Challenges and Opportunities in Scaling up Architectural Applications of Mycelium-Based Materials with Digital Fabrication
Abstract
:1. Introduction
1.1. Mycelium as Pilot Material for Circular Construction
1.2. Problem Statement
1.3. Objectives
1.4. Contributions and Outline
2. State of the Art
2.1. Mycelium Material Typologies
2.1.1. Pure Mycelium Materials
2.1.2. Mycelium-Bound Composites
2.2. Fabrication Methods
2.2.1. Moulds
2.2.2. Subtractive Manufacturing
2.2.3. Additive Manufacturing
2.3. Applications
2.3.1. Products
2.3.2. Architectural Projects
In Situ
Prefabricated
2.4. Summary
3. Challenges in Scaling up Mycelium
3.1. Structurally-Informed Design
3.2. Region-Specific Material Profiles
- Identification and selection of nutritive and non-nutritive substrates available in a specific region in relation to their sector of origin (construction, agriculture or urban by-product);
- Determination and characterisation of nutritional profiles of substrates;
- Investigation, comparison, and classification of new fungal species potentially dominant in a region; and
- Investigation of genetic engineering to maximise the performance of region-specific recipes for mycelium-based materials.
3.3. Identification of Viable Waste Streams
3.4. New Mycelium Typologies
3.5. Industrialisation of Biological Processes
3.6. Agile In Situ Setup and Applications
3.7. Cross-Disciplinary Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miyatake, Y. Technology Development and Sustainable Construction. J. Manag. Eng. 1996, 12, 23–27. [Google Scholar] [CrossRef]
- Heisel, F.; Rau-Oberhuber, S. Calculation and Evaluation of Circularity Indicators for the Built Environment Using the Case Studies of UMAR and Madaster. J. Clean. Prod. 2019, 243, 118482. [Google Scholar] [CrossRef]
- Ding, G.K.C. Life Cycle Assessment (LCA) of Sustainable Building Materials: An Overview. In Eco-Efficient Construction and Building Materials; Pacheco-Torgal, F., Cabeza, L.F., Labrincha, J., de Magalhães, A., Eds.; Woodhead Publishing: Sawston, UK, 2014; pp. 38–62. ISBN 978-0-85709-767-5. [Google Scholar]
- Javadian, A.; Ferrand, H.L.; Hebel, D.E.; Saeidi, N. Application of Mycelium-Bound Composite Materials in Construction Industry: A Short Review. SOJ Mater. Sci. Eng. 2020, 7, 1–9. [Google Scholar]
- Todorovic, T.; Norström, E.; Khabbaz, F.; Brücher, J.; Malmström, E.; Fogelström, L. A Fully Bio-Based Wood Adhesive Valorising Hemicellulose-Rich Sidestreams from the Pulp Industry. Green Chem. 2021, 23, 3322–3333. [Google Scholar] [CrossRef]
- Kim, Y.; Ruedy, D. Mushroom Packages An Ecovative Approach in Packaging Industry. In Handbook of Engaged Sustainability; Springer: Cham, Switzerland, 2019; pp. 1–25. ISBN 978-3-319-53121-2. [Google Scholar]
- Hebel, D.E.; Heisel, F. Cultivated Building Materials: Industrialized Natural Resources for Architecture and Construction; Birkhäuser: Basel, Switzerland, 2017; ISBN 978-3-0356-0892-2. [Google Scholar]
- Jędrzejczak, P.; Collins, M.N.; Jesionowski, T.; Klapiszewski, Ł. The Role of Lignin and Lignin-Based Materials in Sustainable Construction—A Comprehensive Review. Int. J. Biol. Macromol. 2021, 187, 624–650. [Google Scholar] [CrossRef]
- Bartnicki-Garcia, S. Cell Wall Chemistry, Morphogenesis, and Taxonomy of Fungi. Annu. Rev. Microbiol. 1968, 22, 87–108. [Google Scholar] [CrossRef]
- Islam, M.R.; Tudryn, G.; Bucinell, R.; Schadler, L.; Picu, R.C. Morphology and Mechanics of Fungal Mycelium. Sci. Rep. 2017, 7, 13070. [Google Scholar] [CrossRef] [Green Version]
- MycoCompositeTM. Available online: https://ecovativedesign.com/mycocomposite (accessed on 12 October 2021).
- Bolt Threads. Available online: https://boltthreads.com/ (accessed on 1 November 2021).
- BIOHM|Mycelium Insulation. Available online: https://www.biohm.co.uk/mycelium (accessed on 9 November 2021).
- Jones, M.; Mautner, A.; Luenco, S.; Bismarck, A.; John, S. Engineered Mycelium Composite Construction Materials from Fungal Biorefineries: A Critical Review. Mater. Des. 2020, 187, 108397. [Google Scholar] [CrossRef]
- Girometta, C.; Picco, A.M.; Baiguera, R.M.; Dondi, D.; Babbini, S.; Cartabia, M.; Pellegrini, M.; Savino, E. Physico-Mechanical and Thermodynamic Properties of Mycelium-Based Biocomposites: A Review. Sustainability 2019, 11, 281. [Google Scholar] [CrossRef] [Green Version]
- Vandelook, S.; Elsacker, E.; Van Wylick, A.; De Laet, L.; Peeters, E. Current State and Future Prospects of Pure Mycelium Materials. Fungal Biol. Biotechnol. 2021, 8, 20. [Google Scholar] [CrossRef]
- Elsacker, E.; Søndergaard, A.; Van Wylick, A.; Peeters, E.; De Laet, L. Growing Living and Multifunctional Mycelium Composites for Large-Scale Formwork Applications Using Robotic Abrasive Wire-Cutting. Constr. Build. Mater. 2021, 283, 122732. [Google Scholar] [CrossRef]
- Renger, B.C.; Birkeland, J.L.; Midmore, D.J. Net-Positive Building Carbon Sequestration. Build. Res. Inf. 2015, 43, 11–24. [Google Scholar] [CrossRef]
- Jones, M.; Huynh, T.; Dekiwadia, C.; Daver, F.; John, S. Mycelium Composites: A Review of Engineering Characteristics and Growth Kinetics. J. Bionanosci. 2017, 11, 241–257. [Google Scholar] [CrossRef]
- Attias, N.; Danai, O.; Abitbol, T.; Tarazi, E.; Ezov, N.; Pereman, I.; Grobman, Y.J. Mycelium Bio-Composites in Industrial Design and Architecture: Comparative Review and Experimental Analysis. J. Clean. Prod. 2020, 246, 119037. [Google Scholar] [CrossRef]
- Almpani-Lekka, D.; Pfeiffer, S.; Schmidts, C.; Seo, S. A Review on Architecture with Fungal Biomaterials: The Desired and the Feasible. Fungal Biol. Biotechnol. 2021, 8, 17. [Google Scholar] [CrossRef]
- Cerimi, K.; Akkaya, K.C.; Pohl, C.; Schmidt, B.; Neubauer, P. Fungi as Source for New Bio-Based Materials: A Patent Review. Fungal Biol. Biotechnol. 2019, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Dixit, S.; Stefańska, A.; Singh, P. Manufacturing Technology in Terms of Digital Fabrication of Contemporary Biomimetic Structures. Int. J. Constr. Manag. 2021, 1–9. [Google Scholar] [CrossRef]
- Yang, L.; Park, D.; Qin, Z. Material Function of Mycelium-Based Bio-Composite: A Review. Front. Mater. 2021, 8, 737377. [Google Scholar] [CrossRef]
- Sydor, M.; Bonenberg, A.; Doczekalska, B.; Cofta, G. Mycelium-Based Composites in Art, Architecture, and Interior Design: A Review. Polymers 2022, 14, 145. [Google Scholar] [CrossRef]
- Manan, S.; Ullah, M.W.; Ul-Islam, M.; Atta, O.M.; Yang, G. Synthesis and Applications of Fungal Mycelium-Based Advanced Functional Materials. J. Bioresour. Bioprod. 2021, 6, 1–10. [Google Scholar] [CrossRef]
- Gou, L.; Li, S.; Yin, J.; Li, T.; Liu, X. Morphological and Physico-Mechanical Properties of Mycelium Biocomposites with Natural Reinforcement Particles. Constr. Build. Mater. 2021, 304, 124656. [Google Scholar] [CrossRef]
- Shakir, M.A.; Azahari, B.; Yusup, Y.; Yhaya, M.F.; Salehabadi, A.; Ahmad, M.I. Preparation and Characterization of Mycelium as A Bio-Matrix in Fabrication of Bio-Composite. J. Adv. Res. Fluid Mech. Therm. Sci. 2020, 65, 253–263. [Google Scholar]
- Xia, X.C.; Chen, X.W.; Zhang, Z.; Chen, X.; Zhao, W.M.; Liao, B.; Hur, B. Effects of Porosity and Pore Size on the Compressive Properties of Closed-Cell Mg Alloy Foam. J. Magnes. Alloys 2013, 1, 330–335. [Google Scholar] [CrossRef] [Green Version]
- Appels, F.; Camere, S.; Montalti, M.; Karana, E.; Jansen, K.M.B.; Dijksterhuis, J.; Krijgsheld, P.; Wosten, H. Fabrication Factors Influencing Mechanical, Moisture- and Water-Related Properties of Mycelium-Based Composites. Mater. Des. 2019, 161, 64–71. [Google Scholar] [CrossRef]
- Appels, F.V.W.; Dijksterhuis, J.; Lukasiewicz, C.E.; Jansen, K.M.B.; Wösten, H.A.B.; Krijgsheld, P. Hydrophobin Gene Deletion and Environmental Growth Conditions Impact Mechanical Properties of Mycelium by Affecting the Density of the Material. Sci. Rep. 2018, 8, 4703. [Google Scholar] [CrossRef] [PubMed]
- Karana, E.; Blauwhoff, D.; Hultink, E.-J.; Camere, S. When the Material Grows: A Case Study on Designing (with) Mycelium-Based Materials. Int. J. Des. 2018, 12, 119–136. [Google Scholar]
- Kaplan-Bie, J.H.; Bonesteel, I.T.; Greetham, L.; McIntyre, G.R. Increased Homogeneity of Mycological Biopolymer Grown into Void Space. U.S. Patent 11,266,085, 8 March 2022. [Google Scholar]
- Greetham, L.; McIntyre, G.R.; Bayer, E.; Winiski, J.; Araldi, S. Mycological Biopolymers Grown in Void Space Tooling. U.S. Patent 11,277,979, 22 March 2022. [Google Scholar]
- O’brien, M.A.; Carlton, A.; Mueller, P. Methods of Mycological Biopolymer Production. U.S. Patent Application 16/773,272, 27 July 2020. [Google Scholar]
- Gandia, A.; van den Brandhof, J.G.; Appels, F.V.W.; Jones, M.P. Flexible Fungal Materials: Shaping the Future. Trends Biotechnol. 2021, 39, 1321–1331. [Google Scholar] [CrossRef] [PubMed]
- Shokrkar, H.; Ebrahimi, S.; Zamani, M. A Review of Bioreactor Technology Used for Enzymatic Hydrolysis of Cellulosic Materials. Cellulose 2018, 25, 6279–6304. [Google Scholar] [CrossRef]
- Szilvay, G.; Laine, C.; Arias Barrantes, M.; Suhonen, A.; Boer, H.; Penttilä, M.; Ahokas, P. Methods of Making Non-Woven Materials from Mycelium. International Patent Application PCT/FI2020/050875, 30 December 2020. [Google Scholar]
- Bayer, E.; Mclntyre, G. Method for Producing Grown Materials and Products Made Thereby. U.S. Patent Application Publication 15/266,640, 15 September 2016. [Google Scholar]
- Holt, G.A.; Mcintyre, G.; Flagg, D.; Bayer, E.; Wanjura, J.D.; Pelletier, M.G. Fungal Mycelium and Cotton Plant Materials in the Manufacture of Biodegradable Molded Packaging Material: Evaluation Study of Select Blends of Cotton Byproducts. J. Biobased Mater. Bioenergy 2012, 6, 431–439. [Google Scholar] [CrossRef]
- Van Kuijk, S.J.A.; Sonnenberg, A.S.M.; Baars, J.J.P.; Hendriks, W.H.; Cone, J.W. The Effect of Particle Size and Amount of Inoculum on Fungal Treatment of Wheat Straw and Wood Chips. J. Anim. Sci. Biotechnol. 2016, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Arifin, Y.H.; Yusuf, Y. Mycelium Fibers as New Resource for Environmental Sustainability. Procedia Eng. 2013, 53, 504–508. [Google Scholar] [CrossRef] [Green Version]
- Schaak, D. Bio-Manufacturing Process. U.S. Patent Application 16/363052, 25 March 2019. [Google Scholar]
- Mathias, L.; Jipa, A. The Living Column. In MAS DFAB Thesis Publications; ETH Zurich: Zürich, Switzerland, 2017. [Google Scholar]
- Peek, N. Mycelium Milling. Available online: http://infosyncratic.nl/weblog/2011/02/14/mycelium-milling/ (accessed on 26 October 2021).
- Lazaro, E.; Vega, K. From Plastic to Biomaterials: Prototyping DIY Electronics with Mycelium. In Proceedings of the UbiComp/ISWC ‘19 Adjunct: Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers; ACM: London, UK, 2019. [Google Scholar]
- Rigobello, A.; Ayres, P. Mycelium-Based Composites as Two-Phase Particulate Composites: Compressive Behaviour of Anisotropic Designs. Available online: https://www.researchsquare.com/article/rs-943974/v1 (accessed on 30 November 2021).
- Islam, M.R.; Tudryn, G.; Bucinell, R.; Schadler, L.; Picu, R.C. Stochastic Continuum Model for Mycelium-Based Bio-Foam. Mater. Des. 2018, 160, 549–556. [Google Scholar] [CrossRef]
- Singh, T.; Kumar, S.; Sehgal, S. 3D Printing of Engineering Materials: A State of the Art Review. Mater. Today Proc. 2020, 28, 1927–1931. [Google Scholar] [CrossRef]
- Bose, S.; Koski, C.; Vu, A.A. Additive Manufacturing of Natural Biopolymers and Composites for Bone Tissue Engineering. Mater. Horiz. 2020, 7, 2011–2027. [Google Scholar] [CrossRef]
- Murphy, S.V.; Atala, A. 3D Bioprinting of Tissues and Organs. Nat. Biotechnol. 2014, 32, 773–785. [Google Scholar] [CrossRef]
- Fraunhofer UMSICHT Projekt-Steckbrief. Available online: https://fungifacturing.de/fungi-factoring/projekt-steckbrief/ (accessed on 10 March 2022).
- Yildirim, D. Zoetic Morphologies 3D Printed Active Wall Systems through Mycelial Biomass. Available online: https://www.iaacblog.com/programs/zoetic-morphologies/ (accessed on 10 March 2022).
- Parthy, K. Polymer Mixture for 3D Printing for Creating Objects with Pore Structures. DE Patent Application DE102013011243A1, 8 January 2015. [Google Scholar]
- Alima, N.; Snooks, R.; McCormack, J. Bio Scaffolds. In Proceedings of the 2021 DigitalFUTURES, Shanghai, China, 1 January 2022; pp. 316–329. [Google Scholar]
- Myco Mensa: Mycelium Table. Available online: http://www.richard-beckett.com/myco-mensa-mycelium-table/ (accessed on 11 February 2022).
- Ji, S.; Guvendiren, M. Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs. Front. Bioeng. Biotechnol. 2017, 5, 23. [Google Scholar] [CrossRef] [Green Version]
- Soh, E.; Chew, Z.Y.; Saeidi, N.; Javadian, A.; Hebel, D.; Le Ferrand, H. Development of an Extrudable Paste to Build Mycelium-Bound Composites. Mater. Des. 2020, 195, 109058. [Google Scholar] [CrossRef]
- Goidea, A.; Andreen, D.; Floudas, D. Pulp Faction: 3D Printed Material Assemblies through Microbial Biotransformation; UCL Press: London, UK, 2020; pp. 42–49. [Google Scholar]
- Bio Ex-Machina. Available online: https://www.corpuscoli.com/projects/bio-ex-machina/ (accessed on 10 March 2022).
- Ecovative. Available online: https://ecovative.com (accessed on 8 February 2022).
- Bayer, E.; Winiski, J.M.; Lucht, M.J.; Mueller, P.J.; Mcintyre, G.R.; O’brien, M.A. An Open-Cell Mycelium Foam and Method of Making Same. U.S. Patent Application 16/444,354, 26 December 2019. [Google Scholar]
- Wijayarathna, E.R.K.B.; Mohammadkhani, G.; Soufiani, A.M.; Adolfsson, K.H.; Ferreira, J.A.; Hakkarainen, M.; Berglund, L.; Heinmaa, I.; Root, A.; Zamani, A. Fungal Textile Alternatives from Bread Waste with Leather-like Properties. Resour. Conserv. Recycl. 2022, 179, 106041. [Google Scholar] [CrossRef]
- Ortiz, D.A. How Fungus and Sweat Could Transform Martian Exploration. Available online: https://www.bbc.com/future/article/20181031-how-fungus-and-sweat-could-transform-martian-exploration (accessed on 21 February 2022).
- Klarenbeek & Dros Designers of the Unusual. Available online: https://www.ericklarenbeek.com/ (accessed on 10 March 2022).
- Piórecka, N. MYCOsella—Growing the Mycelium Chair. Available online: https://issuu.com/nataliapiorecka/docs/dissertation_project_ba_architectur (accessed on 10 March 2022).
- Pelletier, M.G.; Holt, G.A.; Wanjura, J.D.; Lara, A.J.; Tapia-Carillo, A.; McIntyre, G.; Bayer, E. An Evaluation Study of Pressure-Compressed Acoustic Absorbers Grown on Agricultural by-Products. Ind. Crops Prod. 2017, 95, 342–347. [Google Scholar] [CrossRef]
- Bouajila, J.; Limare, A.; Joly, C.; Dole, P. Lignin Plasticization to Improve Binderless Fiberboard Mechanical Properties. Polym. Eng. Sci. 2005, 45, 809–816. [Google Scholar] [CrossRef]
- Mogu. Available online: https://mogu.bio/ (accessed on 8 October 2021).
- Shell Mycelium Pavillion. Available online: https://www.archdaily.com/tag/shell-mycelium-pavillion (accessed on 20 October 2021).
- Desi-Olive, J. Tactical Mycelium 1 & 2. Available online: https://jdovaults.com/Tactical-Mycelium-1-2 (accessed on 1 March 2022).
- Rippmann, M.; Lachauer, L.; Block, P. RhinoVAULT—Interactive Vault Design. Int. J. Space Struct. 2012, 27, 219–230. [Google Scholar] [CrossRef]
- Sommariva, E.; Mairs, J. 5 Works of “Restorative Design” from Broken Nature: Design Takes on Human Survival. Available online: https://www.domusweb.it/en/design/gallery/2019/02/28/5-installations-to-see-at-triennales-broken-nature-exhibition-.html (accessed on 10 March 2022).
- Simulaa. Available online: https://simulaa.com (accessed on 1 March 2022).
- Mok, K. Mycotecture: Building With Mushrooms? This Inventor Says Yes. Available online: https://www.treehugger.com/mycotecture-mushroom-bricks-philip-ross-4857225 (accessed on 14 March 2022).
- Hy-Fi. Available online: https://urbannext.net/hy-fi/ (accessed on 21 February 2022).
- Heisel, F.; Lee, J.; Schlesier, K.; Rippmann, M.; Saeidi, N.; Javadian, A.; Nugroho, R.; Mele, T.; Block, P.; Hebel, D. Design, Cultivation and Application of Load-Bearing Mycelium Components: The MycoTree at the 2017 Seoul Biennale of Architecture and Urbanism. Int. J. Sustain. Energy Dev. 2018, 6, 296–303. [Google Scholar] [CrossRef]
- Pownall, A. Pavilion Grown from Mycelium Acts as Pop-Up Performance Space at Dutch Design Week. Available online: https://www.dezeen.com/2019/10/29/growing-pavilion-mycelium-dutch-design-week/ (accessed on 25 October 2021).
- The Growing Pavilion. Available online: https://thegrowingpavilion.com/ (accessed on 1 March 2022).
- The Circular Garden. Available online: https://carloratti.com/project/the-circular-garden/ (accessed on 1 March 2022).
- How Can Mushrooms Help Solve the Issue of Single-Use Plastic? Available online: https://www.seedlipdrinks.com/en-gb/journal/mycelium-101/ (accessed on 14 March 2022).
- Ansys Granta EduPack Software, ANSYS Inc.: Cambridge, UK, 2022.
- Yang, Z.; Zhang, F.; Still, B.; White, M.; Amstislavski, P. Physical and Mechanical Properties of Fungal Mycelium-Based Biofoam. J. Mater. Civ. Eng. 2017, 29, 04017030. [Google Scholar] [CrossRef]
- Singh, B. Rice Husk Ash. In Waste and Supplementary Cementitious Materials in Concrete; Siddique, R., Cachim, P., Eds.; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Sawston, UK, 2018; pp. 417–460. ISBN 978-0-08-102156-9. [Google Scholar]
- Haneef, M.; Ceseracciu, L.; Canale, C.; Bayer, I.S.; Heredia-Guerrero, J.A.; Athanassiou, A. Advanced Materials From Fungal Mycelium: Fabrication and Tuning of Physical Properties. Sci. Rep. 2017, 7, 41292. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Tajvidi, M.; Howell, C.; Hunt, C.G. Functionality of Surface Mycelium Interfaces in Wood Bonding. ACS Appl. Mater. Interfaces 2020, 12, 57431–57440. [Google Scholar] [CrossRef] [PubMed]
- Dahmen, J. Mycelium Mockup. Available online: https://sala.ubc.ca/work/mycelium-mockup (accessed on 1 March 2022).
- Ivanov, V.; Stabnikov, V. Construction Biotechnology; Green Energy and Techology; Spring: Singapore, 2017; ISBN 978-981-10-1444-4. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bitting, S.; Derme, T.; Lee, J.; Van Mele, T.; Dillenburger, B.; Block, P. Challenges and Opportunities in Scaling up Architectural Applications of Mycelium-Based Materials with Digital Fabrication. Biomimetics 2022, 7, 44. https://doi.org/10.3390/biomimetics7020044
Bitting S, Derme T, Lee J, Van Mele T, Dillenburger B, Block P. Challenges and Opportunities in Scaling up Architectural Applications of Mycelium-Based Materials with Digital Fabrication. Biomimetics. 2022; 7(2):44. https://doi.org/10.3390/biomimetics7020044
Chicago/Turabian StyleBitting, Selina, Tiziano Derme, Juney Lee, Tom Van Mele, Benjamin Dillenburger, and Philippe Block. 2022. "Challenges and Opportunities in Scaling up Architectural Applications of Mycelium-Based Materials with Digital Fabrication" Biomimetics 7, no. 2: 44. https://doi.org/10.3390/biomimetics7020044
APA StyleBitting, S., Derme, T., Lee, J., Van Mele, T., Dillenburger, B., & Block, P. (2022). Challenges and Opportunities in Scaling up Architectural Applications of Mycelium-Based Materials with Digital Fabrication. Biomimetics, 7(2), 44. https://doi.org/10.3390/biomimetics7020044