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Abstract: In nature, dynamic liquid interfaces play a vital role in regulating gas transport,
as exemplified by the adaptive mechanisms of plant stomata and the liquid-lined alve-
oli, which enable efficient gas exchange through reversible opening and closing. These
biological processes provide profound insights into the design of advanced gas control tech-
nologies. Inspired by these natural systems, liquid gating membranes have been developed
utilizing capillary-stabilized liquids to achieve precise fluid regulation. These membranes
offer unique advantages of rapid responses, stain resistance, and high energy efficiency.
Particularly, they break through the limitations of traditional solid, porous membranes in
gas transport. This perspective introduces bioinspired liquid gating gas valve membranes
(LGVMs), emphasizing their opening/closing mechanism. It highlights how external stim-
uli can be exploited to enable advanced, multi-level gas control through active or passive
regulation strategies. Diverse applications in gas flow regulation and selective gas trans-
port are discussed. While challenges related to precise controllability, long-term stability,
and scalable production persist, these advancements unlock significant opportunities for
groundbreaking innovations across diverse fields, including gas purification, microfluidics,
medical diagnostics, and energy harvesting technologies.

Keywords: bioinspired design; gas valves; liquid gating membranes; stimuli response

1. Introduction
In living organisms and biological processes, liquids play essential roles, offering

valuable insights for advancing contemporary technologies. For instance, the liquid layer
on the surface of Nepenthes pitcher plants aids in insect capture [1], the tear film on the
eye provides a smooth refractive surface and protects against irritants [2,3], and synovial
fluid in knee joints minimizes friction to facilitate smooth movement [4–6]. Beyond their
function as lubricants, liquids also serve as key agents in regulating gas transport. In
plants, for example, guard cells control gas exchange by modulating the opening and
closing of stomata (Figure 1A), a process governed by water uptake or loss [7–10]. When
guard cells absorb water, the thinner outer wall expands more significantly than the thicker
inner wall, creating a gap between the cells and opening the stomata [11]. In contrast,
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water loss eliminates the gap, leading to stomatal closure. A similar phenomenon of
liquid-based regulation of gas exchange also exists in animals (Figure 1B), particularly in
the lungs—vital organs for respiration—which exhibit comparable functionality [12–14].
The alveoli contain tiny liquid-filled pores that dynamically respond to pressure changes,
facilitating efficient gas exchange with the external environment. Inspired by these natural
liquid functionalities, Hou et al. first proposed the concept of liquid gating mechanisms and
developed liquid gating membranes [15]. They designed a reversible and reconfigurable
gating system based on capillary-stabilized liquids, which effectively modulate fluid flow
during transport processes. These membranes work by sealing pores with a complete
liquid barrier in the closed state while creating a clean, liquid-lined pore in the open state.
Notably, they possess remarkable features such as antifouling properties, rapid dynamic
response, soft interfaces, structural plasticity, and defect-free performance [16–18]. These
advancements underscore the potential of bioinspired liquid gating systems in addressing
challenges across diverse technological applications [19–22].
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Gas valves are indispensable in various industrial applications, particularly in areas
such as petrochemicals, energy, and healthcare [23–26]. However, as the demands for
efficient gas transport systems in these areas continue to rise, traditional gas valves face
significant limitations, including the size of mechanical components, mechanical instability,
low efficiency, susceptibility to clogging, and poor resistance to contamination. Conven-
tional solid porous membranes, which typically feature pore sizes much larger than the
gas molecules, are unable to regulate gas flow effectively through dynamic opening and
closing [16]. In contrast, bioinspired liquid gating membranes, which utilize gating liquids
as materials, offer dynamic and efficient gas flow regulation. Therefore, these membranes
provide a solution to the shortcomings of traditional gas valves and overcome the limita-
tions of conventional solid porous membranes in gas transport. We propose the term liquid
gating gas valve membranes (LGVMs) to refer to such membranes specifically designed for
gas valve applications. By leveraging the physicochemical design of functional interfaces,
LGVMs provide expanded possibilities and unprecedented design flexibility for advanced
gas control systems.

This perspective highlights the latest research advancements in LGVMs, with a par-
ticular focus on their design principles, mechanisms, and applications in gas flow rate
regulation and selective gas transport. We explore the interaction between the solid–liquid
interface and gas–liquid interface governing the opening and closing of gas valves and
emphasize the use of external stimuli to achieve advanced, multi-level gas regulation in
LGVMs through active or passive regulation strategies. We hope this perspective will
accelerate the development of LGVMs, laying the foundation for innovative designs and
wider applications in fields such as environmental sensing, pneumatic robots, biomedical
devices, renewable energy solutions, and other advanced integrated systems.
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2. Design Principle and Strategy of LGVMs
The design principle and strategy of LGVMs are highly important, integrating the

complementary characteristics of liquid and solid materials, offering innovative functional
advantages for gas valve technology. The core design concept of LGVMs revolves around
utilizing a porous solid framework for structural support, with functional gating liquid
filling the pores and harnessing capillary forces within the microchannels of the solid to
achieve reversible gas flow control. The selection of solid materials necessitates careful
consideration of factors such as porosity, pore size, pore geometry, surface roughness, and
surface energy [16,27]. Materials with high porosity, excellent mechanical properties, and
good chemical stability, such as metals, ceramics, polymers, and organic/inorganic hybrid
membranes, are typically ideal candidates [28]. In addition, liquid materials exhibit unique
flexibility in functional control due to their self-healing properties, defect-free nature, and
dynamic responsiveness [29–31]. The selection of the gating liquid should be guided by the
following three considerations: (1) the gating liquid must be infiltrated and stably adhered
to the pores of the solid membranes; (2) the porous membrane has a higher affinity to the
gating liquid than the transport fluid; (3) the gating liquid is not miscible with the transport
fluid. To achieve these, the establishment of stable interfacial energy is indispensable [32].
The selection of liquid can be customized to meet specific application needs, considering
factors such as surface tension, boiling point, solubility, viscosity, and conductivity. For
instance, water-based, oil-based, ionic liquids, liquid metals, or functionalized solvents can
be chosen based on these criteria [30,32–34].

The wetting behavior of the liquid on the solid surface is critical to the stability of
LGVMs [28]. The contact angle serves as a key parameter for characterizing the wettability
and non-wettability properties of the solid materials. A contact angle of 65◦ is generally
regarded as the critical threshold between hydrophilicity and hydrophobicity. Below that
value (hydrophilicity), the gating liquid easily wets the solid material, achieving stable
gating functionality, while above this value (hydrophobicity), it becomes difficult for the
gating liquid to wet the solid material, resulting in unstable gating functionality [35,36].
Furthermore, the adhesion between the porous solid membrane and the gating liquid is vital
for maintaining the liquid gating functionality. Good wettability and certain adhesion can
ensure that the gating liquid exists stably in the pores of the solid substrate. Additionally,
the pore size of solid substrates also significantly impacts composite stability [32,37]. For
LGVM systems, if the pores are too large, the composite materials combined gating liquid
with porous solid may become unstable, leading to irreversibility in reconfiguration and
an inability to perfectly fill the pores. Conversely, smaller pore sizes may lead to higher
energy consumption in the application process. By integrating the structural support of
solid materials with the dynamic response capabilities of liquids, LGVMs transform the
conventional solid–gas interface into a solid–liquid–gas interface, constructing a defect-free,
fast-response material system.

The gating mechanism of LGVMs utilizes capillary forces to stabilize liquids, function-
ing as pressure-driven, reversible, and reconfigurable valves [15,38]. In the closed state,
the liquid fills and seals micro-scale pores, while in the open state, it forms a liquid-lined
pore. When the applied pressure (∆P) is below the threshold pressure (Pc) for gas transport
(0 < ∆P < Pc), the gas cannot penetrate the LGVMs. Once the applied pressure exceeds
the critical value (∆P > Pc), the LGVM permits gas transport. Upon pressure release, the
liquid reverts to its original state, resealing the pores (Figure 2). The threshold pressure is
directly related to the surface tension (γ) of the gating liquid and the pore size (D) of the
porous solid.

Pc = 4γ/D (1)
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Figure 2. Overview of LGVMs for gas valve opening/closing, gas flow rate regulation, and selective
gas transport, including a schematic of their typical response.

To achieve more multifunctional gas delivery and release, it is helpful to design
the LGVMs for active or passive stimulus response in enhancing performance. With
the continuous exploration of responsive design for LGVMs, strategies based on various
external stimuli, such as light [38], acoustic field [39], electricity [40], magnetism [41],
heat [42], stress [43] and chemical stimulation [44], are increasingly being developed.
LGVMs are capable of conducting gas valve switch control, gas flow rate regulation, and
selective gas transport via these strategies (Figure 2).

3. Progress of LGVMs
LGVMs offer an adaptable switching mechanism for regulating gas transport. For

instance, Hou et al. employed capillary-stabilized liquids as reversible, reconfigurable
gates, where the liquid fills and seals the pores, thereby blocking gas flow in the closed
state [15]. When enough pressure is applied, the valve opens and the gas passes through,
which can, simply, achieve the control of gas flow.

To enhance the accuracy, interfacial transmission efficiency, and remote operability
of gas valves, there has been growing development regarding responsive LGVMs. For
instance, Chen et al. incorporated azobenzene-based molecular photoswitches (Table 1)
into the solid substrate of a stainless-steel membrane to create a light-responsive and
corrosion-resistant gas valve (Figure 3A) [42]. The interaction between the functional liquid
and the membrane can be modulated by ultraviolet (UV) light stimulation. Without UV
light, the azobenzene molecules show a trans configuration, exhibiting strong interactions
with the gating liquid, which prevents gas transport. Upon UV irradiation, the azobenzene
molecular photoswitches undergo trans-to-cis photoisomerization, significantly reducing
the solid–liquid interaction, which enables gas transport and transitions the system to an
open state. It can serve as an effective non-thermal, light-activated gas valve, enabling
dynamic and regulated control of gas flow within a specified region. It provides an active
way by applying external field stimulation to reduce the threshold pressure and make the
gas flow pass through. In contrast, another study introduced a passive way of making
photosensitive molecules into the gating liquid [37]. The light-responsive gating liquid
was prepared by dissolving the azobenzene-derived photoresponsive surfactant molecule
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AzoC8F15 in N, N-dimethylacetamide. This functional liquid was then integrated with a
nylon porous substrate to form a bioinspired photoresponsive liquid gating membrane.
Upon exposure to UV light, AzoC8F15 molecules experience a trans-to-cis isomerization
process, which leads to an increase in surface tension, and then an increase in critical
pressure, which impedes gas from passing through the valve. It has the opportunity to be
used in the precise and contactless control of microfluidics. Moreover, the acoustic field can
also be employed as a passive control mode. Liu et al. developed a gas valve system based
on a non-Newtonian fluid gating membrane, utilizing the shear-thickening behavior of
corn starch suspensions and copper foam [39]. When subjected to acoustic field stimulation,
the friction and contact of the particles in corn starch suspensions increase the pressure
threshold, effectively blocking gas transport. It could be leveraged for the development of
integrated smart materials tailored for operation in complex and extreme environments,
including the transport of hazardous and explosive gases.

Table 1. Summary of reported responsive LGVMs, including the external stimuli, the responsive
materials, and the applications.

External Stimuli
Responsive Materials

Applications
Solid Porous Membranes Gating Liquids

Ultraviolet [42] Azobenzene-based
stainless-steel mesh Krytox 103 Positional flow control

Ultraviolet [37] Nylon porous substrate Photoresponsive surfactant
molecule

Precise and contactless control
of microfluidics

Acoustic field [39] Copper foam Corn starch suspension Transport of hazardous and
explosive gases

Ultrasound stimulation [45] Stainless-steel mesh Sodium acetate
trihydrate

Infrared-monitored
flow-regulating valve

Electric field [46]
Stainless-steel mesh with

sodium dodecyl
benzene-sulfonate

LiClO4 aqueous solution Air purification

Chemical stimulation [44] Nylon porous membrane Amphiphilic molecule Gas separation,
CO2 capture
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These responsive LGVMs possess the capacity not only to effectuate favorable switch-
ing control but also to perform highly flexible modulation of gas flow rate. For example,
Han et al. designed a crystallization-induced liquid gate (CILG) using a supersaturated
solution (sodium acetate trihydrate) as the functional liquid and a stainless-steel mesh
as a porous membrane [45]. Ultrasound stimulation reduces the energy barrier between
the supercooling state and the crystalline state. The newly formed crystals by ultrasound
effectively reduce the pore size of the solid matrix, modulating the threshold pressure
required to pass through the CILG. By adjusting the ultrasound power, the density of
crystal growth can be controlled, which in turn regulates the pore size and transmembrane
pressure (Figure 3B). This straightforward method provides a flexible strategy for gas flow
rate control, holding significant promise for applications in smart gas valves, environmental
management, and energy development.

In addition to controlling the gas flow rate, LGVMs can also efficiently regulate bubble
behavior, offering neoteric solutions for microfluidic systems. Zhang et al. employed an
interfacial polymerization approach to deposit sodium dodecyl benzenesulfonate doped
polypyrrole (PPy) on a stainless-steel mesh to construct an electrochemical liquid-based
system (ELBS) [46]. By applying an electric field to modulate the water–phase interface,
they altered the redox state of the PPy coating, thus adjusting the hydrophilicity of the solid
surface and finally influencing microbubble formation and growth. In the reduced state,
increased hydrophilicity facilitates the generation of smaller bubbles, which enhances the
gas–liquid contact area, improving the efficiency of mass transfer and particulate capture.
The ELBS system achieved an air purification efficiency as high as 99.6%. This research
explores the dissolution, diffusion, and absorption mechanisms of gaseous pollutants at
liquid-based interfaces and demonstrates how liquid materials can be employed to modu-
late microbubbles via an electrochemical method. This control enhances mass transfer at the
three-phase interface for efficient removal of harmful gases and particles from the air, with
a crucial role in odor removal and bacterial elimination. Additionally, an aqueous solution
of sodium dodecyl sulfate is used as the gating liquid, while a microporous stainless-steel
membrane coated with gold served as the porous solid material. By adjusting the ap-
plied voltage, the adsorption and desorption of anionic surfactants on the gold-coated
surface can be controlled, enabling more flexible and rapid microbubble size regulation [40].
Under more negative potentials, anionic surfactants desorb from the surface due to electro-
static repulsion which decreases the contact angle and facilitates microbubble formation
(Figure 3C). This method of dynamically adjusting the microbubbles through an electric
field offers more possibilities for the LGVMs.

Beyond regulating the transport of a specific gas, LGVMs can also selectively respond
to different gas species. For example, Lei et al. developed a CO2-responsive gating liquid
by assembling amphiphilic molecules (poly(propylene glycol) bis(2aminopropyl ether)
and oleic acid) in an aqueous solution [44]. This gating liquid was then integrated with a
nylon porous membrane to form a protonation-induced liquid gating system (Figure 3D).
The underlying mechanism of this system is based on CO2-induced protonation, which
induces the rearrangement of the interfacial amphiphilic molecules, thereby modulating the
threshold pressure of the system. The system exhibits unique selective responsiveness to
CO2: when CO2 is the transport gas, the valve remains closed, while it opens when the gas is
N2, O2, or Ar. Furthermore, the system is capable of self-adaptive regulation based on CO2

concentration: at lower concentrations, the surface tension of the gating liquid decreases,
causing the valve to open; at higher concentrations, enhanced protonation increases the
critical pressure, leading to valve closure. These selective flow control mechanisms possess
considerable potential in applications such as gas separation, environmental monitoring,
and industrial emissions management.
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4. Challenges and Outlook
Liquid gating gas valve membranes address the limitations of traditional mechanical

gas valves, such as bulkiness and inflexibility, and overcome the inability of conventional
solid porous membranes to regulate gas transport [42–45]. These membranes also pro-
vide smooth, defect-free surfaces. Currently, LGVMs have made significant progress in
gas transport control, gas flow rate regulation, and selective gas transport through their
responsiveness to external stimuli. However, several challenges remain in practical appli-
cations, particularly in achieving precise controllability, long-term stability, and scalable
fabrication. Gas regulation can be inconsistent under fluctuating environmental conditions
due to non-linear responses in the liquid interface. Issues like liquid evaporation, leakage,
contamination, and mechanical degradation of porous membranes further limit durability.
Additionally, current materials often face trade-offs between performance, environmental
impact, and cost, while the energy demands of external stimuli-based control mechanisms
can hinder efficiency. Scalable production methods and seamless integration into existing
systems also pose significant challenges.

With the rapid development of materials science, novel solid and liquid materials are
emerging. Innovative material designs, such as robust, environmentally friendly liquids
and hybrid membranes with hierarchical structures, can enhance stability and performance.
In parallel, biomimetic designs inspired by diverse natural systems could enable more
advanced and responsive gas control systems. For instance, integrating dual-liquid systems
or multifunctional layers could provide selective and adaptive gas transport capabilities.
Further, incorporating catalytic functionalities or sensors into LGVMs could transform
them into multifunctional components for gas purification, conversion, and monitoring [47].
With scalable fabrication techniques, such as 3D printing and interdisciplinary collabo-
rations incorporating cutting-edge achievements in artificial intelligence, computational
modeling, and nanotechnology, efforts can focus on optimizing membrane interface design
and improving material performance, which will be essential to transition LGVMs from
prototypes to industrial applications. These advancements are promising to drive signifi-
cant progress in a variety of fields, including environmental governance, energy systems,
biomedical engineering, bioengineering, and adaptive robotics, fostering the development
of more efficient, sustainable, and multifunctional technologies for future applications.
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