Biomimetic Material for Quantification of Methotrexate Using Sensor Based on Molecularly Imprinted Polypyrrole Film and MWCNT/GCE
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instruments and Reagents
2.2. Modificacion of GCE with MWCNT
2.3. Preparation of Molecularly Imprinted Polymer (MIP) and Molecularly Non−Imprinted Polymer (NIP) on MWCNT/GCE
2.4. Using the Electropolymerized Sensor for the Quantification of Methotrexate
3. Results and Discussions
3.1. Preparation of the GCE Modified with MIP/MWCNT and NIP/MWCNT
3.2. Electrochemical Behavior of MTX on the Modified Electrode
3.3. Optimization of Experimental Parameters Related to the Electropolymerization and Characterization of the Proposed Polymeric Film
3.4. Analytical Performance
3.5. Selectivity Study
3.6. Quantification of Methotrexate in Pharmaceutical and River Water Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arnold, K.; Brown, A.R.; Ankley, G.T.; Sumpter, J.P. Assessing risks and impacts of pharmaceuticals in the environment on wildlife and ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 8436. [Google Scholar] [CrossRef] [PubMed]
- Hryniuk, W.M.; Bertino, J.R.J. Treatment of leukemia with large doses of methotrexate and folinic acid: Clinical-biochemical correlates. Clin. Investig. 1969, 48, 2140. [Google Scholar] [CrossRef]
- Sinha, A.K.; Anand, S.; Ortel, B.J.; Chang, Y.; Mai, Z.; Hasan, T.; Maytin, E.V. Methotrexate used in combination with aminolaevulinic acid for photodynamic killing of prostate cancer cells. Br. J. Cancer 2006, 95, 485. [Google Scholar] [CrossRef]
- Hawwa, A.F.; Al Bawab, A.Q.; Rooney, M.; Wedderburn, L.R.; Beresford, M.W.; McElnay, J.C. Methotrexate polyglutamates as a potential marker of adherence to long-term therapy in children with juvenile idiopathic arthritis and juvenile dermatomyositis: An observational, cross−sectional study. Arthritis Res. Ther. 2015, 17, 1. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.F.; Lee, J.W.; Chen, H.M.; Huang, Z.; Hsu, Y.C.J. Methotrexate enhances 5-aminolevulinic acid-mediated photodynamic therapy-induced killing of human SCC4 cells by upregulation of coproporphyrinogen oxidase. Formos. Med. Assoc. 2014, 113, 88. [Google Scholar] [CrossRef] [PubMed]
- Jureczko, M.; Kalka, J. Cytostatic pharmaceuticals as water contaminants. Eur. J. Pharmacol. 2020, 866, 172816. [Google Scholar] [CrossRef]
- Aus Der Beek, T.; Weber, F.A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the environment—Global occurrences and perspectives. Environ. Toxicol. Chem. 2016, 35, 823. [Google Scholar] [CrossRef]
- Garcia−Ac, A.; Segura, P.A.; Viglino, L.; Gagnon, C.; Sauvé, S.J. Comparison of APPI, APCI and ESI for the LC-MS/MS analysis of bezafibrate, cyclophosphamide, enalapril, methotrexate and orlistat in municipal wastewater. Mass Spectrom. 2011, 46, 383. [Google Scholar] [CrossRef]
- Nussbaumer, S.; Geiser, L.; Sadeghipour, F.; Hochstrasser, D.; Bonnabry, P.; Veuthey, J.L.; Fleury−Souverain, S. Wipe sampling procedure coupled to LC-;MS/MS analysis for the simultaneous determination of 10 cytotoxic drugs on different surfaces. Anal. Bioanal. Chem. 2012, 402, 2499. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Hwang, J.; Jeong, Y.; Park, J.M.; Lee, K.H.; Hong, J.W. Biomimetics: Forecasting the future of science, engineering, and medicine. Int. J. Nanomed. 2015, 10, 5701. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Lin, C.-W.; Wang, J.; Oh, D.H.J. Advances in Rapid Detection Methods for Foodborne Pathogens. Microbiol. Biotechnol. 2014, 24, 297. [Google Scholar] [CrossRef]
- Lee, J.H.; Jin, H.-E.; Desai, M.S.; Ren, S.; Kim, S.; Lee, S.-W. Biomimetic sensor design. Nanoscale 2015, 7, 18379. [Google Scholar] [CrossRef]
- Dal Bello, F.; Santoro, V.; Scarpino, V.; Martano, C.; Aigotti, R.; Chiappa, A.; Davoli, E.; Medana, C. Antineoplastic drugs determination by HPLC−HRMSn to monitor occupational exposure. Drug Test Anal. 2016, 8, 730. [Google Scholar] [CrossRef] [PubMed]
- Canal−Raffin, M.; Khennoufa, K.; Martinez, B.; Goujon, Y.; Folch, C.; Ducint, D.; Titier, K.; Brochard, P.; Verdun−Esquer, C.; Molimard, M.J. Highly sensitive LC-MS/MS methods for urinary biological monitoring of occupational exposure to cyclophosphamide, ifosfamide, and methotrexate antineoplastic drugs and routine application. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1038, 109. [Google Scholar] [CrossRef]
- Hamidi, S.; Azami, A.; Mehdizadeh Aghdam, E. A novel mixed hemimicelles dispersive micro−solid phase extraction using ionic liquid functionalized magnetic graphene oxide/polypyrrole for extraction and pre-concentration of methotrexate from urine samples followed by the spectrophotometric method. Clin. Chim. Acta 2019, 488, 179. [Google Scholar] [CrossRef] [PubMed]
- Materon, E.M.; Wong, A.; Fatibello−Filho, O.; Faria, R.C.J. Development of a simple electrochemical sensor for the simultaneous detection of anticancer drugs. Electroanal. Chem. 2018, 827, 64. [Google Scholar] [CrossRef]
- Güney, S.J. Electrochemical synthesis of molecularly imprinted poly(p−aminobenzene sulphonic acid) on carbon nanodots coated pencil graphite electrode for selective determination of folic acid. Electroanal. Chem. 2019, 854, 113518. [Google Scholar] [CrossRef]
- Li, H.; Luo, W.; Zeng, Q.; Lin, Z.; Luo, H.; Zhang, Y.J. Method for the determination of blood methotrexate by high performance liquid chromatography with online post−column electrochemical oxidation and fluorescence detection. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 845, 164. [Google Scholar] [CrossRef]
- Karami, F.; Ranjbar, S.; Ghasemi, Y.; Negahdaripour, M.J. Analytical methodologies for determination of methotrexate and its metabolites in pharmaceutical, biological and environmental samples. Pharm. Anal. 2019, 9, 373. [Google Scholar] [CrossRef]
- Kummari, S.; Kumar, V.S.; Satyanarayana, M.; Gobi, K.V. Direct electrochemical determination of methotrexate using functionalized carbon nanotube paste electrode as biosensor for in-vitro analysis of urine and dilute serum samples. Microchem. J. 2019, 148, 626. [Google Scholar] [CrossRef]
- Lehn, J.-M. Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices(Nobel Lecture). Chemie Int. Ed. English 1988, 27, 89. [Google Scholar] [CrossRef]
- Lu, L.; Hu, X.; Zhu, Z. Biomimetic sensors and biosensors for qualitative and quantitative analyses of five basic tastes. TrAC Trends Anal. Chem. 2017, 87, 58. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Habara, M.; Ikezazki, H.; Chen, R.; Naito, Y.; Toko, K. Advanced Taste Sensors Based on Artificial Lipids with Global Selectivity to Basic Taste Qualities and High Correlation to Sensory Scores. Sensors 2010, 10, 3411. [Google Scholar] [CrossRef]
- Ayankojo, A.G.; Reut, J.; Nguyen, V.B.C.; Boroznjak, R.; Syritski, V. Advances in Detection of Antibiotic Pollutants in Aqueous Media Using Molecular Imprinting Technique—A Review. Biosensors 2022, 12, 441. [Google Scholar] [CrossRef]
- Nguyen, V.B.C.; Ayankojo, A.G.; Reut, J.; Rappich, J.; Furchner, A.; Hinrichs, K.; Syritski, V. Molecularly imprinted co-polymer for class—Selective electrochemical detection of macrolide antibiotics in aqueous media. Sensors Actuators B Chem. 2023, 374, 132768. [Google Scholar] [CrossRef]
- Khan, S.; Wong, A.; Rychlik, M.; Sotomayor, M.D.P.T. A Novel Synthesis of a Magnetic Porous Imprinted Polymer by Polyol Method Coupled with Electrochemical Biomimetic Sensor for the Detection of Folate in Food Samples. Chemosensors 2022, 10, 473. [Google Scholar] [CrossRef]
- Lowdon, J.W.; Diliën, H.; Singla, P.; Peeters, M.; Cleij, T.J.; van Grinsven, B.; Eersels, K. MIPs for commercial application in low-cost sensors and assays — An overview of the current status quo. Sensors Actuators B Chem. 2020, 325, 128973. [Google Scholar] [CrossRef]
- Martín−Esteban, A. “Recent molecularly imprinted polymer—based sample preparation techniques in environmental analysis. Trends Environ. Anal. Chem. 2016, 9, 8. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev. 2016, 45, 2137. [Google Scholar] [CrossRef]
- Menger, M.; Yarman, A.; Erdőssy, J.; Yildiz, H.; Gyurcsányi, R.; Scheller, F. MIPs and Aptamers for Recognition of Proteins in Biomimetic Sensing. Biosensors 2016, 6, 35. [Google Scholar] [CrossRef]
- Antipchik, M.; Reut, J.; Ayankojo, A.G.; Öpik, A.; Syritski, V. MIP—based electrochemical sensor for direct detection of hepatitis C virus via E2 envelope protein. Talanta 2022, 250, 123737. [Google Scholar] [CrossRef]
- Ayankojo, A.G.; Boroznjak, R.; Reut, J.; Öpik, A.; Syritski, V. Molecularly imprinted polymer based electrochemical sensor for quantitative detection of SARS-CoV-2 spike protein. Sensors Actuators B Chem. 2022, 353, 131160. [Google Scholar] [CrossRef] [PubMed]
- Raziq, A.; Kidakova, A.; Boroznjak, R.; Reut, J.; Öpik, A.; Syritski, V. Development of a portable MIP−based electrochemical sensor for detection of SARS-CoV-2 antigen. Biosens. Bioelectron. 2021, 178, 113029. [Google Scholar] [CrossRef]
- Li, S.; Luo, Q.; Liu, Y.; Zhang, Z.; Shen, G.; Wu, H.; Chen, A.; Liu, X.; Zhang, A. Surface molecularly imprinted polymer film with poly(p-aminothiophenol) outer layer coated on gold nanoparticles inner layer for highly sensitive and selective sensing paraoxon. Polymers 2017, 9, 359. [Google Scholar] [CrossRef]
- Cosio, M.S.; Pellicanò, A.; Brunetti, B.; Fuenmayor, C.A. A simple hydroxylated multi-walled carbon nanotubes modified glassy carbon electrode for rapid amperometric detection of bisphenol A. Sensors Actuators B Chem. 2017, 246, 673. [Google Scholar] [CrossRef]
- Zang, Y.J.; Nie, J.; He, B.; Yin, W.; Zheng, J.; Hou, C.J.; Huo, D.Q.; Yang, M.; Liu, F.M.; Sun, Q.Q.; et al. Fabrication of S-MoSe2/NSG/Au/MIPs imprinted composites for electrochemical detection of dopamine based on synergistic effect. Microchem. J. 2020, 156, 104845. [Google Scholar] [CrossRef]
- Uygun, Z.O.; Dilgin, Y. A novel impedimetric sensor based on molecularly imprinted polypyrrole modified pencil graphite electrode for trace level determination of chlorpyrifos. Sensors Actuators B Chem. 2013, 188, 78. [Google Scholar] [CrossRef]
- Beluomini, M.A.; da Silva, J.L.; Stradiotto, N.R. Amperometric determination of myo−inositol by using a glassy carbon electrode modified with molecularly imprinted polypyrrole, reduced graphene oxide and nickel nanoparticles. Microchim. Acta 2018, 185, 1. [Google Scholar] [CrossRef]
- Liu, A.S.; Bezerra, M.C.; Cho, L.Y. Electrodeposition of polypyrrole films on aluminum surfaces from a p−toluene sulfonic acid medium. Mater. Res. 2009, 12, 503. [Google Scholar] [CrossRef]
- Wu, Y.; Li, G.; Tian, Y.; Feng, J.; Xiao, J.; Liu, J.; Liu, X.; He, Q.J. Electropolymerization of molecularly imprinted polypyrrole film on multiwalled carbon nanotube surface for highly selective and stable determination of carcinogenic amaranth. Electroanal. Chem. 2021, 895, 115494. [Google Scholar] [CrossRef]
- Roy, S.; Nagabooshanam, S.; Wadhwa, S.; Chauhan, N.; Mathur, A.; Khan, S.A.; Davis, J. Ultra-sensitive detection of L-tyrosine using molecularly imprinted electrochemical sensor towards diabetic foot ulcer detection. Electrochem. Commun. 2020, 117, 106782. [Google Scholar] [CrossRef]
- Ratautaite, V.; Boguzaite, R.; Brazys, E.; Ramanaviciene, A.; Ciplys, E.; Juozapaitis, M.; Slibinskas, R.; Bechelany, M.; Ramanavicius, A. Molecularly imprinted polypyrrole based sensor for the detection of SARS-CoV-2 spike glycoprotein. Electrochim. Acta 2022, 403, 139581. [Google Scholar] [CrossRef]
- Yavarinasab, A.; Janfaza, S.; Tahmooressi, H.; Ghazi, M.; Tasnim, N.; Hoorfar, M.J. A selective polypyrrole-based sub-ppm impedimetric sensor for the detection of dissolved hydrogen sulfide and ammonia in a mixture. Hazard. Mater. 2021, 416, 125892. [Google Scholar] [CrossRef] [PubMed]
- Ostovar, S.; Maghsoudi, S.; Mousavi, M. Development of a sensitive voltammetric sensor for diltiazem determination in biological samples using MWCNT/PPy−PBA modified glassy carbon electrode. Synth. Met. 2021, 281, 116928. [Google Scholar] [CrossRef]
- Pontinha, A.D.R.; Jorge, S.M.A.; Diculescu, V.C.; Vivan, M.; Oliveira−Brett, A.M. Antineoplasic Drug Methotrexate Redox Mechanism Using a Glassy Carbon Electrode. Electroanalysis 2012, 24, 917. [Google Scholar] [CrossRef]
- Le, T.H.; Kim, Y.; Yoon, H. Electrical and electrochemical properties of conducting polymers. Polymers 2017, 9, 150. [Google Scholar] [CrossRef]
- Shamsipur, M.; Moradi, N.; Pashabadi, A.J. Coupled electrochemical−chemical procedure used in construction of molecularly imprinted polymer-based electrode: A highly sensitive impedimetric melamine sensor. Solid State Electrochem. 2018, 22, 169. [Google Scholar] [CrossRef]
- Duchet, J.; Legras, R.; Demoustier−Champagne, S. Chemical synthesis of polypyrrole: Structure−properties relationship. Synth. Met. 1998, 98, 113. [Google Scholar] [CrossRef]
- Adauto, A.; Wong, A.; Khan, S.; Picasso, G.; Pilar Taboada Sotomayor, M. A Selective Electrochemical Sensor for the Detection of Cd(II) Based on a Carbon Paste Electrode Impregnated with a Novel Ion−imprinted Hybrid Polymer. Electroanalysis 2021, 33, 1557. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Nasr, P.; Rezaei, B. Simultaneous detection of folic acid and methotrexate by an optical sensor based on molecularly imprinted polymers on dual−color CdTe quantum dots. Anal. Chim. Acta. 2017, 996, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Luo, L.; Ding, Y.; Si, X.; Ning, Y. Highly Sensitive Determination of Methotrexate at Poly (l-Lysine) Modified Electrode in the Presence of Sodium Dodecyl Benzene Sulfonate. Bioelectrochemistry 2014, 98, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Šelešovská, R.; Janíková, L.; Chýlková, J. Sensitive Voltammetric Sensor Based on Boron—Doped Diamond Electrode for Determination of the Chemotherapeutic Drug Methotrexate in Pharmaceutical and Biological Samples. Electroanalysis 2015, 27, 42–51. [Google Scholar] [CrossRef]
Molecule | Recovery MIP (%) | Recovery NIP (%) | α (1) | β (2) |
---|---|---|---|---|
MTX | 100 | 30 | 3.33 | 1.00 |
Cl− | 87.2 | 25.5 | 3.42 | 0.87 |
NO3− | 88.29 | 25.2 | 3.50 | 0.88 |
SO42− | 88.1 | 25 | 3.52 | 0.88 |
L−AA | 86.83 | 24 | 3.62 | 0.87 |
AMX | 85.35 | 26 | 3.28 | 0.85 |
TTC | 84.58 | 24.2 | 3.50 | 0.85 |
IVT | 96.4 | 24.5 | 3.93 | 0.96 |
Sample | [Methotrexate]/mol L−1 | Recovery (Sensor, %) ** | Error *** (%) | ||
---|---|---|---|---|---|
Added | Found * | ||||
Proposed Method | HPLC Method | ||||
Water River | 2.50 × 10−6 | (2.61 ± 0.1) × 10−6 | (2.55 ± 0.07) × 10−6 | 102 | 2.35 |
2.50 × 10−5 | (2.64 ± 0.08) × 10−5 | (2.59 ± 0.04) × 10−5 | 104 | 1.93 |
Sample | Declared Value (mg) | Methotrexate per Tablet (mg) | |||
---|---|---|---|---|---|
Proposed Method | Comparative Method | Recovery (Sensor, %) * | Relative Error (%) ** | ||
Pharmaceutical formulation | 2.50 | 2.56 ± 0.09 | (2.62 ± 0.03) | 105 | 2.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jara-Cornejo, E.; Khan, S.; Vega-Chacón, J.; Wong, A.; da Silva Neres, L.C.; Picasso, G.; Sotomayor, M.D.P.T. Biomimetic Material for Quantification of Methotrexate Using Sensor Based on Molecularly Imprinted Polypyrrole Film and MWCNT/GCE. Biomimetics 2023, 8, 77. https://doi.org/10.3390/biomimetics8010077
Jara-Cornejo E, Khan S, Vega-Chacón J, Wong A, da Silva Neres LC, Picasso G, Sotomayor MDPT. Biomimetic Material for Quantification of Methotrexate Using Sensor Based on Molecularly Imprinted Polypyrrole Film and MWCNT/GCE. Biomimetics. 2023; 8(1):77. https://doi.org/10.3390/biomimetics8010077
Chicago/Turabian StyleJara-Cornejo, Eduardo, Sabir Khan, Jaime Vega-Chacón, Ademar Wong, Lariel Chagas da Silva Neres, Gino Picasso, and Maria D. P. T. Sotomayor. 2023. "Biomimetic Material for Quantification of Methotrexate Using Sensor Based on Molecularly Imprinted Polypyrrole Film and MWCNT/GCE" Biomimetics 8, no. 1: 77. https://doi.org/10.3390/biomimetics8010077
APA StyleJara-Cornejo, E., Khan, S., Vega-Chacón, J., Wong, A., da Silva Neres, L. C., Picasso, G., & Sotomayor, M. D. P. T. (2023). Biomimetic Material for Quantification of Methotrexate Using Sensor Based on Molecularly Imprinted Polypyrrole Film and MWCNT/GCE. Biomimetics, 8(1), 77. https://doi.org/10.3390/biomimetics8010077