix during training
data generation. This enhancement ensures that our training dataset encompasses not
only variations in facial identity and expression but also accounts for different postural
transformations, thereby facilitating effective 3D facial recognition training. As a result,
our proposed 3D face recognition model demonstrates improved robustness to changes in
position and posture, thereby enhancing its generalization capabilities.

3. Method
In this section, we first prepare the synthetic data for training, then introduce our net-

work architecture. Subsequently, we delve into the specifics of the methodology, illustrated
in Figure 1, which shows the framework of the proposed approach.
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Figure 1. Framework for 3D face point cloud recognition.

3.1. Generation of 3D Face Data

Considering the poor performance of 3DMM’s facial details and its limited flexi-
bility, we opted for GPMM, which offers enhanced deformation expression capabilities,
to generate 3D face data. We use GPMM to learn a Gaussian distribution based on PCA,
encompassing shape, texture, expression, and other attribute features, as expressed in
Equation (1):

S(p) = s̄ + Us(αs) + Ue(αe) (1)

where p represents a particular shape formed through a linear combination of the mean
vector and each principal component (eigenvector). The mean of all shape vectors is
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represented by s̄, where αs is the principal component coefficient, Us is the eigenvector
matrix, Ue is the noise eigenvector matrix, and αe stands for the noise coefficient.

In this research, we introduced data augmentation techniques, incorporating algo-
rithms for facial expression alterations and face pose variations, to address challenges
related to pose and noise in real-world applications. This approach aims to tackle the limi-
tation of limited samples in existing 3D face data and enhance data diversity. Specifically,
the noise in Equation (1) is modeled as facial expression changes and face pose variations,
as shown in Equation (2):

S(p) = s̄ + Us(αs) + Ue(αe) + RSLG(γ) (2)

Equation (2) introduces a noise matrix set RSLG(γ) based on Equation (1), encom-
passing components such as the rotation matrix R, scaling matrix S, displacement matrix
L, and a parametric function G to manipulate face pose through pose parameters. As the
coefficients αs, αe, and γ follow independent normal distributions, a diverse set of 3D face
models is generated by randomly sampling from this distribution, incorporating various
expressions and poses.

In order to bring our training data closer to real data, we introduce a strategy to
generate training data using real data as the principal component coefficients. This involves
calculating the expression coefficient αe and noise parameters γ of each face in the FRGC
v2.0 subset of the real-face dataset. During face generation, we randomly select αe and γ

from their respective distributions, resulting in α
′
e and γ

′
.

α
′
e = λ(αe)− (1 − λ)µ1 (3)

γ
′
= λ(γ)− (1 − λ)µ2 (4)

where λ is (0,1), µ follows a normal distribution, and is a random value between
µ1∼N(0, σµ1

2), µ2∼N(0, σµ2
2).

Subsequently, by substituting the values from Equations (3) and (4) into Equation (2),
a diverse range of facial expressions resembling those found in the actual dataset can
be achieved during face generation. The experimental results demonstrate a substantial
improvement in the recognition rate of non-neutral faces using this approach.

In the end, we generated a large-scale face dataset of 10,000 identities (αs), each
containing 200 expressions (αe) and 120 poses (γ). Figure 2 shows the synthesized data
samples, where the first column represents data without additional noise and real-face
constraints, while the last three columns include real-face constraints and noise changes.
Upon analysis, it is evident that our improved GPMM face synthesis data appear more
authentic and reliable. Notably, in Figure 2, we can see that the facial point cloud is different
from other point clouds (chairs, tables) and exhibits distinctive features concentrated in
local areas such as the eyes, nose, and mouth, undergoing changes based on posture and
expression variations. According to this characteristic, we propose a novel dual-branch
network structure based on KPConv, featuring a local neighborhood adaptive feature
learning module for the extraction of 3D facial features.

3.2. Network Architecture

In real-life scenarios, facial data often involve non-neutral expressions and varying
poses. While existing point cloud deep learning networks exhibit strong recognition perfor-
mance for neutral faces [18,48], their effectiveness diminishes when dealing with natural
non-neutral faces. To address this challenge, we propose a dual-branch network structure
based on KPConv. This design segregates neutral face data with robust recognition perfor-
mance and non-neutral face data with natural expressions into two branches for dedicated
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processing. Additionally, a local neighborhood feature learning module is incorporated
into one branch to selectively extract pertinent information. Subsequently, by merging the
information from both branches, we achieve a more comprehensive and enriched feature
representation, leading to improved accuracy in face recognition results.

N Y E1 E2

Figure 2. Column 1 is the face we generated, and columns 2, 3, and 4 are the noisy data after adding
real-face guidance.

The forward process of our network can be represented as follows:

f = 3DRecNet(P1, P2) (5)

where Pi = {xp1 , xp2 , · · · , xpn} ∈ RN×3 is the unordered input point cloud pair; N is the
number of points; and f ∈ R1024 is the output feature.

Our proposed network architecture is shown in Figure 3, with subsequent subsections
providing detailed introductions to each submodule.
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Figure 3. Our KPConv-based dual-branch network architecture for 3D face recognition.
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3.2.1. KPConv-Based Dual-Branch Network Structure

Our objective is to enhance the accuracy of face recognition tasks through the uti-
lization of a dual-branch network architecture based on KPConv. This enables improved
capturing of similarities across input point clouds, especially in the presence of variations
in expression and posture. KPConv introduces a learnable convolution kernel, represented
as a kernel point, akin to a spherical area with an adjustable radius. This kernel is em-
ployed to calculate features for each point. In Equation (6), the convolution operation is
executed on the domain set surrounding each point i, and a weight ϖ is computed for point
j within each neighborhood, representing the influence of point j on point i. Subsequently,
the eigenvectors of the points in these neighborhoods are weighted and summed based on
the corresponding weights to derive the eigenvector θ of point i:

fθ(xi) = ∑
j∈N(xi)

ϖ(∥ sj − xi ∥)sjθ(∥ sj − xi ∥) (6)

where fθ(xi) represents the feature of the i-th point, sj represents the position of the j-th
point, θ is the feature vector, ϖ is the weight parameter of the convolution kernel, and N(xi)

is the neighborhood set of the i-th point.
In Figure 4, each point on the point cloud is associated with a convolution kernel.

Refer to Section 3.2.2 for details on the determination method of the convolution kernel.

Output featuresOutput features

Input Kernel Output

Point features
ikh

Kernel responses
Summation

Summation

( )if kW

Figure 4. The core weight matrix Ωθ multiplies each input point feature fi, and the correlation
coefficient hiθ is determined by the spatial relationship of the point with respect to the core point.

Our dual-branch network takes a set of point clouds (P1, P2) as input and processes
them through two encoders, each comprising 4 layers and 2 convolutional blocks using
KPConv, as shown in Figure 3. To fuse the encoding information from the two encoders, we
concatenate the feature differences corresponding to the encoding ratio. To calculate this
feature difference, we designed the FCMixer function at the top of the dual-branch network.
This function compares each point in P2 with its nearest spatial point in P1, obtaining
features (xi, xi

′
). A linear transformation is applied through the learnable weight matrix

(ω1, ω2), calculating the difference between the features of each point in P2 and the features
of the nearest point in P1. The fused feature vector f (vi) is then obtained as a network
output, indicative of the likelihood that two input faces correspond to the same individual.
The decoder part of the network consists of a 4-layer stack containing recent upsampling
and concatenation stages and a single convolution.

f (vi) = FCMixer(ω1 · xi + ω2 · xi
′
) (7)

where f (vi) are the fused feature vectors, xi and xi
′

represent the feature vectors of the
dual-branch networks, respectively, and ω1 and ω2 are the learnable weight matrices.
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3.2.2. Adaptive Feature Learning Module for Local Neighborhood

KPConv uses space to generate fixed convolution kernel points, computes the weight
matrix through a kernel function, and processes points within a spherical neighborhood.
By addressing the challenges posed by the direct and intricate regular grid convolution
problem, KPConv determines the points of the spherical neighborhood through methods
such as Poisson disks or random points. This approach effectively reduces operational
complexity in the convolution process.

However, in 3D face recognition, traditional convolutional approaches, such as the
rigid convolution kernel used in KPConv, face challenges due to the non-rigid nature of
three-dimensional faces. These faces exhibit strong geometric irregularities caused by
variations in expression and posture, resulting in uneven sides and fronts and clustering
in specific dense areas. Unlike flat surfaces like chairs and tables, 3D faces demand a
more adaptive convolutional approach. The rigid convolution kernel of KPConv, employ-
ing a system of attraction and repulsion, indiscriminately considers features from local
neighborhood points, limiting its effectiveness in recognizing faces from point cloud data.
For instance, attributing equal importance to the densest points in the forehead center and
the regions around the eyes and nose may overlook crucial information related to facial
shape and expression. Therefore, integrating contextual information from various facial
areas, such as the connection between the forehead, eyebrows, and eyes, proves essential
for effective 3D facial recognition.

We propose an adaptive feature learning (AFL) module designed to merge the local
neighborhood features of each point in the point cloud with the contextual features of the
local environment. In this process, the AFL module effectively modulates the contribution
of each point to the target feature through calculating the weighted influence based on
their relative positions and importance. Although traditional normalization methods are
not employed during feature fusion, the adaptive calculation of each point’s influence,
considering its relative relationships and significance in the local region, achieves a similar
effect. This mechanism ensures balanced feature fusion while mitigating potential over-
smoothing issues that can arise from conventional normalization techniques. The AFL
module dynamically adjusts the radius neighborhood range, identifies neighboring points,
learns the impact of each point on others to refine features, and concurrently reduces the
computational burden of convolution. This adaptive adjustment enables AFL to effectively
integrate inter-neighborhood contextual information into point features, significantly en-
hancing its capacity to characterize local neighborhoods. Figure 5 provides an overview of
the AFL module, a method adept at extracting local neighborhood context through dense
interconnections among points.

Given a region R and its feature set Pi = {xp1 , xp2 , · · · , xpn}, we introduce the adaptive
feature learning (AFL) module. The AFL module is designed to augment point features
within P by acquiring contextual information from local neighborhoods.

P
′
i = Pi + ∆Pi

∆Pi = F(Pi, P), ∀Pi
(8)

where Pi
′

is the feature enhancement of Pi, and P is the feature set after the feature mecha-
nism F is aggregated.

The feature mechanism F efficiently facilitates the exchange and aggregation of infor-
mation within a local region P by adaptively learning the influence of each feature in P on
each Pi. It is mathematically expressed as follows:
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ξij = F(Pi, P) =
n

∑
j=1

M(g(Pi, Pj)) · prel(Pi, Pj) (9)

Here, M(g(Pi, Pj)) computes the influence of Pj on Pi, denoted as ξij, and prel rep-
resents the relationship between Pj and Pi. Notably, we account for Pi’s self-influence
on F.
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Figure 5. In our adaptive feature learning (AFL) module in the local region R, each feature Pi

experiences the influence of other features, and the strength and direction of this influence are
dynamically determined by the coefficients (i) and j based on the differences in feature vectors. This
adaptive learning process aims to enhance the descriptive power of the output P

′

i to better capture
the characteristics of the entire region.

The influence function g(Pi, Pj) between features Pi and Pj is calculated using the M
network to obtain the influence index ξij between Pi and Pj. Here, the function g combines Pi

and Pj, and ξij serves as an indicator of the influence of Pj on Pi. There are four simple ways
to model a function g. These include no combination (AFL-non), combination by feature
summation (AFL-sum), feature subtraction (AFL-sub), and feature concatenation (AFL-
Con). The effectiveness of these methods is demonstrated in the following experiments.
Throughout this process, the M network learns to calculate ξij and represent the influence
of each Pj on Pi.

The purpose of the relation function prel is to ascertain how the influence indicator ξij

affects Pi.

prel(Pi, Pj) =

 Pi − Pj, i f i ̸= j

Pi, i f i = j
(10)

where when i = j, prel is Pi, and when i ̸= j, prel is Pi − Pj.
After the enhancement of each feature Pi in the local region R by the feature mechanism,

the final result is as follows:

P
′
i = α

(i)
i · Pi +

n

∑
j=1,j ̸=i

α
(i)
j · (Pj − Pi) (11)

α
(i)
j =

 −pimp(Pi, Pj), i f i ̸= j

1 + pimp(Pi, Pj), i f i = j
(12)
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In accordance with Equation (12), each feature Pi within the local neighborhood R
undergoes the influence of a force field-like effect from the constructed adaptive feature
learning (AFL) module. Pi is subjected to forces exerted by each feature in the feature space,
resulting in either attraction or repulsion. The adaptive learning coefficient ξij, influenced
by the difference between the two feature vectors, determines the magnitude and direction
of the force. Consequently, the output Pi

′
furnishes a more comprehensive characterization

of the region by incorporating contextual information from the entire region.

3.3. Loss Function

In addressing the significant inter-class variations and intra-class similarities observed
in face data, our network optimization incorporates an enhanced central loss function.
This function calculates the distance between each feature vector in the point cloud and
the associated category center, utilizing cosine similarity as a replacement for the original
Euclidean distance. The adoption of cosine similarity aims to assess the angle between
two feature vectors, emphasizing the direction of the face data. This approach proves
more effective for face learning, especially when dealing with feature vectors of varying
lengths. We refer to several existing works, such as SphereFace [50] and ArcFace [7], which
adopt cosine similarity to measure the similarity between facial feature vectors and achieve
significant performance improvement. In addition, the application of cosine similarity has
also been verified in other computer vision tasks, especially in the case of dealing with high
dimensionality, sparse features, and inconsistent feature lengths. Compared with Euclidean
distance, cosine similarity can provide a more stable learning process and is more effective
for face learning.

Lc =
1

2N

N

∑
i=1

∥d(xi, xi
′
)− cyi∥

2
2 + λ

m

∑
j=1

∥cj∥2
2 (13)

where N is the total number of point clouds, d(·) calculates the cosine distance between two
vectors, cyi represents the category center of the category to which the i-th sample belongs
yi, m is the total number of categories, cj is the category center of the j-th category, and λ is
the regularization term coefficient.

3.4. Implementation Details

Trained using facial scans comprising N = 24,000 points, the network is utilized for
classification training. Each point in the dimensional space is characterized by Euclidean
coordinates (x, y, z) and associated normal vectors (nx, ny, nz). We train the proposed
network using PyTorch. With the exception of the final classification layer, all layers
are batch-normalized using the Adam optimizer. Every 20 epochs, the initial learning is
lowered by a factor of 10 before being reset to 10−3. Additionally, weight decay begins at
0.5 and reduces by 0.5 each time it reaches 0.99. The network is trained on a single NVIDIA
GeForce GTX 3060TI GPU for a total of 150 epochs with a batch size of 10 scans.

4. Experiments
First, the dataset utilized in this study and the data pretreatment processes before

the experiments are described in this section. Then, for 3D face recognition, we assess the
performance of the suggested dual-branch network structure using synthetic training data.
Finally, we use two open-source 3D face benchmarks to evaluate our methodology.

4.1. Datasets

In this research, we evaluate our proposed 3D face recognition network using
two publicly available datasets: FRGC v2.0 and Bosphorus.
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FRGC v2.0 (Face Recognition Grand Challenge version 2.0) is a facial recognition
dataset released by NIST in 2006. It contains about 1432 facial images of 466 people taken
under different lighting and expressions, with individual still images, video sequences,
and 3D reconstructed models, as well as gender, ethnicity, and age information. The compo-
sition of the dataset consists of two parts: Gallery and Probe. The Gallery set contains static
frontal images of subjects, while the Probe set consists of query images seeking the most
similar image in the Gallery, evaluating retrieval performance. In experiments, a subset of
FRGC v2.0 serves as real data for network training, with 443 faces allocated for the real-data
validation set and 524 faces for guiding the generation of real data.

Bosphorus, a collaborative project from Bogazici University, Turkey, focuses on collect-
ing facial expression and shape information for 3D face modeling. It includes data from 105
individuals, with two to four facial expressions per individual, resulting in 4665 images.
The dataset offers high-resolution 3D facial models with detailed information for accu-
rate facial analysis. The Bosphorus dataset contributes to the evaluation of the proposed
methodology.

4.2. Data Preprocessing

We conduct preprocessing on the acquired 3D face dataset obtained in Section 3.1, in-
volving operations like point unification, normal estimation, and coordinate transformation.

The normal vector, a crucial characteristic of a point cloud, n ∈ RN×3 is computed
for the input point cloud P using principal component analysis. The output of the normal
estimation submodule is denoted as [Pn] ∈ RN×6.

In the context of 3D face recognition, the tip of the nose serves as the reference point
for normalization. The coordinate transformation involves setting the coordinates of the
nose tip as the origin (0, 0, 0) for all points in the 3D point cloud data. To mitigate potential
interference from non-face areas, a sphere with a radius of 90 mm is constructed based
on the nose tip. Points outside this sphere are removed, ensuring the retention of only
face-related point cloud data. Additionally, potential outliers or noise are eliminated by
setting a threshold for the nearest neighbor, excluding points that are excessively distant or
deviate from the facial structure.

Through these preprocessing steps, non-face regions and outliers in the 3D face point
cloud data are effectively addressed, providing normal estimation and a refined and
consistent representation of the data with the nose tip as the coordinate origin.

4.3. Ablation Study

Training the network on our hardware takes approximately 80 h with a dataset compris-
ing 5000 identities, each identity has 200 different expressions, unless otherwise specified.
For the ablation investigation, the evaluation primarily focuses on the accuracy on the
Bosphorus dataset, with emphasis on a subset of neutral scans identified by the filename
convention “N_N_0” from the Bosphorus dataset. This approach allows for expedited and
efficient comparisons.

4.3.1. Effectiveness of the Local Neighborhood Feature Learning Module (AFL)

We conducted ablation studies on the Bosphorus dataset, categorizing experiments
into those without the AFL module (baseline) and those with the AFL module. Following
the principles outlined in Section 3.2.2 for the AFL module, we explored four different styles
of the combination function g in prel within each local group. These styles included no
combination (AFL-non), combination by feature summation (AFL-sum), feature subtraction
(AFL-sub), and feature concatenation (AFL-Con). Quantitative results are presented in
Table 1, where “rank-1 identification rate” signifies the recognition rate at which the match-
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ing item returned by the recognition algorithm ranks first among all possible matching
items after comparing the query image with all items in the database.

Table 1. Whether the AFL module is added in the ablation study.

Method Rank-1 Identification Rate (%)

Baseline 95.51
AFL-non 96.01
AFL-sum 94.37
AFL-sub 97.19
AFL-Con 96.34

Learning only the adjustment of individual features without interaction with other
features hampers the exploitation of contextual information in local regions. Summation op-
erations, which involve summing pairwise features, may diminish the discriminative ability
for local area features, impacting recognition capability. Conversely, feature concatenation
renders some feature representations nearly identical, falling short of the discriminative
power achieved by the subtraction operation. The subtraction operation ensures each fea-
ture is unique to the combination of Pi and Pj, enhancing classification ability. Consequently,
we selected the local feature subtraction operation as the adjustment method due to its
superior discriminative and representative characteristics compared to other alternatives.
On the Bosphorus dataset, the rank-1 recognition rate increased by 1.68, demonstrating the
notable effectiveness of the local neighborhood feature learning module.

As shown in Figure 6, the inclusion of the local neighborhood feature learning module
yields a substantial enhancement in facial feature extraction compared to scenarios where
the module is absent. This improvement allows for a more effective capture of prominent
feature variations among facial regions, thereby better reflecting individual differences
in faces.

(a)

(b)

Figure 6. Local neighborhood feature selection, where (a) is without adding the AFL module and
(b) is the change after adding the AFL module.

4.3.2. Effectiveness of the Dual-Branch Network Structure

Compared with the KPConv network, the introduction of a dual-branch network
structure aims to process two inputs through the same network, facilitate focused feature
extraction at different scales in each branch, calculate input similarities, and share weights to
reduce parameters. So that the feature advantage in positive neutral faces can be effectively
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applied to non-neutral faces, the subsequent merging of branch outputs achieves the fusion
of information, leading to improved model training efficiency and generalization.

Table 2 outlines the configuration and training parameters of various networks, main-
taining a consistent external structure for comparative experiments.

Table 2. A list of the deep learning training parameters.

Optimizer Initial Learning
Rate

Learning Rate
Scheduler Dropout Loss Batch Size

PointNet Adam 0.001 Step No NLL 32
PointNet++ Adam 0.001 Step No NLL 24

KPConv SGD 0.001 Exponential Yes NLL 10
Dual-branch KPConv SGD 0.001 Exponential No NLL 10

Table 3 demonstrates the consistent superiority of the dual-branch network structure,
regardless of the backbone architecture (PointNet, PointNet++, and KPConv) and input
form (Points, Points + Normals). Specifically, the rank-1 recognition rate of the KPConv net-
work surpasses that of the PointNet and PointNet++ networks by 7.94 and 3.44, respectively.
Moreover, the KPConv network employing the dual-branch topology achieves a higher
rank-1 recognition rate (1.82) compared to the standalone KPConv network. These findings
validate the significant contribution of the proposed dual-branch network and the input
form using the “Points+Normals” (x, y, z, nx, ny, nz) layout to the improvement of 3D face
recognition accuracy. Subsequent tests utilize both “Points+Normals” (x, y, z, nx, ny, nz)

from our suggested 3D facial scans as input modalities.

Table 3. The effectiveness of dual-branch network structure on the Bosphorus database.

Method Modality Rank-1 Identification Rate (%)

PointNet Points 87.53
PointNet++ Points 92.03

KPConv Points 95.47
Dual-branch KPConv Points 97.29

PointNet Points+Normals 91.60
PointNet++ Points+Normals 94.10

KPConv Points+Normals 96.75
Dual-branch KPConv Points+Normals 98.83

4.3.3. Effectiveness of the 3DRecNet Network Architecture

Here, we provide visualization results that validate the performance of the KPConv-
based 3DRecNet network that uses a dual-branch network topology together with a local
neighborhood feature learning module customized for 3D face recognition.

Figure 7 presents a t-SNE visualization of depth features obtained from various net-
work models projected into a two-dimensional embedded space [51]. While KPConv
exhibits tightly grouped depth features compared to PointNet and PointNet++, occasional
clustering errors are observed. In contrast, the 3DRecNet model designed in this study
demonstrates a slightly superior performance to the KPConv model, showcasing its ability
to extract more discriminative features.
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Figure 7. The facial features that were recovered from the different models—PointNet, PointNet++,
and KPConv—as well as the suggested model, 3DRecNet, are displayed in the t-SNE visualization.
Each color in the visualization corresponds to a different identity.

4.3.4. Effectiveness of the Real-Data-Guided Generation

While achieving a peak accuracy of 98.83% with the initially generated dataset, our
subsequent experiments revealed the potential presence of overfitting phenomena. To ad-
dress this concern and validate the training efficacy, we propose a novel data generation
approach guided by real data. Further experiments are conducted on constrained subsets
of real data to mitigate overfitting. In these experiments, approximately half of the faces
in the FRGC v2.0 sample subset are randomly selected for real-data-guided generation,
forming the real-data validation set with the remaining half. The results indicate that the
integration of the real-data-guided generation strategy with the initial generation method
significantly enhances the rank-1 recognition rate on the Bosphorus dataset and effectively
mitigates overfitting. This strategy not only sustains high accuracy but also improves the
model’s generalization ability, offering a robust solution to the overfitting challenge.

Figure 8 presents accuracy curves for both the training and test sets, contrasting the
baseline model with the inclusion of real data. Despite an escalation in disturbances under
real-data guidance, there is a gradual rise in the accuracy rate, enhancing the generalization
ability of the model. This underscores the efficacy of genuine 3D face data augmentation in
addressing overfitting challenges.
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Figure 8. A detailed demonstration of the performance of the KPConv and dual-branch KPConv
backbones is presented, considering their effectiveness on both training and test sets and whether
they use real 3D face data.

4.3.5. Effectiveness of the Training Data Volume

While generating training data is needed, an excessive amount of data may lead to
inefficient use of time and resources, resulting in reduced recognition efficiency. Strik-
ing a balance between recognition efficiency and the volume of training data is crucial.
Through extensive experimentation, we determined that using 10,000 training samples,
each comprising 200 expressions, achieved an optimal rank-1 recognition rate of 99.72% on
the Bosphorus dataset, as depicted in Figure 9. Although a slightly higher recognition rate
may be achievable with a larger dataset, the associated increase in time and resource costs
is considered unnecessary.

Figure 9. Contrasts based on various training volumes. The number of created expressions for each
identity is shown by Ne.
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4.4. Comparison with Other Methods

After conducting the ablation investigation in Section 4.3, we selected the 3DRecNet
network architecture with the “Point+Normal” input modality as our final model. In this
section, we compare our finalized model with earlier state-of-the-art techniques on two
widely known public 3D face datasets: Bosphorus and FRGC v2.

4.4.1. Results on FRGC v2.0

In Table 4, we present a comparison between our proposed method and other face
recognition algorithms using the FRGC v2.0 dataset.

Table 4. Rank-1 recognition rate (RR1) on FRGC v2.0 dataset.

Method Rank-1 Identification Rate (%) Time Cost (s)

Huang et al. [52] 97.60 3.28
Liu et al. [53] 96.94 4.4

Elaiwat et al. [54] 97.10 5.3
Lei et al. [55] 96.30 3.16

Gilani and Mian [48] 97.06 4.02
Gilani et al. [56] 98.50 3.8

Cai et al. [16] 100 3.57
Zhang et al. [17] 99.46 2.6

Yu et al. [49] 98.85 4.43
Ours 99.37 2.35

The presented table illustrates that some advancements in deep learning-based meth-
ods have demonstrated impressive recognition rates. Particularly, approaches artificial
feature extraction and transfer learning, such as Zhang et al. [17] and Cai et al. [16], exhibit
substantial improvements in recognition accuracy. However, the effectiveness of these
methods is constrained by challenges such as the uncertainty of test samples and the need
for privacy protection of sample data. Our method’s dual-branch network model de-
signed for face-data features is still competitive among methods without transfer learning,
achieving a notable 99.37% rank-1 recognition rate on the FRGC v2.0 dataset.

We evaluate the time complexity between the proposed method and the compared
methods. Specifically, we analyze the computation time of preprocessing and recognition
matching for each probe, since in 3D face recognition systems, the time consumption is
usually due to the fact that the probe face needs to be matched with the entire gallery set.
In this experiment, preprocessing includes the time to process raw 3D data and extract
features. From Table 4, we can see that the time consumed by our proposed method is
2.35 s, making it the least time-consuming among all methods.

In contrast to approaches that necessitate larger datasets for marginal gains in recog-
nition rates, our method excels in training with only the 967 faces from the FRGC v2.0
sample. Despite the limited real data, our methodology surpasses some specific approaches,
underscoring its efficacy and potential.

4.4.2. Results on Bosphorus

An additional experiment was carried out on the Bosphorus dataset to validate the
effectiveness of our proposed method. Table 5 provides a comparative analysis of our
methodology with other techniques using the Bosphorus dataset. The recognition rates
are reported for an identical subset of the Bosphorus dataset to ensure a fair and consis-
tent evaluation.
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Table 5. Rank-1 recognition rate (RR1) on Bosphorus dataset.

Method Rank-1 Identification Rate (%) Time Cost (s)

Huang et al. [52] 97.00 3.16
Liu et al. [53] 95.63 4.08

Berretti et al. [57] 95.67 5.25
Lei et al. [55] 98.90 2.9

Gilani et al. [56] 98.50 3.55
Cai et al. [16] 99.75 3.3

Zhang et al. [17] 99.68 1.82
Yu et al. [49] 99.33 5.46

Ours 99.72 2.06

Notably, our results closely align with those of Cai et al. [16], achieving a rank-1
recognition rate of 99.72%. The key distinction lies in our method’s utilization of cosine
similarity between feature embeddings as a classifier for matching scores. Furthermore,
our method is nearly 0.3 percentage points higher than the recognition rate of Yu et al. [49],
who also used GPMM to generate training data with a small amount of real data. This is
primarily attributed to the inclusion of a rotation matrix in our GPMM method, enabling
us to capture more training data reflecting changes in attitude, enhancing the generaliza-
tion capability of our model. In terms of time complexity, our proposed method takes
2.06 s, second only to Zhang et al.’s [17] method, but their recognition rate is lower than
ours. Therefore, compared with the existing methods, the proposed method has higher
computational efficiency and can perform face recognition faster.

5. Conclusions
In this research, we propose 3DRecNet, an innovative end-to-end deep learning

network tailored for 3D facial recognition using point clouds. To address the challenge
of limited training data, our approach leverages the Gaussian Process Morphable Model
(GPMM) learning-from-synthesis technique, generating diverse 3D face scans with various
identities and expressions. Unlike previous methods that reconstruct 3D faces from photos
or interpolate between them, our approach excels in creating realistic face scans in terms of
both achieving this at larger scales and in shorter times.

Additionally, we introduce a novel point cloud network specifically designed for
3D facial recognition, addressing performance constraints in face recognition compared
to generic object-based point cloud networks. Our local neighborhood adaptive feature
learning module focuses on utilizing contextual cues from nearby areas to enhance face
feature representation. This learning-based technique outperforms traditional 3D face
recognition algorithms by capturing more abstract and high-level characteristics, providing
resilience against various changes without relying on human-defined feature descriptions.
In contrast to methods that incorporate depth information into 2D images to simulate or
reconstruct 3D structures, our approach directly operates on point cloud data, eliminating
the need for a laborious face registration phase. Employing a dual-branch network structure
and various data augmentation approaches enhances training efficacy by capturing feature
changes before and after processing. Comprehensive tests and comparisons on the FRGC
v2.0 and Bosphorus datasets validate the superiority of our 3D face recognition system over
other techniques, showcasing its resilience and efficiency in tasks such as face recognition
and verification.

In future research, we aim to (1) explore face recognition with added temporal changes,
including aging effects, to broaden the applicability of our method; (2) integrate genera-
tive adversarial networks (GANs) to adapt to point cloud data, address fraud concerns,
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and achieve improved 3D face recognition results. By combining the data diversity and
realism of GAN-generated face data with the fine-grained control and robustness of the
GPMM, we aim to further enhance recognition accuracy, especially in challenging condi-
tions such as extreme facial expressions or occlusions; and (3) investigate the incorporation
of meta-learning into our training framework to enhance network performance.
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