Mycomerge: Fabrication of Mycelium-Based Natural Fiber Reinforced Composites on a Rattan Framework
Abstract
:1. Introduction
1.1. Relevance
1.2. Recyclability of Composites
1.3. Mycelium Based Composites
1.4. Previous Studies
2. Materials and Methods
2.1. Workflow
2.2. Cultivation of Homegrown Substrate
2.3. Compatibility with Skin Materials
2.4. Results of Growth on Skin Materials
2.4.1. Hemp Sheets
2.4.2. Jute Sheets
2.4.3. Knitted Hemp Rope
2.5. Results on the Growth of Multi-Layer Samples
2.5.1. Hemp Sheet Sandwich
2.5.2. Multilayer Composite: Rattan, Loose Hemp Fibers, Mycelium Substrate with Chopped Hemp Fibers
2.6. Form-Finding
2.7. Prototyping
2.8. Assembly
3. Results
3.1. Comparison
3.1.1. Composite without Rattan Reinforcement (Assumption)
3.1.2. Composite with Rattan Reinforcement
3.1.3. Rattan without Mycelium Matrix
3.2. Physical Prototypes
4. Architectural Application
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dahy, H. Towards Sustainable Buildings with Free-Form Geometries: Development and Application of Flexible NFRP in Load-Bearing Structures. In Biocomposite Materials: Design and Mechanical Properties Characterization; Composites Science and Technology; Hameed Sultan, M.T., Majid, M.S.A., Jamir, M.R.M., Azmi, A.I., Saba, N., Eds.; Springer: Singapore, 2021; pp. 31–43. ISBN 978-981-334-091-6. [Google Scholar]
- Dahy, H. Biocomposite Materials Based on Annual Natural Fibres and Biopolymers—Design, Fabrication and Customized Applications in Architecture. Constr. Build. Mater. 2017, 147, 212–220. [Google Scholar] [CrossRef]
- Hebel, D.E.; Heisel, F. Cultivated Building Materials: Industrialized Natural Resources for Architecture and Construction; Birkhäuser: Berlin, Germany; Boston, MA, USA, 2017; ISBN 978-3-0356-0892-2. [Google Scholar]
- Rajak, D.K.; Pagar, D.D.; Menezes, P.L.; Linul, E. Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 2019, 11, 1667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimm, D.; Wösten, H.A.B. Mushroom Cultivation in the Circular Economy. Appl. Microbiol. Biotechnol. 2018, 102, 7795–7803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahy, H. Natural Fibre-Reinforced Polymer Composites (NFRP) Fabricated from Lignocellulosic Fibres for Future Sustainable Architectural Applications, Case Studies: Segmented-Shell Construction, Acoustic Panels, and Furniture. Sensors 2019, 19, 738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahy, H. ‘Materials as a Design Tool’ Design Philosophy Applied in Three Innovative Research Pavilions Out of Sustainable Building Materials with Controlled End-Of-Life Scenarios. Buildings 2019, 9, 64. [Google Scholar] [CrossRef] [Green Version]
- Lelivelt, R.J.J. The Mechanical Possibilities of Mycelium Materials. Master’s Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2015. [Google Scholar]
- Jiang, L. A New Manufacturing Process for Biocomposite Sandwich Parts Using A Myceliated Core, Natural Reinforcement and Infused Bioresin. Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY, USA, 2015. [Google Scholar]
- Girometta, C.; Picco, A.; Baiguera, R.M.; Dondi, D.; Babbini, S.; Cartabia, M.; Pellegrini, M.; Savino, E. Physico-Mechanical and Thermodynamic Properties of Mycelium-Based Biocomposites: A Review. Sustainability 2019, 11, 281. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.; Mautner, A.; Luenco, S.; Bismarck, A.; John, S. Engineered Mycelium Composite Construction Materials from Fungal Biorefineries: A Critical Review. Mater. Des. 2020, 187, 108397. [Google Scholar] [CrossRef]
- Van Wylick, A.; Elsacker, E.; Yap, L.L.; Peeters, E.; de Laet, L. Mycelium Composites and Their Biodegradability: An Exploration on the Disintegration of Mycelium-Based Materials in Soil. Constr. Technol. Archit. 2022, 1, 652–659. [Google Scholar] [CrossRef]
- Heisel, F.; Lee, J.; Schlesier, K.; Rippmann, M.; Saeidi, N.; Javadian, A.; Nugroho, A.R.; Mele, T.V.; Block, P.; Hebel, D.E. Design, Cultivation and Application of Load-Bearing Mycelium Components: The MycoTree at the 2017 Seoul Biennale of Architecture and Urbanism. IJSED 2017, 6, 296–303. [Google Scholar] [CrossRef]
- Kırdök, O.; Akyol Altun, D.; Dahy, H.; Strobel, L.; Hameş Tuna, E.E.; Köktürk, G.; Andiç Çakır, Ö.; Tokuç, A.; Özkaban, F.; Şendemir, A. Chapter 17—Design Studies and Applications of Mycelium Biocomposites in Architecture. In Biomimicry for Materials, Design and Habitats; Eggermont, M., Shyam, V., Hepp, A.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 489–527. ISBN 978-0-12-821053-6. [Google Scholar]
- Jiang, L.; Walczyk, D.; McIntyre, G.; Bucinell, R.; Tudryn, G. Manufacturing of Biocomposite Sandwich Structures Using Mycelium-Bound Cores and Preforms. J. Manuf. Processes 2017, 28, 50–59. [Google Scholar] [CrossRef]
- Rihaczek, G.; Klammer, M.; Başnak, O.; Petrš, J.; Grisin, B.; Dahy, H.; Carosella, S.; Middendorf, P. Curved Foldable Tailored Fiber Reinforcements for Moldless Customized Bio-Composite Structures. Proof of Concept: Biomimetic NFRP Stools. Polymers 2020, 12, 2000. [Google Scholar] [CrossRef] [PubMed]
- Sippach, T.; Dahy, H.; Uhlig, K.; Grisin, B.; Carosella, S.; Middendorf, P. Structural Optimization through Biomimetic-Inspired Material-Specific Application of Plant-Based Natural Fiber-Reinforced Polymer Composites (NFRP) for Future Sustainable Lightweight Architecture. Polymers 2020, 12, 3048. [Google Scholar] [CrossRef] [PubMed]
- Block, P.; Mele, T.V.; Rippmann, M. Geometry of Forces: Exploring the Solution Space of Structural Design/Geometrie der Kräfte. Untersuchungen zum Lösungsraum des Tragwerksentwurfs. In GAM 12: Structural Affairs; Birkhäuser: Berlin, Germany; Boston, MA, USA, 2016; pp. 46–55. ISBN 978-3-0356-0984-4. [Google Scholar]
- Rippmann, M.; Block, P. Funicular Funnel Shells. In Proceedings of the Design Modeling Symposium, Berlin, Germany, 30 September 2013. [Google Scholar]
Material | First Prototype | Final Prototype |
---|---|---|
Hemp fibers (g) | 180 | 420 |
Mycelium substrate (l) | 3 | 7 |
Psyllium husk (g) | - | 360 |
Jute rope (m) | 100 | 100 |
Rattan (g) ⌀ 5 mm, 2 mm | 250, 125 | 250, 125 |
Weight (kg) | 2.1 | 3.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, M.T.; Solueva, D.; Spyridonos, E.; Dahy, H. Mycomerge: Fabrication of Mycelium-Based Natural Fiber Reinforced Composites on a Rattan Framework. Biomimetics 2022, 7, 42. https://doi.org/10.3390/biomimetics7020042
Nguyen MT, Solueva D, Spyridonos E, Dahy H. Mycomerge: Fabrication of Mycelium-Based Natural Fiber Reinforced Composites on a Rattan Framework. Biomimetics. 2022; 7(2):42. https://doi.org/10.3390/biomimetics7020042
Chicago/Turabian StyleNguyen, Mai Thi, Daniela Solueva, Evgenia Spyridonos, and Hanaa Dahy. 2022. "Mycomerge: Fabrication of Mycelium-Based Natural Fiber Reinforced Composites on a Rattan Framework" Biomimetics 7, no. 2: 42. https://doi.org/10.3390/biomimetics7020042
APA StyleNguyen, M. T., Solueva, D., Spyridonos, E., & Dahy, H. (2022). Mycomerge: Fabrication of Mycelium-Based Natural Fiber Reinforced Composites on a Rattan Framework. Biomimetics, 7(2), 42. https://doi.org/10.3390/biomimetics7020042