Characterisation of the Interaction among Oil-In-Water Nanocapsules and Mucin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Oil-In-Water Nanocapsules
2.2.2. Preparation of Mucin Solutions
2.2.3. Interactions Nanocapsules—Mucin
2.2.4. Dynamic Light Scattering (DLS) Analysis
2.2.5. Asymmetrical Flow Field-Flow Fractionation (AF4)—Multidetector Analysis
3. Results
3.1. Mucin Characterisation
3.2. Characterisation of Oil-In-Water Nanocapsules
3.3. Interaction among NCs and Mucin
3.3.1. Interaction among Blank Nanocapsules and Mucin
3.3.2. Interaction among DMTU-loaded o/w NCs and mucin
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bapat, R.; Joshi, C.P.; Bapat, P.; Chaubal, T.; Pandurangappa, R.; Jnanendrappa, N.; Gorain, B.; Khurana, S.; Kesharwani, P. The use of nanoparticles as biomaterials in dentistry. Drug Discov. Today 2019, 24, 85–98. [Google Scholar] [CrossRef]
- Kaur, G.; Balamurugan, P.; Maheswari, C.U.; Anitha, A.; Princy, S.A. Combinatorial effects of aromatic 1,3-disubstituted ureas and fluoride on in vitro inhibition of streptococcus mutans biofilm formation. Front. Microbiol. 2016, 7, 861. [Google Scholar] [CrossRef]
- Kaur, G.; Balamurugan, P.; Princy, S.A. Inhibition of the quorum sensing system (ComDE pathway) by aromatic 1,3-di-m-tolylurea (DMTU): Cariostatic effect with fluoride in wistar rats. Front. Microbiol. 2017, 7, 313. [Google Scholar] [CrossRef] [Green Version]
- Scannapieco, F.A.; Cantos, A. Oral inflammation and infection, and chronic medical diseases: Implications for the elderly. Periodontol. 2000 2016, 72, 153–175. [Google Scholar] [CrossRef]
- Kasper, S.H.; Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute; Hart, R.; Bergkvist, M.; Musah, R.A.; Cady, N.C. Zein nanocapsules as a tool for surface passivation, drug delivery and biofilm prevention. AIMS Microbiol. 2016, 2, 422–433. [Google Scholar] [CrossRef]
- Liang, J.; Peng, X.; Zhou, X.; Zou, J.; Cheng, L. Emerging applications of drug delivery systems in oral infectious diseases prevention and treatment. Molecules 2020, 25, 516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, G.; Balamurugan, P.; Vasudevan, S.; Jadav, S.; Princy, S.A. Antimicrobial and antibiofilm potential of acyclic amines and diamines against multi-drug resistant staphylococcus aureus. Front. Microbiol. 2017, 8, 1767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosqueira, V.C.F.; Legrand, P.; Pinto-Alphandary, H.; Puisieux, F.; Barratt, G. Poly(D,L-lactide) nanocapsules prepared by a solvent displacement process: Influence of the composition on physicochemical and structural properties. J. Pharm. Sci. 2000, 89, 614–626. [Google Scholar] [CrossRef]
- Pramod, K.; Alex, M.R.A.; Singh, M.; Dang, S.; Ansari, S.H.; Ali, J. Eugenol nanocapsule for enhanced therapeutic activity against periodontal infections. J. Drug Target. 2015, 24, 24–33. [Google Scholar] [CrossRef]
- Cigu, T.A.; Holban, M.N.; Cadinoiu, A.N.; Sunel, V.; Lionte, C.; Popa, M.; Desbrieres, J.; Cheptea, C. Polyelectrolyte complex based nanocapsules carrying novel 5-nitroindazole thiazolidines with potential use in treating oral infections. Mater. Plast. 2017, 54, 160–167. [Google Scholar] [CrossRef]
- Vidal-Romero, G.; Zambrano-Zaragoza, M.L.; Martínez-Acevedo, L.; Leyva-Gómez, G.; Mendoza-Elvira, S.; Quintanar-Guerrero, D. Design and evaluation of pH-dependent nanosystems based on cellulose acetate phthalate, nanoparticles loaded with chlorhexidine for periodontal treatment. Pharmaceutics 2019, 11, 604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvo, P.; Vila-Jato, J.L.; Alonso, M.J. Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers. Int. J. Pharm. 1997, 153, 41–50. [Google Scholar] [CrossRef]
- Chaves, P.D.S.; Frank, L.A.; Frank, A.G.; Pohlmann, A.R.; Guterres, S.S.; Beck, R.C.R. Mucoadhesive properties of Eudragit®RS100, Eudragit®S100, and Poly(ε-caprolactone) nanocapsules: Influence of the vehicle and the mucosal surface. AAPS PharmSciTech 2018, 19, 1637–1646. [Google Scholar] [CrossRef] [PubMed]
- Lang, X.; Wang, T.; Sun, M.; Chen, X.; Liu, Y. Advances and applications of chitosan-based nanomaterials as oral delivery carriers: A review. Int. J. Boil. Macromol. 2020, 154, 433–445. [Google Scholar] [CrossRef] [PubMed]
- Collado-González, M.; Espinosa, Y.G.; Goycoolea, F.M.; González, C.; Espinosa, G. Interaction between chitosan and mucin: Fundamentals and applications. Biomimetics 2019, 4, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menchicchi, B.; Fuenzalida, J.P.; Bobbili, K.B.; Hensel, A.; Swamy, M.J.; Goycoolea, F.M. Structure of chitosan determines its interactions with mucin. Biomacromolecules 2014, 15, 3550–3558. [Google Scholar] [CrossRef]
- Pedersen, A.M.L.; Belstrøm, D. The role of natural salivary defences in maintaining a healthy oral microbiota. J. Dent. 2019, 80, S3–S12. [Google Scholar] [CrossRef]
- Calvo, P.; Remuñán-López, C.; Vila-Jato, J.L.; Alonso, M.J. Development of positively charged colloidal drug carriers: Chitosan-coated polyester nanocapsules and submicron-emulsions. Colloid Polym. Sci. 1997, 275, 46–53. [Google Scholar] [CrossRef]
- Lozano, M.V.; Torrecilla, D.; Torres, D.; Vidal, A.; Domínguez, F.; Alonso, M.J. Highly efficient system to deliver taxanes into tumor cells: Docetaxel-loaded chitosan oligomer colloidal carriers. Biomacromolecules 2008, 9, 2186–2193. [Google Scholar] [CrossRef]
- Vicente, S.; Peleteiro, M.; Diaz-Freitas, B.; Sanchez, A.; González-Fernández, Á.; Alonso, M.J. Co-delivery of viral proteins and a TLR7 agonist from polysaccharide nanocapsules: A needle-free vaccination strategy. J. Control. Release 2013, 172, 773–781. [Google Scholar] [CrossRef]
- Goycoolea, F.M.; Valle-Gallego, A.; Stefani, R.; Menchicchi, B.; David, L.; Rochas, C.; Santander-Ortega, M.J.; Alonso, M.J. Chitosan-based nanocapsules: Physical characterization, stability in biological media and capsaicin encapsulation. Colloid Polym. Sci. 2012, 290, 1423–1434. [Google Scholar] [CrossRef]
- Kaiser, M.; Pereira, S.; Pohl, L.; Ketelhut, S.; Kemper, B.; Gorzelanny, C.; Galla, H.-J.; Moerschbacher, B.M.; Goycoolea, F.M. Chitosan encapsulation modulates the effect of capsaicin on the tight junctions of MDCK cells. Sci. Rep. 2015, 5, 10048. [Google Scholar] [CrossRef] [Green Version]
- Real, D.; Hoffmann, S.; Leonardi, D.; Salomon, C.J.; Goycoolea, F. Chitosan-based nanodelivery systems applied to the development of novel triclabendazole formulations. PLoS ONE 2018, 13, e0207625. [Google Scholar] [CrossRef]
- Müller, H.D.; Eick, S.; Moritz, A.; Lussi, A.; Gruber, R. Cytotoxicity and antimicrobial activity of oral rinses in vitro. BioMed Res. Int. 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- Gombau, J.; Nadal, P.; Canela, N.; Gómez-Alonso, S.; García-Romero, E.; Smith, P.; Hermosín-Gutiérrez, I.; Canals, J.; Zamora, F. Measurement of the interaction between mucin and oenological tannins by Surface Plasmon Resonance (SPR); relationship with astringency. Food Chem. 2019, 275, 397–406. [Google Scholar] [CrossRef]
- Yuan, B.; Ritzoulis, C.; Wang, X.; Pan, W.; Chen, J. Interactions between mucin and okra gum during pH cycling. Food Hydrocoll. 2019, 95, 1–9. [Google Scholar] [CrossRef]
- Qin, X.; Engwer, C.; Desai, S.; Sanjurjo, C.V.; Goycoolea, F. An investigation of the interactions between an E. coli bacterial quorum sensing biosensor and chitosan-based nanocapsules. Colloids Surfaces B: Biointerfaces 2017, 149, 358–368. [Google Scholar] [CrossRef]
- Rayment, S.A.; Liu, B.; Offner, G.D.; Oppenheim, F.; Troxler, R. Immunoquantification of human salivary mucins MG1 and MG2 in stimulated whole saliva: Factors influencing mucin levels. J. Dent. Res. 2000, 79, 1765–1772. [Google Scholar] [CrossRef] [PubMed]
- Baalousha, M.; Stolpe, B.; Lead, J. Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: A critical review. J. Chromatogr. A 2011, 1218, 4078–4103. [Google Scholar] [CrossRef]
- Maleki, A.; Lafitte, G.; Kjøniksen, A.-L.; Thuresson, K.; Nyström, B. Effect of pH on the association behavior in aqueous solutions of pig gastric mucin. Carbohydr. Res. 2008, 343, 328–340. [Google Scholar] [CrossRef]
- Helsper, J.P.F.G.; Peters, R.J.B.; Van Bemmel, M.E.M.; Rivera, Z.E.H.; Wagner, S.; Von Der Kammer, F.; Tromp, P.C.; Hofmann, T.; Weigel, S. Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry. Anal. Bioanal. Chem. 2016, 408, 6679–6691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iavicoli, P.; Urbán, P.; Bella, A.; Ryadnov, M.G.; Rossi, F.; Calzolai, L. Application of asymmetric flow field-flow fractionation hyphenations for liposome–antimicrobial peptide interaction. J. Chromatogr. A 2015, 1422, 260–269. [Google Scholar] [CrossRef] [PubMed]
- La Mesa, C.; Risuleo, G. Stabilization of food colloids: The role of electrostatic and steric forces. In Some N. Aspects of Colloidal Systems in Foods; IntechOpen: London, UK, 2018; pp. 73–88. [Google Scholar]
- Trefalt, G.; Ruiz-Cabello, F.J.M.; Borkovec, M. Interaction forces, heteroaggregation, and deposition involving charged colloidal particles. J. Phys. Chem. B 2014, 118, 6346–6355. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Bansil, R.; Bhaskar, K.R.; Turner, B.S.; Lamont, J.T.; Niu, N.; Afdhal, N. pH-dependent conformational change of gastric mucin leads to sol-gel transition. Biophys. J. 1999, 76, 1250–1258. [Google Scholar] [CrossRef] [Green Version]
- Malmsten, M.; Blomberg, E.; Claesson, P.; Carlstedt, I.; Ljusegren, I. Mucin layers on hydrophobic surfaces studied with ellipsometry and surface force measurements. J. Colloid Interface Sci. 1992, 151, 579–590. [Google Scholar] [CrossRef]
- Shi, L.; Caldwell, K.D. Mucin adsorption to hydrophobic surfaces. J. Colloid Interface Sci. 2000, 224, 372–381. [Google Scholar] [CrossRef]
- Nyström, B.; Kjøniksen, A.-L.; Beheshti, N.; Maleki, A.; Zhu, K.; Knudsen, K.D.; Pamies, R.; Cifre, J.G.H.; De La Torre, J.G. Characterization of polyelectrolyte features in polysaccharide systems and mucin. Adv. Colloid Interface Sci. 2010, 158, 108–118. [Google Scholar] [CrossRef]
- Sunoqrot, S.; Hasan, L.; Alsadi, A.; Hamed, R.; Tarawneh, O. Interactions of mussel-inspired polymeric nanoparticles with gastric mucin: Implications for gastro-retentive drug delivery. Colloids Surfaces B: Biointerfaces 2017, 156, 1–8. [Google Scholar] [CrossRef]
- Ünal, H.; D’Angelo, I.; Pagano, E.; Borrelli, F.; Izzo, A.A.; Ungaro, F.; Quaglia, F.; Bilensoy, E. Core–shell hybrid nanocapsules for oral delivery of camptothecin: Formulation development, in vitro and in vivo evaluation. J. Nanopart. Res. 2015, 17, 42. [Google Scholar] [CrossRef] [Green Version]
- Goycoolea, F.M.; Milkova, V. Electrokinetic behavoir of chitosan adsorbed on o/w nanoemulsion droplets. Colloids Surfaces A: Physicochem. Eng. Asp. 2017, 519, 205–211. [Google Scholar] [CrossRef]
- Menchicchi, B.; Fuenzalida, J.P.; Hensel, A.; Swamy, M.J.; David, L.; Rochas, C.; Goycoolea, F. Biophysical analysis of the molecular interactions between polysaccharides and mucin. Biomacromolecules 2015, 16, 924–935. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.M.; Calado, R.; Marto, J.; Bettencourt, A.; Almeida, A.J.; Gonçalves, L.M. Chitosan nanoparticles as a mucoadhesive drug delivery system for ocular administration. Mar. Drugs 2017, 15, 370. [Google Scholar] [CrossRef] [Green Version]
- Silva, C.A.; Nobre, T.M.; Pavinatto, F.J.; Oliveira, O.N. Interaction of chitosan and mucin in a biomembrane model environment. J. Colloid Interface Sci. 2012, 376, 289–295. [Google Scholar] [CrossRef]
- Filipović-Grčić, J.; Skalko-Basnet, N.; Jalšienjak, I. Mucoadhesive chitosan-coated liposomes: Characteristics and stability. J. Microencapsul. 2001, 18, 3–12. [Google Scholar] [CrossRef]
- Baños, F.G.D.; Peña, A.I.D.; Cifre, J.G.H.; Martinez, M.C.L.; Ortega, A.; De La Torre, J.G. Influence of ionic strength on the flexibility of alginate studied by size exclusion chromatography. Carbohydr. Polym. 2014, 102, 223–230. [Google Scholar] [CrossRef]
- Dedinaite, A.; Lundin, M.; Macakova, L.; Auletta, T. Mucin−chitosan complexes at the solid−liquid interface: Multilayer formation and stability in surfactant solutions. Langmuir 2005, 21, 9502–9509. [Google Scholar] [CrossRef]
- Boya, V.N.; Lovett, R.; Setua, S.; Gandhi, V.; Prashanth, K.B.; Khan, S.; Jaggi, M.; Yallapu, M.M.; Chauhan, S.C.; Health, T. Probing mucin interaction behavior of magnetic nanoparticles. J. Colloid Interface Sci. 2017, 488, 258–268. [Google Scholar] [CrossRef] [Green Version]
- Collado-González, M.D.M.; Montalbán, M.; Peña-García, J.; Pérez-Sánchez, H.; Víllora, G.; Baños, F.G.D. Chitosan as stabilizing agent for negatively charged nanoparticles. Carbohydr. Polym. 2017, 161, 63–70. [Google Scholar] [CrossRef]
Region 1 | Region 2 | |
---|---|---|
Mn (g/mol) | (2.24 ± 0.17) × 105 | - |
Mw (g/mol) | (1.21 ± 0.02) × 106 | - |
PD (Mw/Mn) | 5.44 | - |
Rg (nm) | 50.9 ± 1.3 | 252.0 ± 25.8 |
Mass eluted (%) | 71.15 | 1.95 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collado-González, M.; Kaur, G.; González-Espinosa, Y.; Brooks, R.; Goycoolea, F.M. Characterisation of the Interaction among Oil-In-Water Nanocapsules and Mucin. Biomimetics 2020, 5, 36. https://doi.org/10.3390/biomimetics5030036
Collado-González M, Kaur G, González-Espinosa Y, Brooks R, Goycoolea FM. Characterisation of the Interaction among Oil-In-Water Nanocapsules and Mucin. Biomimetics. 2020; 5(3):36. https://doi.org/10.3390/biomimetics5030036
Chicago/Turabian StyleCollado-González, Mar, Gurmeet Kaur, Yadira González-Espinosa, Rebecca Brooks, and Francisco M. Goycoolea. 2020. "Characterisation of the Interaction among Oil-In-Water Nanocapsules and Mucin" Biomimetics 5, no. 3: 36. https://doi.org/10.3390/biomimetics5030036
APA StyleCollado-González, M., Kaur, G., González-Espinosa, Y., Brooks, R., & Goycoolea, F. M. (2020). Characterisation of the Interaction among Oil-In-Water Nanocapsules and Mucin. Biomimetics, 5(3), 36. https://doi.org/10.3390/biomimetics5030036