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Abstract: The material bone has attracted the attention of material scientists due to its fracture
resistance and ability to self-repair. A mechanoregulated exchange of damaged bone using newly
synthesized material avoids the accumulation of fatigue damage. This remodeling process is also
the basis for structural adaptation to common loading conditions, thereby reducing the probability
of material failure. In the case of fracture, an initial step of tissue formation is followed by
a mechanobiological controlled restoration of the pre-fracture state. The present perspective focuses
on these mechanobiological aspects of bone remodeling and healing. Specifically, the role of the
control function is considered, which describes mechanoregulation as a link between mechanical
stimulation and the local response of the material through changes in structure or material properties.
Mechanical forces propagate over large distances leading to a complex non-local feedback between
mechanical stimulation and material response. To better understand such phenomena, computer
models are often employed. As expected from control theory, negative and positive feedback
loops lead to entirely different time evolutions, corresponding to stable and unstable states of
the material system. After some background information about bone remodeling and healing,
we describe a few representative models, the corresponding control functions, and their consequences.
The results are then discussed with respect to the potential design of synthetic materials with specific
self-repair properties.

Keywords: bone remodeling; bone healing; mechanoregulation; mechanobiology; mechanical stimulus;
feedback loop; adaptive material; programmable material; control function

1. Introduction

Bone is an archetypical example for an organ that completely regenerates through a healing
process [1–3] and serves as a role model in materials engineering [4]. The healing process is most
generally associated with the reconnection of separate pieces after bone fracture. The specificity of
bone healing in our body is its regenerative character which enables it to return to the pre-fractured
state without leaving a scar tissue. This is possible because in an early phase of the healing process
cells migrate into the tissue, providing a connection between bone ends. Subsequently, these cells
differentiate and form new tissue in response to mechanical stimulation. On a more mesoscopic length
scale, bone constantly undergoes a remodeling process. The purpose of this permanent resorption of
old material and formation of new material is not only to replace damaged tissue but to also allow for
structural adaptation to the most common loading conditions, thereby avoiding local concentration of
loads that might induce failure [5–7].

This perspective focuses on bone healing and remodeling. Both are described as mechanobiological
processes [8,9], i.e., mechanical stimuli that act as key regulators. The effect of mechanical stimulation
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can be (local) changes of the structure or of material properties. Mechanical forces propagate through
materials and are thus able to transmit information. In this way, a defect occurring in a certain position
of the material can be “felt” at some distance due to changes in force distributions. This non-local
nature of mechanical forces is therefore an effective way of triggering a mechanobiological response of
the material at a location different from the actual stimulus, leading to an adaptation of the properties.
In the case of bone healing, a cascade of local events is set into motion that can eventually result in the
macroscopic structural change of a reunion of two bone fragments.

From a theoretical point of view, the crucial material characteristic is the material’s response to
a mechanical stimulation. This characteristic is of higher complexity than typical material properties.
Figure 1 exemplifies this by analogy to behaviors from well-known simple systems. Generally,
a material parameter describes the (linear) relation between cause and effect, like how electrical
conductivity (i.e., the inverse of the electrical resistance) describes the resulting current after the
application of a specific voltage (Figure 1, left). Similarly, the compliance of a material is a measure of
the relative length change of a material in response to an applied compressive load.

A first step from a static to a more dynamic description of material behavior is to consider possible
influences of environmental conditions. Taking the example of electrical conductance, the material
can respond to a change in temperature by an increase of the resistance. In this way, the material
can become a responsive material, since the temperature can be used to influence the resulting
current (Figure 1, middle). This form of control is similar to the function of a gate in a transistor.
A further step towards more complex material behavior is obtained when the loop is closed so that
the controlling signal is not coming from outside but is intrinsically generated. In the Figure 1, right,
the resulting current is used to control the temperature, which influences the resistance of the material
and in turn affects the current. Thus, again, the control loop is closed. Such feedback loops are
characteristic for adaptive systems. It is important to distinguish between negative and positive
feedback loops. In a negative feedback loop (or negative coupling), a large outcome (i.e., current
in our example) would increase the resistance in the material and, consequently, lower the outcome.
This kind of regulation is known for thermostats that regulate the temperature near a desired setpoint.
Analogously, the system attains a state of dynamic equilibrium, which is due to the self-regulation of
the system typically termed homeostasis in biological systems. For a positive feedback loop (or positive
coupling) a large current in our example would induce a reduction of the resistance and, consequently,
further increase the resulting current. In this case, the system is unstable and tends to spiral out of
control. Classical outcomes are that the material’s response is limited by some boundary conditions,
like a lower boundary of the resistance that cannot be crossed; therefore, the system stabilizes by
attaining minimum/maximum values. Further, the escalation of the process has severe side effects that
put an end to the usual function of the material.

Bone remodeling and healing provide examples of mechanoregulation via negative and positive
feedback loops, respectively. In theoretical models of these processes, the mechanoregulation is
implemented by functions that link a local mechanical stimulus to a local change in the structure or
properties of bone material. These so-called control functions are typically motivated from biology and
challenging to measure experimentally. Consequently, computer models play an essential role in the
exploration of such systems. In computer models the following two steps are run through iteratively:
Firstly, a mechanical assessment is performed under external loading conditions considering the
current mechanical properties of the material. The obtained local strains and stresses in the material are
then used to calculate the mechanical stimulus. Secondly, the control function converts the stimulus
into local changes of structural or material properties, which are consequently updated. With the so
changed properties of the material, a new iteration starts.
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the property can be influenced by an external stimulation; in adaptive materials the stimulation is 
created internally by feeding back a signal related to the material’s output (right). 

Due to the biomedical importance of bone healing and remodeling, the mechanobiological 
aspect of these processes have been studied extensively using computer simulations. The scientific 
literature provides excellent reviews about computational work addressing the mechanobiological 
aspects of bone [8] and specifically for bone remodeling [10–12] and bone healing [13–16]. Instead of 
providing a further review, this perspective discusses a few representative examples of control 
functions for bone remodeling and healing. The definition of these control functions is sometimes 
“buried” in the Materials and Methods sections of the corresponding papers and are often described 
in biological terms without specifying their role as a control function in the sense introduced above. 
It is the aim of the present perspective to highlight the role of the control function and to provide 
some intuitive understanding of how choices of the control function influence the resulting repair 
process.  

The paper is organized into two parts. The first part deals with bone remodeling and the second 
with bone healing. In each part, the biological background of the process is given first. This 
description prescinds from all molecular and cell biological details and should only provide the 
background from a materials science viewpoint to understand the model approaches. After some 
theoretical considerations about the processes, the computer models and their used control functions 
are presented. The perspective concludes by discussing mechanoregulation in the context of the 
design of synthetic materials with self-repair properties. 

2. Bone Remodeling 

2.1. Biological Background 

The processes of bone modeling and remodeling are thought to reduce the fracture risk of bone. 
Remodeling refers to a renewal of the material by exchanging old, damaged bone with new bone. 
The aim of remodeling is, therefore, the maintenance of bone. Modeling refers to adding or removal 
of bone as response to mechanical needs. Here, the aim is an adaptation of the bone structure to a 
change in the mechanical environment [5,6]. For example, after starting to play tennis, the bones in 
the racket arm increase their cross-sectional area, while the bone in the opposite arm remains 
structurally unchanged [17]. The distinction between modeling and remodeling makes sense 

stress
voltage

strain
current

modulus
resistance

material
property

stress
voltage

strain
current

modulus
resistance

signal

UV
T

responsive
material

U

R(I)

I

I=U/R

U

R

I

negative coupling
homeostatic

adaptive
material

U

R

I

positive coupling
instable

Figure 1. Comparison between different material behaviors: in the simplest case a material property
like resistance or modulus is characterized by a fixed value (left); in responsive materials (middle) the
property can be influenced by an external stimulation; in adaptive materials the stimulation is created
internally by feeding back a signal related to the material’s output (right).

Due to the biomedical importance of bone healing and remodeling, the mechanobiological aspect
of these processes have been studied extensively using computer simulations. The scientific literature
provides excellent reviews about computational work addressing the mechanobiological aspects of
bone [8] and specifically for bone remodeling [10–12] and bone healing [13–16]. Instead of providing
a further review, this perspective discusses a few representative examples of control functions for
bone remodeling and healing. The definition of these control functions is sometimes “buried” in the
Materials and Methods sections of the corresponding papers and are often described in biological
terms without specifying their role as a control function in the sense introduced above. It is the aim
of the present perspective to highlight the role of the control function and to provide some intuitive
understanding of how choices of the control function influence the resulting repair process.

The paper is organized into two parts. The first part deals with bone remodeling and the second
with bone healing. In each part, the biological background of the process is given first. This description
prescinds from all molecular and cell biological details and should only provide the background
from a materials science viewpoint to understand the model approaches. After some theoretical
considerations about the processes, the computer models and their used control functions are presented.
The perspective concludes by discussing mechanoregulation in the context of the design of synthetic
materials with self-repair properties.

2. Bone Remodeling

2.1. Biological Background

The processes of bone modeling and remodeling are thought to reduce the fracture risk of
bone. Remodeling refers to a renewal of the material by exchanging old, damaged bone with new
bone. The aim of remodeling is, therefore, the maintenance of bone. Modeling refers to adding
or removal of bone as response to mechanical needs. Here, the aim is an adaptation of the bone
structure to a change in the mechanical environment [5,6]. For example, after starting to play tennis,
the bones in the racket arm increase their cross-sectional area, while the bone in the opposite arm
remains structurally unchanged [17]. The distinction between modeling and remodeling makes



Biomimetics 2019, 4, 46 4 of 16

sense conceptually. However, both processes are performed by the same bone cells. Osteoclasts
are resorbing bone and osteoblasts are forming bone. On the level of the bone cells, remodeling
has been defined by a resorption event followed by a formation event. In this case, osteoclasts and
osteoblasts work as a “team”, where this team character is highlighted by describing the actuating
cells as a bone multicellular unit (BMU). A resorption event that is not followed by formation or,
vice versa, a formation event that is not preceded by resorption is then conceived as modeling [5]. It is
straightforward to think about processes, which carry both characteristics of modeling and remodeling.
In aging people, a resorption by osteoclasts is followed by bone formation, but often the amount of
formed bone is less than the resorbed bone. This so-called remodeling imbalance results in age-related
loss of bone mass [18]. As a consequence, a standard therapy against age-related bone loss and
osteoporosis is intended to slow down the rate of bone turnover by administering bisphosphonates
(i.e., anti-resorptive therapy) [19]. A pharmaceutical shutdown of a repair mechanism is an ambivalent
response to an increased bone fracture risk in older people. In this perspective, we follow the usual
convention to refer with bone remodeling to both remodeling and modeling processes.

Osteoblasts and osteoclasts can form and resorb bone only at free bone surfaces. The foamy
structure of trabecular bone provides ample surface and easy access for bone cells. In the dense cortical
bone, the surface has to be created by the cells themselves [20]. Osteoclasts dig a roughly circular
tunnel with a diameter of approximately 300 µm into the bone and, in their wake, osteoblasts are filling
this tunnel with new bone material. In this way, a cylindrically shaped osteon is formed. Remodeling
is a rather slow and local process. Trabecular bone resorption can take weeks and formation can even
take months [21]. Although the exchanged volume in a remodeling event is rather small, the large
number of remodeling events running in parallel leads in trabecular bone to a remodeled volume of
20% of the total volume each year [7].

To allow for an adaptation of the bone structure to changes in the mechanical loading, a mechanosensor
has to have a controlling role in bone remodeling. Although the sensing mechanism is still debated,
there is general agreement that osteocytes play a key role in bone mechanosensation [22,23]. Osteocytes
are differentiated osteoblasts and are the most abundant bone cells. They live inside the mineralized
bone matrix and connect with their multiple cell processes to other cells to form a cell network. This cell
network is housed in a fluid-filled porous network. A prominent theory of bone-mechanosensation is
that mechanical loading on the bones induces a fluid flow through the porous network causing shear
forces detected by osteocytes [24–26]. Alternatively, it has been proposed that microdamage itself is the
trigger of bone remodeling by disrupting some of the cell processes [27]. This disruption would lead to
the death of osteocytes and the missing signal of the osteocyte would bring osteoclasts and osteoblasts to
the scene [28].

2.2. Theoretical and Experimental Results about the Mechanocontrol of Bone Remodeling

First, ideas about structural adaption of bone and the mechanoregulation of bone remodeling date
back to the late 19th century, with the work of Julius Wolff and Wilhelm Roux. A modern formulation
of what is known as Wolff’s law, which governs bone remodeling, reads: bone is locally deposited
wherever mechanically needed and is resorbed where it is not needed. Harold Frost described the
adaptation of the total bone mass to changes in the mechanical loading using a mechanical feedback
model. In his mechanostat model, he introduced an upper threshold of the mechanical stimulation
above which the bone mass starts to increase and a lower threshold corresponding to mechanical
disuse below which the bone reacts by reducing its mass. Between these two thresholds, a “lazy
zone” describes an equilibrium situation with an unchanged bone mass within a range of intermediate
mechanical stimulation [29]. A schematic representation of the control function regulating bone
resorption and formation in Frost’s mechanostat model is shown in Figure 2a. Using feedback theory,
the effect of changes in the setpoint of the mechanostat, e.g., due to hormonal changes, were studied [30].
In a cell-based model of the mechanostat, it has been proposed that the creation of new osteocytes
during bone remodeling would provide the possibility to redefine the setpoint of the mechanostat [31].
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An unresolved research question is which mechanical quantity is most appropriate to describe the
triggering of bone remodeling. Different mechanical stimuli have been proposed, all of which
are dynamic and typically related to strain rate [5]. For reasons of convenience, a scalar quantity,
e.g., principal strain or strain energy density, is often used in models. Moreover, a static description
due to a straight-forward mathematical equivalence between static and dynamic mechanical stimuli
in the case of cyclic loading is used [32].

Recently, an important experimental breakthrough was achieved, leading toward a more
quantitative description of Wolff’s law. This has been made possible by using in vivo microcomputed
tomography (µCT) on small rodents like mice to monitor the progress of bone remodeling [33].
Several three-dimensional images of bone structure in living animals was taken with a time lapse
for a few days, which allowed for the sites of bone formation and resorption on the bone surface to
localize [34]. In this time period, the imaged bone was mechanically stimulated under controlled
conditions and the local mechanical loading on the bone surfaces was calculated using Finite Element
(FE) modeling [35,36]. Spatially correlating the results from the in vivo µCT and FE modeling allowed
us to deduce the control function (or remodeling rule), i.e., the probability for the occurrence of bone
formation or resorption as a function of the strength of the mechanical stimulus (Figure 2b) [35,36].
Several features are remarkable in the measured remodeling rule. (i) Both formation and resorption
are mechanically regulated, i.e., the respective curves are increasing for formation and decreasing
for resorption. (ii) In the case of bone formation, the mechanoregulation can be well described by
a transition between a low probability value for weak mechanical stimulation and a high value for
strong stimulation. For resorption, the behavior is mirrored with a drop between two probability
values. (iii) The transition between the two values is not sharp, but rather smeared out, i.e., there is no
simple threshold above which the formation kicks in or resorption shuts down. Investigation of mice
of different age showed that this transition loses further on sharpness with age [36].
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Figure 2. Comparison between a control function, which has been suggested for the mechanoregulation
of total bone mass by Harold Frost in his mechanostat theory (a), and a control function obtained
in experiments on adult mice using a combination of in vivo microcomputed tomography, in vivo
loading and Finite Element modeling (b) (from [36]).

2.3. Computational Models of the Mechanoregulation of Remodeling

2.3.1. Mechanoregulated Formation and Resorption of Bone Material

The description of the mechanoregulation of bone remodeling using remodeling rules for bone
formation and resorption (Figure 2b) allows a straightforward implementation of a remodeling
algorithm in a computer model. In the model, the structure of trabecular bone is discretized using
a cubic lattice, wherein the binary image white voxels correspond to bone and black to non-bone
(i.e., bone marrow). Under a loading usually defined by the daily loads on the specific bone, the stresses
and strains in the bone and the mechanical stimulus as a derived scalar quantity can be calculated.
With the mechanical stimulus known in each voxel of the bone structure, the remodeling rule is
then applied to control possible changes in the structure. A classical implementation in a computer
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algorithm is used to randomly choose a voxel at the surface. If the voxel is white and corresponds to
bone, the remodeling rule is used to obtain the probability for resorbing this bone voxel. Alternatively,
if the voxel is black and corresponds to marrow, the remodeling rule provides the probability that this
voxel is turned to a bone voxel [37,38]. For the calculation of the mechanical stimulus, it has to be
defined whether only the nearest neighbor voxels or a larger environment of the potential site of bone
formation contributes [39].

Application of the computer model showed a natural coarsening of the trabecular architecture
with age, i.e., the number of trabeculae decreased with the remaining trabeculae becoming thicker
so that the bone volume stayed virtually constant [37]. Testing different remodeling rules resulted
for all remodeling rules in a trabecular architecture with trabeculae aligned to the external tri-axial
loading directions. Differences in the mechanoregulation, however, caused different responses when
classical therapies were applied to the virtual bone, i.e., increased mechanical loading due to physical
exercise or a decrease in resorption due to an anti-resorptive therapy. Using the computer model,
a remodeling rule based on Frost’s mechanostat including a lazy zone (Figure 2a) was found to be
in disagreement with experimental findings [38]. Experiments on small animals and humans confirmed
that a mechanoregulation including a lazy zone does not provide an adequate description for the
mechanical control of bone remodeling [35,36,40].

2.3.2. Mechanoregulated Effective Stiffening/Softening of the Bone Material

In contrast to the model just presented, where the adding or removal of bone form the surface
resulted indirectly in a local stiffening or softening of the material on a larger length scale, the model
proposed by Rik Huiskes et al. describes bone remodeling more explicitly as a change in local
mechanical properties. Again, the bone structure is mapped on a cubic lattice. However, the variable
describing the structure is not a binary variable (i.e., bone or non-bone), but a relative bone density m,
which is a continuous variable taking values between 0 and 1. The differential equation describing the
adaptation of m at the position x at time t is defined as [41]:

dm(x, t)
dt

=

τ[P(x, t) − ktr] − rOC for P(x, t) > ktr

−rOC for P(x, t) ≤ ktr
(1)

where rOC is the relative amount of resorbed bone, P(x, t) is the local stimulus for bone formation, ktr

the threshold value for formation, and τ a proportionality constant. The local relative bone density m
is then related to the local stiffness E of the material by a Gibson-Ashby type of equation [42],

E(x, t) = C m(x, t)γ (2)

where typically an exponent γ = 3 was chosen [43]. This second equation can be used to substitute m
in the differential equation by E, resulting in a differential equation for the local stiffness of the material.
Consequently, this model approach describes bone remodeling as an adaptive stiffening or softening
of the material. Solving this equation under a predefined loading condition results in a homeostatic
configuration, which is in equilibrium with the applied load [41].

First, implementations of this model in two-dimensions resulted in bone structures with
a checkerboard architecture—i.e., a pixel with a bone density close to the maximum value 1 had
neighboring pixels with a density of approximately the minimum value of 0 and vice versa [44].
This instability of the model was “tamed” when considering the stimulus of bone formation, P, not only
in the mechanical stimulation in the closest vicinity of the site of potential bone formation but also
in contributions from a more extended volume. The different contributions where weighted by a spatial
influence function, which decays exponentially with the distance from the site at the bone surface [43].
An important result obtained with this model approach was that it explained both the emergence
and maintenance of the trabecular architecture. Further, it explained the adaptation to changes in the
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external loading [41]. Figure 3 shows an example in which first the virtual bone was loaded in three
perpendicular directions and the model equations were solved in time until a homeostatic configuration
was attained (Figure 3a). Then, the external loading was altered by changing the vertical loading
to a loading direction with an angle of α = 20◦ to the vertical direction. The trabecular architecture
clearly adapted to this new loading conditions by reorienting its trabeculae along the new loading
direction. This reorientation is a rather slow process to that even after a simulation time corresponding
to 12 years the reorientation was not completed (Figure 3b) [45].Biomimetics 2019, 4, x FOR PEER REVIEW 7 of 15 
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Figure 3. (a) The negative feedback loop used as a control function resulted in a homeostatic configuration
of the trabecular bone orientation. (b) Changing the loading direction to be 20 degrees away from the
vertical direction leads to a reorientation of the trabecular architecture (from [45] with permission).

2.3.3. Bone Remodeling as Damage Management

Bone remodeling can be viewed from the perspective of damage management [27]. The permanent
mechanical loading of our bones results in fatigue damage, which accumulates over time. Bone remodeling
is counteracting this accumulation of damage and prevents the prevalence of damage production with
a stress fracture as its consequence.

The key parameter in the model proposed by Bruce Martin is now the fatigue damage defined
as observable crack length per unit area [46]. Two differential equations describe the rate of damage
formation and the rate of damage repair. This later rate is proportional to the existing damage and to
a so-called damage repair specificity factor, which takes into account that remodeling does not occur
spatially random but is directed towards sites of damage accumulation. Based on animal experiments
that demonstrated a spatial correlation between sites of damage and sites of remodeling [47], the value
of the damage repair specificity factor was estimated to be about 5. The control function in the model
describes now the relation between the damage, which is locally present, and the activation frequency,
i.e., the probability that within a given time period a new remodeling cycle will be initiated at this local
region. In the model, a sigmoidal relationship was chosen for this control function [46].

The model was used to study the interrelation between time scales, specifically of how the time
period needed a remodeling cycle that related to the half-life of a local concentration of damage.
Importantly, the computational work spotlighted an instability in the repair mechanism. Since bone
remodeling starts with bone resorption, the result is an increase in bone porosity and this reduction
of material produces higher strains in the remaining bone. However, higher strains are related with
an increased damage formation rate that initiates more remodeling events, which first remove the
damaged bone. This spiraling out of control of the repair mechanism leads as a final consequence to
a stress fracture of the bone [46]. This weakening aspect of bone remodeling has been brought up to
explain stress fractures in young military recruits [48].
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3. Bone Healing

3.1. Biological Background

While bone remodeling was about the prevention of fracture by replacing damaged material,
bone healing is about the reaction of bone after a fracture occurred and the reunion of broken pieces.
Despite all the biological complexity of the healing process [1–3,49], specific aspects of bone healing
can be described as a mechanobiological process [8]. Different to remodeling, the mechanical stimulus
does not influence cell action, but instead influences cell differentiation, i.e., which cells are formed
from stem cells/progenitor cells in the first place.

The healing process is classically subdivided into three overlapping phases [50]. During the initial
inflammatory phase [51], the fracture zone is cleaned from dead material, activities that restore the
blood supply are undertaken, and mesenchymal stem cells congregate. In the repair phase, additional
tissue in the form of a fracture callus is formed. With time, this callus turns from a soft callus to
a hard callus eventually made of bone. In the final remodeling phase, the superfluous bone material
is resorbed, leaving behind an intact healed bone. This rough description of healing highlights two
peculiarities. Firstly, that much more material is temporarily formed as needed in the end, so that the
last step consists in a removal of this dispensable material. Secondly, that transiently tissues different
from bone are present: fibrous tissue, cartilage, and fibrocartilage.

3.2. Theoretical Considerations about the Mechanocontrol in Bone Healing

Friedrich Pauwels pioneered mechanobiological thinking in the context of bone healing. Starting
from the different mechanical performance of tissues formed during healing, he hypothesized that
exactly these tissues are formed in the fracture callus that best perform the mechanical task at hand
(i.e., cartilage would form under conditions of hydrostatic pressure since cartilage well resists volume
changes). In contrast, fibrous tissues are more suited to resist shape changes and therefore would
form under shear stresses [52]. Even closer to an “algorithmic understanding” of bone healing is
the Interfragementary Strain Theory by Perren and Cordey [53]. This theory states that only tissues
that can withstand the strain in the gap without failure can be formed in the fracture gap. Therefore,
the fracture gap should initially be filled with a tough, but generally soft tissue. A consecutive stiffening
of this tissue lowers the strain in the callus and stiffer tissues with decreased strain tolerance can be
formed. Consequently, a feedback occurs between a stiffening of the callus and a lowering of the strain.
The outcome of this positive feedback loop is a hard callus made of bone, which undergoes remodeling
during the final phase of healing.

3.3. Models of the Mechanoregulation of Bone Healing

3.3.1. Mechanoregulated Models of Tissue Differentiation During Bone Healing

Only the essence of the computer models should be described here, avoiding all the technical
details. The starting point of mechanobiological simulations of fracture healing is often the situation
after the initial inflammation phase and the disappearance of the hematoma. At this stage, the fracture
callus consists of soft tissue and is loaded via the broken bone ends. Each voxel of tissue within
the callus is then characterized by three variables: (i) the local loading conditions characterized by
the mechanical stimulus; (ii) the tissue type that is present in the voxel (here, some models allow
a mixture of different tissues) [54,55]; and (iii) a local “biological potential” [56] that takes into account
how healing cannot proceed if some basic biological requirements are not fulfilled, in particular
the presence of stem cells and important signaling molecules, as well as a sufficient vascularization.
This biological part is usually modeled as a diffusion process. For example, in bone remodeling, a lot
of computational work was done to define an adequate mechanical stimulus. Following the ideas of
Pauwels, two stimuli corresponding to hydrostatic or shear stresses were proposed [57]: shear stresses
and fluid flow [54]. Healing outcomes based on different assumptions were compared [55]. However,
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a single mechanical stimulus like the volumetric strain proved to be sufficient to describe the healing
process under standard loading conditions [56].

In the case of bone healing, the control function coupled the mechanical stimulus with the
formed tissue type. Bone does not only have a much higher stiffness than cartilage (approximately,
Ecart = 500 MPa and Ebone = 20 GPa), but the stiffening rate is much higher for bone compared to
cartilage. The control function in bone healing is such that a low mechanical stimulation results
in bone formation and therefore a rapid increase in stiffness, while a large mechanical stimulus leads to
cartilage formation, i.e., a slow stiffening. The result of this rather counterintuitive coupling between
stimulation and material healing response can be seen in Figure 4. Bone formation starts at the outer
(i.e., periosteal) surface rather close to the fracture gap. The first bridging by newly formed tissue
occurs via cartilage. Ossification includes the substitution of cartilage by bone. Finally, the superfluous
bone is resorbed, while the density of the bone in the fracture gap attains the values of cortical bone.

Using mechanobiological models of bone healing, we studied the influence of (i) the size of the
fracture gap [58,59], (ii) the different loading conditions including the elongation of the long bone by
distraction osteogenesis [60], (iii) the stochasticity in the cellular mechanosensitivity [61], and (iv) the
animal species [62] on the course of healing.
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Figure 4. Six snapshots of a computer model showing the time evolution of different tissues during
bone healing. The succession of images should be read from left to right starting with the top row.
A top/bottom and left/right symmetry is assumed in the model. The starting configuration shows
the disconnected cortical bone (black) surrounded by a callus of soft tissue (red) and bone marrow
(orange). During the course of healing cartilage is formed (green) within the callus. Darker shades of
the same color denote more mature tissue. In the case of bone, darker grey refers to a bone of higher
mass density.

3.3.2. Generic Model of Self-Repair in a Mechanoresponsive Material

The scenario of a stiff fractured material that is embedded in a mechanoresponsive material and
heals under mechanical stimulation was systematically investigated in [63] (Figure 5a). The healing

response consists in a local increase of the relative stiffness of the material, ∆E(x,t)
E(x,t) , by a fixed amount,

in case the local mechanical stimulus is within a range defined by the upper and lower bound, s1 and
s2, respectively:

∆E(x, t)
E(x, t)

=

C ∆t if s1 ≤
∣∣∣ε(x, t)

∣∣∣∆(
E(x,t)

E0

)α
≤ s2

0 otherwise
(3)
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where
∣∣∣ε(x, t)

∣∣∣ denotes the norm of the strain along the vertical loading direction (Figure 5a), E0 the
initial stiffness of the mechanoresponsive material, ∆t the time increment, and C a proportionality factor.

Since the mechanoresponsive material was assumed linear, the mechanical stimulus,
∣∣∣ε(x, t)

∣∣∣∆(
E(x,t)

E0

)α
,

can be tuned from strain-like to stress-like by changing the exponent α from equal to 0 to a value
of 1. In the simulations, all three control parameters of the mechanoregulation, s1, s2, and α varied
systematically. The simulations showed very distinct healing courses, where healing occurred either
by a stiffening of the material within the fracture gap and therefore a direct reconnection of the two
broken pieces (direct healing, Figure 5b) or by a bridging of the broken pieces via material stiffening
outside of the fracture gap (indirect healing, Figure 5c). The distinction between direct and indirect
healing was evaluated by the ratio of force flowing via the fracture gap and outside of the fracture
gap (Figure 5b,c).

The simulations demonstrated that the course of healing can be easily manipulated by the range
of mechanical stimuli, in which the material shows a healing response. For an intermediate choice of
the exponent (α = 0.65), indirect healing outcomes were obtained when the range of mechanoresponse
was rather limited or had a lower upper bound [63] (Figure 5d).
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Figure 5. (a) 2D geometry of the model, where the black rectangles correspond to the disconnected stiff
material surrounded by a soft, mechanoresponsive material (white). Loading of the broken material
by a force F results in a vertical deformation ∆H. Due to symmetry, only a quarter of the system
shown had to be modeled (marked by the dashed line). (b,c) Snapshots of two different simulations,
which demonstrate that healing can progress either directly via a bridging of the fracture gap or
indirectly, by reconnecting the broken ends circumferentially. (d) Parameter study varying the upper
and lower bound of the range of mechanoresponsiveness, s2, and s1, respectively [63]. The colors
denote whether the course of healing was more direct or indirect. Grey pixels indicate an unsuccessful
healing defined by a failed reduction of ∆H below 1%.

4. Conclusions and Implications for Synthetic Self-Healing Materials

The examples of bone remodeling and healing may provide inspiration for applications in very
different scenarios. The local replacement of damaged material by remodeling is a typical example
of biological damage management, which does not only extend the life time of the material, but also
reduces the effort related to monitoring the damage. Remodeling also enables mechanical adaptation
to applied loads. In contrast, bone healing is more complex as it has to initiate a process joining the
broken pieces. An interesting aspect in healing is the strategy that the fracture callus providing the
initial attachment is transiently far from an optimal repair. Only after a reconnection happened through
the formation of a hard callus, a mechanical adaptation process sets in. The tissue then transforms
itself into bone of the “correct geometry” so that the outcome of healing is a full return to the original
unfractured state.

A key message from this perspective is the very different mechanoregulation in remodeling and
healing. In bone remodeling, the material stays in a homeostatic state, where the control rule that
relates mechanical stimulation with a change in material properties is characterized by a positive
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slope. This means that a larger mechanical stimulation leads to an effective stiffening, which in turn
reduces the mechanical stimulation. Stimulation and material response are organized in a negative
feedback loop (Figure 1), which maintains the bone structure in a dynamic equilibrium. For bone
healing, the regulation is exactly opposite. During the formation of the fracture callus, stiff bone
grows preferentially in sites of small mechanical stimulation, while much softer cartilage is formed
in mechanically strongly stimulated regions. Consequently, the control rule is characterized by
a negative slope between stimulation and stiffening and mechanoregulation can be described by
a positive feedback loop (Figure 1). This would theoretically lead to an unlimited growth of bone
mass, an escalation that is the fingerprint of positive feedback. However, this is not the endpoint of the
healing process, since remodeling controlled by a negative feedback loop sets in at later stages and
reduces the hard callus reverting the structure to the original one before fracture. The overshooting
of the healing process by producing much more bone than it seems necessary can be interpreted
as a transition between two different aims. The first aim is to stabilize the fracture, thus avoiding
large movements of the fracture ends and leading to a bony reconnection. Later, after the mechanical
stabilization occurred, the adaptation process leads the structure back into its homeostatic state.

The examples of different models explored in the context of repair mechanisms in bone were chosen
to demonstrate the variety of control functions that were considered in different models. The slope
of the control function can be positive or negative, it can be linear or non-linear (e.g., power law,
sigmoidal function), and can include thresholds of the mechanical stimulation. In addition, different
assumptions are often made about how the material responds locally to mechanical stimulation: if the
material can undergo structural changes by addition or removal of material, it can increase or decrease
its stiffness or it can change the local amount of damage. Similar damage models as presented here for
bone are used, such as in the context of self-healing cementitious materials [64].

Finally, the mechanoregulation of adaptive responses in synthetic materials within the framework
of the control function is introduced above. Specifically, we discussed two material classes with
mechanoresponsive building blocks with very different sizes: mechanical metamaterials and polymers
including mechanophores.

The idea behind metamaterials is the use of a designed arrangement of tailored building blocks
to obtain a material with unexpected effective properties. In an inverse design process, the desired
material properties are pre-defined and the adequate microstructure is then searched for [65,66].
With this approach, a cubic metamaterial was produced that, under uniaxial loading, can display
specific patterns on the surface that are created by protrusion [67]. In our context, an important
subgroup of metamaterials are so-called programmable materials [68,69]. A recent example of
a programmable metamaterial is based on a polymeric building block including a mechanically bistable
element (Figure 6a). Loading the building block uniaxially above a specific threshold load triggers the
bistable element to change to a second configuration by snapping through (Figure 6b). This structural
change is accompanied by a change of the mechanical properties. Unloading the building block
results in a return to the original state on the long run due to stress relaxation in the polymer [70].
The corresponding control function of the building block that connects uniaxial strain and stiffness is
described by a step-function denoting a jump between the two states. Such a step-like behavior can
be easily mapped on a conditional statement of a “if . . . then . . . else” form, known from computer
programing. The structural state—in one of two possible states offered by the bistability—can be
described as a material memory element reset after some time. The analogy with computer programs
suggests that the question of whether the development of programmable materials means to improve
the material “hardware” or more its “software”. In the example described above, the building
block with the bistable element seems to correspond to a hardware component. The function of
this hardware element could be manipulated, for example, by changing the setpoints in the “if . . .
then . . . else” condition by applying external loads or other external force fields. In the case that
many mechanoresponsive building blocks are incorporated into a material, the material between the
building blocks deserves attention. This material provides coupling between the building blocks and
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is crucial for a possible collective behavior of the building blocks. The properties of this coupling
element define the information transferred between building blocks. For example, if mechanical stress
is the relevant stimulus, the coupling element can be designed to transfer only shear or only normal
stresses. Furthermore, signals between building blocks can be dampened or strengthened by using
lever elements. Again, by changing external loading conditions these coupling elements could be
manipulated to transfer stresses and strains differently and change the overall response to external
loads. While the hardware in terms of building blocks and coupling elements is fixed, the external
loading and manipulations change the local processing and therefore could be intuitively considered
as a software running on the hardware.

However, we think that a clear-cut distinction between hardware and software is not the
appropriate view on programmable materials. Preferable seems a viewpoint that considers different
layers of control starting from more basic layers to top layers responsible for the fine-tuning of material
behavior. A possible feedback between the different control layers does not allow to describe these
control layers in the form of a hierarchical stacking. In returning to the biological example of bone
remodeling, the most basic layer would be the control rule for bone formation and resorption, as shown
in Figure 2. Systemic changes in the body due to hormones would correspond to a control layer,
which is thought to change setpoints in the control rule [30]. In addition to this endocrine signaling,
a cell-to-cell communication via paracrine signaling could further fine-tune the mechanobiological
control of bone remodeling.
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Figure 6. (a) Basic polymeric building block of a programmable metamaterial obtained by 3D printing
in its initial state. (b) The intricate structure of this building block implies that under uniaxially loading
(red arrows) above a specific threshold the bistable element in the center of the building block changes
to a different configuration by snapping through. This structural change is accompanied by a change
of the mechanical properties (from [70] with permission). (c) Two examples of molecules including
mechanophores. Both belong to the class of gem-dihalocyclopropanes (top: gem-dibromocyclopropane,
bottom: gem-dichlorocyclopropane). When applying a force as indicated by the red arrows, both
molecules undergo a disrotatory ring opening reaction resulting also in a change of their mechanical
properties. Using single molecule force spectroscopy experiments, the necessary force to trigger the ring
opening reaction were determined to be 1210 pN and 1330 pN, respectively (from [71] licensed under
CC BY 3.0). In contrast to the control functions described for processes in bone, both the mechanical
metamaterial and the polymer including a mechanophore are characterized by a control function with
an abrupt change in the mechanical properties at the setpoint of the mechanical stimulus.

Polymeric materials with mechanophores are a second example in which mechanical stimulation
results not only in structural changes but in a change of mechanical properties. Mechanophores
are force reactive groups that are embedded along the polymer backbone or within cross-links.
The function of the mechanophore is that a local overloading does not result in molecular scission
events, but in a constructive response with a local strengthening of the material [71] (Figure 6c).
On the molecular level, the response can be a ring opening in the polymer, which provides not
only stress relieve but can also trigger the generation of new cross-links [72]. A big challenge for
the practical use of mechanophores is that levels of activation are very low (typically below 1%),
even when the overall deformation is large and irreversible. On a molecular level, we encounter again
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an approximately step-like control function, where the molecular configuration of the mechanophore
and with it the mechanical properties of the polymer change substantially at a certain threshold value
of the applied force (often in the range of 1000 pN, see also the examples in Figure 6c) [71]. This setpoint
can be manipulated by introducing the mechanophore in different polymer backbones. The force
transduction through the polymer handle can result in a lever-arm effect causing a lowering of the
setpoint force [73]. The use of localized mechanical forces to trigger chemical reactions was recently
used to design a double-network hydrogel that adapts to mechanical loading. While the function
of one network is to initiate polymerization reactions, which strengthen the network by “growing”,
the other network avoids the problem of irreversible deformation by conserving the shape of the
material. Similar to structural adaptation in muscles and bones, the material response occurs only at
regions with a sufficient mechanical stimulus [74].
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