A Novel Wheel-Legged Hexapod Robot
Abstract
:1. Introduction
2. Structure and Model
2.1. Mechanical Design
2.2. Hexapod Model
3. Control Strategy
3.1. Forward Alternating Tripod Gait
3.2. Turning
3.3. Jumping
4. Simulation and Experimental Studies
4.1. Simulation Studies
4.2. Experimental Verification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arena, P.; Fortuna, L.; Frasca, M.; Patané, L. Sensory Feedback in locomotion control. In Dynamical Systems, Wave-Based Computation and Neuro-Inspired Robots; CISM International Centre for Mechanical Sciences; Springer: Vienna, Austria, 2008; Volume 500, pp. 143–158. [Google Scholar] [CrossRef]
- Saranli, U. Rhex: A simple and highly mobile hexapod robot. Ind. Robot. 2001, 20, 616–631. [Google Scholar] [CrossRef]
- Galloway, K.C.; Haynes, G.C.; Ilhan, B.D.; Johnson, A.M.; Knopf, R.; Lynch, G.A.; Plotnick, B.N.; White, M.; Koditschek, D.E. X-rhex: A Highly Mobile Hexapedal Robot for Sensorimotor Tasks; Technical Reports; Penn Engineering: Danboro, PA, USA, 2010; pp. 11–14. [Google Scholar]
- Luo, Q.S.; Liu, W.W.; Niu, K.; Wu, F.; Liang, G.H. Research on new wheel-legged robot. J. Dalian Univ. Technol. 2011, 51, 88–92. (In Chinese) [Google Scholar]
- Sun, T.; Xiang, X.; Su, W.H.; Wu, H.; Song, Y.M. A transformable wheel-legged mobile robot: Design, analysis and experiment. Robot. Auton. Syst. 2017, 98, 30–41. [Google Scholar] [CrossRef]
- Peng, H.; Wang, J.Z.; Shen, W.; Shi, D.W. Cooperative attitude control for a wheel-legged robot. Peer-to-Peer Netw. Appl. 2019, 12, 1741–1752. [Google Scholar] [CrossRef]
- Cui, L.; Wang, S.; Zhang, J.; Zhang, D.; Lai, J.; Zheng, Y.; Zhang, Z.; Jiang, Z.-P. Learning-Based Balance Control of Wheel-Legged Robots. IEEE Robot. Autom. Lett. 2021, 6, 7667–7674. [Google Scholar] [CrossRef]
- Zhao, J.; Han, T.; Wang, S.; Liu, C.; Fang, J.; Liu, S. Design and Research of All-Terrain Wheel-Legged Robot. Sensors 2021, 21, 5367. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.H.; Sun, P.; Tang, J.J.; Chen, B. Structural design and gait analysis of bionic beetle hexapod robot. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2012, 36, 115–120. (In Chinese) [Google Scholar]
- Xu, K.; Zheng, W.; Ding, X.L. Structure design and motion mode analysis of a six wheel-legged robot. J. Beijing Univ. Aeronaut. Astronaut. 2016, 42, 59–71. (In Chinese) [Google Scholar]
- Tian, H.B.; Fang, Z.D.; Gu, Y.F. Analysis of dynamics modeling and influencing factors of wheel-legged robots. Robotics 2010, 32, 390–397. (In Chinese) [Google Scholar]
- Ahmadi, M.; Buehler, M. The ARL monopod II running robot: Control and energetics. IEEE Int. Conf. Robot. Autom. 1999, 3, 1689–1694. [Google Scholar] [CrossRef]
- Altendorfer, R.; Saranli, U.; Komsuoglu, H.; Koditschek, D.; Brown, H.B.; Buehler, M.; Moore, N.; McMordie, D.; Full, R. Evidence for Spring Loaded Inverted Pendulum Running in a Hexapod Robot. Exp. Robot. 2001, 271, 291–302. [Google Scholar] [CrossRef]
- Meng, Y.; Wang, T.M.; Chou, W.S.; Guan, S.G.; Pei, B.Q. Gait design and path planning of gecko robots. J. Mech. Eng. 2010, 46, 32–37. (In Chinese) [Google Scholar] [CrossRef]
- Li, M.H.; Zhang, J.H.; Zhang, M.L. Foot end trajectory planning in the free gait of a new bionic hexapod robot. China Mech. Eng. 2014, 25, 821–824. (In Chinese) [Google Scholar]
- Liu, Z.F.; Yang, L.H.; Hou, B.J. Special robot motion trajectory planning and its implementation. Comput. Meas. Control 2011, 19, 2007–2008. (In Chinese) [Google Scholar]
- Liu, T.H.; Jiang, S.H. Stability Analysis and Simulation of Bionic Hexapod Robot. Comput. Simul. 2013, 30, 360–364. (In Chinese) [Google Scholar]
- Zhang, Y.; Han, B.L.; Luo, Q.S. Dynamics Research of Bionic Hexapod Robot Based on Virtual Prototype Technology. Mech. Des. Manuf. 2008, 3, 145–147. (In Chinese) [Google Scholar]
- Huang, L.; Han, B.L.; Luo, Q.S.; Xu, L. Experimental study on gait planning strategy of bionic hexapod robot. J. Huazhong Univ. Sci. Technol. (Nat. Sci. Ed.) 2007, 35, 77–80. (In Chinese) [Google Scholar]
- Su, J.; Chen, X.D.; Tian, W.Z. Study on the omnidirectional gait of a six-legged walking robot. Mech. Electron. 2004, 3, 48–52. (In Chinese) [Google Scholar]
- Suzumura, A.; Fujimoto, Y. High mobility control for a wheel-legged mobile robot based on resolved momentum control. In Proceedings of the IEEE International Workshop on Advanced Motion Control, Sarajevo, Bosnia and Herzegovina, 25–27 March 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Grand, C.; Benamar, F.; Plumet, F.; Bidaud, P. Decoupled control of posture and trajectory of the hybrid wheel-legged robot hylos. In Proceedings of the IEEE International Conference on Robotics and Automation, 2004, Proceedings ICRA, New Orleans, LA, USA, 26 April–1 May 2004; pp. 5111–5116. [Google Scholar] [CrossRef]
Gait | Parameter | 1 | 2 | 3 |
---|---|---|---|---|
Starting gait | Torque (mN·m) | 69 | 69 | 69 |
Speed (r·min−1) | 16.7 | 16.7 | 16.7 | |
Forward alternating tripod gait | Torque (mN·m) | 41 | 276 | 164 |
Speed (r·min−1) | 10 | 66.7 | 40 |
Parameter | Wooden Floor | Marble Brick | Water Surface | Flat Grass | High Grass | Rough Surface | Single Obstacle | Multi-Obstacle |
---|---|---|---|---|---|---|---|---|
Number of runs | 10 | 10 | 10 | 12 | 13 | 11 | 12 | 17 |
Successful runs | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Success rate | 100% | 100% | 100% | 83.3% | 76.9% | 90.9% | 83.3% | 58.9% |
Hardware circuit | / | / | / | / | / | / | / | 1 |
Deviation from expected orbit | / | / | / | 2 | 1 | / | 1 | 3 |
Operating errors | / | / | / | / | 2 | 1 | 1 | 1 |
Stuck wheel-legs | / | / | / | / | / | / | / | 2 |
Obstacle Height (cm) | Successful Runs | Reason for Failure |
---|---|---|
12.7 | 3 | / |
14.4 | 3 | / |
16.3 | 3 | / |
18.4 | 3 | / |
20 | 2 | Low torque |
21.5 | 3 | / |
21.7 | 2 | Not hooked |
22.2 | 1 | Not hooked |
22.8 | 0 | Not hooked |
Gully Width (cm) | Successful Runs | Reason for Failure |
---|---|---|
6 | 3 | / |
8 | 3 | / |
10 | 3 | / |
12 | 3 | / |
13 | 3 | / |
15 | 3 | / |
16 | 3 | / |
17 | 2 | Wheel-leg stuck |
18 | 1 | Hind legs failed to touch ground, body leaned back |
19 | 0 | Distance too far |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, Y.; Li, L.; Qiu, J.; Sun, Y.; Qin, G.; Han, Q.; Ji, A. A Novel Wheel-Legged Hexapod Robot. Biomimetics 2022, 7, 146. https://doi.org/10.3390/biomimetics7040146
Ni Y, Li L, Qiu J, Sun Y, Qin G, Han Q, Ji A. A Novel Wheel-Legged Hexapod Robot. Biomimetics. 2022; 7(4):146. https://doi.org/10.3390/biomimetics7040146
Chicago/Turabian StyleNi, Yong, Li Li, Jiahui Qiu, Yi Sun, Guodong Qin, Qingfei Han, and Aihong Ji. 2022. "A Novel Wheel-Legged Hexapod Robot" Biomimetics 7, no. 4: 146. https://doi.org/10.3390/biomimetics7040146
APA StyleNi, Y., Li, L., Qiu, J., Sun, Y., Qin, G., Han, Q., & Ji, A. (2022). A Novel Wheel-Legged Hexapod Robot. Biomimetics, 7(4), 146. https://doi.org/10.3390/biomimetics7040146