The Plant Leaf: A Biomimetic Resource for Multifunctional and Economic Design
Abstract
:1. Introduction
1.1. Basics of Leaf Function
1.2. The Leaf as a Biological Reactor Supplied by Diffusion
2. Leaf Shape and Size
2.1. Basic Considerations
2.2. Biomimetic Examples
3. Stomata: A Biological Micropore Apparatus with Controllable Aperture
3.1. Stomatal Structure and Mechanism of Aperture Control
3.2. Speed of Aperture Control
3.3. Stomatal Conductance as Part of the Leaf Conductance
3.4. Stomatal Size and Distribution
3.5. Biomimetic Examples
4. The Leaf Surface
4.1. From Nanostructures to Hairs
4.2. Biomimetic Examples
5. The Leaf Interior as a Porous Medium for Diffusion and Light Distribution
5.1. Structure of the Leaf Interior
5.2. CO2 Diffusion in the Mesophyll
5.3. Water Vapor Diffusion in the Mesophyll
5.4. Biomimetic Examples
6. Leaf Venation
6.1. Leaf Venation Architecture
6.2. Biomimetic Examples
7. Leaf Economics
7.1. Basics of Leaf Economics
7.2. Transpiration: The Water Costs of Photosynthesis and How to Reduce Them by Optimized Stomatal Conductance
7.3. Save Water during the Night: The “Acid Battery” of CAM
7.4. Leaf Longevity
7.5. The Leaf as an Integrated System
8. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ellis, R.J. The most abundant protein in the world. Trends Biochem. Sci. 1979, 4, 241–244. [Google Scholar] [CrossRef]
- Beerling, D.J.; Osborne, C.P.; Chaloner, W.G. Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the late Palaeozoic era. Nature 2001, 410, 352–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef]
- Speck, T.; Cheng, T.; Klimm, F.; Menges, A.; Poppinga, S.; Speck, O.; Tahouni, Y.; Tauber, F.; Thielen, M. Plants as inspiration for material-based sensing and actuation in soft robots and machines. MRS Bull. 2023. [Google Scholar] [CrossRef]
- Bauer, U.; Müller, U.K.; Poppinga, S. Complexity and diversity of motion amplification and control strategies in motile carnivorous plant traps. Proc. R. Soc. B 2021, 288, 20210771. [Google Scholar] [CrossRef]
- Poppinga, S.; Correa, D.; Bruchmann, B.; Menges, A.; Speck, T. Plant movements as concept generators for the development of biomimetic compliant mechanisms. Integr. Comp. Biol. 2020, 60, 886–895. [Google Scholar] [CrossRef]
- Poppinga, S.; Zollfrank, C.; Prucker, O.; Rühe, J.; Menges, A.; Cheng, T.; Speck, T. Toward a new generation of smart biomimetic actuators for architecture. Adv. Mater. 2018, 30, 1703653. [Google Scholar] [CrossRef]
- Niklas, K.J. A mechanical perspective on foliage leaf form and function. New Phytol. 1999, 143, 19–31. [Google Scholar] [CrossRef]
- Onoda, Y.; Schieving, F.; Anten, N.P. A novel method of measuring leaf epidermis and mesophyll stiffness shows the ubiquitous nature of the sandwich structure of leaf laminas in broad-leaved angiosperm species. J. Exp. Bot. 2015, 66, 2487–2499. [Google Scholar] [CrossRef] [Green Version]
- Niklas, K.J.; Telewski, F.W. Environmental–biomechanical reciprocity and the evolution of plant material properties. J. Exp. Bot. 2022, 73, 1067–1079. [Google Scholar] [CrossRef]
- Speck, O.; Speck, T. An overview of bioinspired and biomimetic self-repairing materials. Biomimetics 2019, 4, 26. [Google Scholar] [CrossRef] [Green Version]
- Klein, H.; Hesse, L.; Boljen, M.; Kampowski, T.; Butschek, I.; Speck, T.; Speck, O. Finite element modelling of complex movements during self-sealing of ring incisions in leaves of Delosperma cooperi. J. Theor. Biol. 2018, 458, 184–206. [Google Scholar] [CrossRef] [PubMed]
- Esau, K. Plant Anatomy, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1965. [Google Scholar]
- Aalto, T.; Juurola, E. A three-dimensional model of CO2 transport in airspaces and mesophyll cells of a silver birch leaf. Plant Cell Environ. 2002, 25, 1399–1409. [Google Scholar] [CrossRef]
- Flexas, J.; Ribas-Carbó, M.; Diaz-Espejo, A.; Galmés, J.; Medrano, H. Mesophyll conductance to CO2: Current knowledge and future prospects. Plant Cell Environ. 2008, 31, 602–621. [Google Scholar] [CrossRef] [PubMed]
- Terashima, I.; Miyazawa, S.-I.; Hanba, Y.T. Why are sun leaves thicker than shade Leaves ?—Consideration based on analyses of CO2 in the leaf. J. Plant Res. 2001, 114, 93–105. [Google Scholar]
- Wright, I.J.; Dong, N.; Maire, V.; Prentice, I.C.; Westoby, M.; Díaz, S.; Gallagher, R.V.; Jacobs, B.F.; Kooyman, R.; Law, E.A. Global climatic drivers of leaf size. Science 2017, 357, 917–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolph, G.E.; Dilcher, D.L. Variation in leaf size with respect to climate in Costa Rica. Biotropica 1980, 12, 91–99. [Google Scholar] [CrossRef]
- Schuepp, P.H. Tansley Review No. 59. Leaf boundary layers. New Phytol. 1993, 125, 477–507. [Google Scholar] [CrossRef]
- Vogel, S. “Sun leaves” and “shade leaves”: Differences in convective heat dissipation. Ecology 1968, 49, 1203–1204. [Google Scholar] [CrossRef]
- Gates, D.M. Transpiration and Leaf Temperature. Annu. Rev. Plant Physiol. 1968, 19, 211–238. [Google Scholar] [CrossRef] [Green Version]
- Konrad, W.; Katul, G.; Roth-Nebelsick, A. Leaf temperature and its dependence on atmospheric CO2 and leaf size. Geol. J. 2021, 56, 866–885. [Google Scholar] [CrossRef] [Green Version]
- Roth-Nebelsick, A. Computer-based analysis of steady-state and transient heat transfer of small-sized leaves by free and mixed convection. Plant Cell Environ. 2001, 24, 631–640. [Google Scholar] [CrossRef]
- Wigley, G.; Clark, J.A. Heat transport coefficients for constant energy flux models of broad leaves. Bound.-Layer Meteorol. 1974, 7, 139–150. [Google Scholar] [CrossRef]
- Leigh, A.; Sevanto, S.; Close, J.D.; Nicotra, A.B. The influence of leaf size and shape on leaf thermal dynamics: Does theory hold up under natural conditions? Plant Cell Environ. 2016, 40, 237–248. [Google Scholar] [CrossRef]
- Okajima, Y.; Taneda, H.; Noguchi, K.; Terashima, I. Optimum leaf size predicted by a novel leaf energy balance model incorporating dependencies of photosynthesis on light and temperature. Ecol. Res. 2012, 27, 333–346. [Google Scholar] [CrossRef]
- Kattge, J.; Knorr, W. Temperature acclimation in a biochemical model of photosynthesis: A reanalysis of data from 36 species. Plant Cell Environ. 2007, 30, 1176–1190. [Google Scholar] [CrossRef]
- Box, F.; Erlich, A.; Guan, J.H.; Thorogood, C. Gigantic floating leaves occupy a large surface area at an economical material cost. Sci. Adv. 2022, 8, eabg3790. [Google Scholar] [CrossRef]
- Givnish, T.J. On the adaptive significance of leaf form. In Tropics in Plant Population Biology; Columbia University Press: New York, NY, USA, 1979; pp. 375–473. [Google Scholar]
- Rupp, A.I.; Gruber, P. Bio-inspired evaporation from shaped interfaces: An experimental study. Bioinspir. Biomim. 2021, 16, 045001. [Google Scholar] [CrossRef]
- Rupp, A.I.; Gruber, P. Biomimetic groundwork for thermal exchange structures inspired by plant leaf design. Biomimetics 2019, 4, 75. [Google Scholar] [CrossRef] [Green Version]
- Zähr, M.; Friedrich, D.; Kloth, T.Y.; Goldmann, G.; Tributsch, H. Bionic photovoltaic panels bio-inspired by green leaves. J. Bionic Eng. 2010, 7, 284–293. [Google Scholar] [CrossRef]
- Metcalfe, C.; Chalk, L. Anatomy of the Dicotyledons. Vol I. Systematic Anatomy of Leaf and Stem, with a Brief History of the Subject; Oxford University Press: Oxford, UK, 1979. [Google Scholar]
- Pisek, A.; Knapp, H.; Ditterstorfer, J. Maximale Öffnungsweite und Bau der Stomata, mit Angaben über ihre Größe und Zahl. Flora 1970, 159, 459–479. [Google Scholar] [CrossRef]
- Schönherr, J.; Bukovac, M.J. Penetration of stomata by liquids: Dependence on surface tension, wettability, and stomatal morphology. Plant Physiol. 1972, 49, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Carter, R.; Woolfenden, H.; Baillie, A.; Amsbury, S.; Carroll, S.; Healicon, E.; Sovatzoglou, S.; Braybrook, S.; Gray, J.E.; Hobbs, J. Stomatal opening involves polar, not radial, stiffening of guard cells. Curr. Biol. 2017, 27, 2974–2983. [Google Scholar] [CrossRef] [Green Version]
- Spence, R.; Wu, H.; Sharpe, P.; Clark, K. Water stress effects on guard cell anatomy and the mechanical advantage of the epidermal cells. Plant Cell Environ. 1986, 9, 197–202. [Google Scholar]
- Haberlandt, G.F.J. Physiological Plant Anatomy; McMillan Co.: London, UK, 1914. [Google Scholar]
- Meidner, H.; Mansfield, T.A. Physiology of Stomata; McGraw-Hill: London, UK, 1968; p. 179. [Google Scholar]
- Ziegenspeck, A. Das Vorkommen von Fila in radialer Anordnung in den Schliesszellen. Protoplasma 1955, 44, 385–388. [Google Scholar] [CrossRef]
- Aylor, D.E.; Parlange, J.Y.; Krikorian, A.D. Stomatal mechanics. Am. J. Bot. 1973, 60, 163–171. [Google Scholar] [CrossRef]
- Vaihinger, K. Die Bewegungsmechanik der Spaltöffnungen. Protoplasma 1941, 36, 430–443. [Google Scholar] [CrossRef]
- Bidhendi, A.J.; Geitmann, A. Finite element modeling of shape changes in plant cells. Plant Physiol. 2018, 176, 41–56. [Google Scholar] [CrossRef] [Green Version]
- Raschke, K. Stomatal action. Annu. Rev. Plant Physiol. 1975, 26, 309–340. [Google Scholar] [CrossRef]
- Franks, P.J.; Farquhar, G.D. The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiol. 2007, 143, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Brodribb, T.J.; McAdam, S.A. Evolution of the stomatal regulation of plant water content. Plant Physiol. 2017, 174, 639–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drake, P.L.; Froend, R.H.; Franks, P.J. Smaller, faster stomata: Scaling of stomatal size, rate of response, and stomatal conductance. J. Exp. Bot. 2013, 64, 495–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawson, T.; Vialet-Chabrand, S. Speedy stomata, photosynthesis and plant water use efficiency. New Phytol. 2019, 221, 93–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAusland, L.; Vialet-Chabrand, S.; Davey, P.; Baker, N.R.; Brendel, O.; Lawson, T. Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. New Phytol. 2016, 211, 1209–1220. [Google Scholar] [CrossRef]
- Nobel, P.S. Physicochemical and Environmental Plant Physiology, 3rd ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Franks, P.J.; Beerling, D.J. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proc. Natl. Acad. Sci. USA 2009, 106, 10343–10347. [Google Scholar] [CrossRef] [Green Version]
- Xiong, D.; Flexas, J. From one side to two sides: The effects of stomatal distribution on photosynthesis. New Phytol. 2020, 228, 1754–1766. [Google Scholar] [CrossRef]
- Gago, J.; Carriquí, M.; Nadal, M.; Clemente-Moreno, M.J.; Coopman, R.E.; Fernie, A.R.; Flexas, J. Photosynthesis optimized across land plant phylogeny. Trends Plant Sci. 2019, 24, 947–958. [Google Scholar] [CrossRef]
- Jordan, G.J.; Weston, P.H.; Carpenter, R.J.; Dillon, R.A.; Brodribb, T.J. The evolutionary relations of sunken, covered and encrypted stomata to dry habitats in Proteaceae. Am. J. Bot. 2008, 95, 521–530. [Google Scholar] [CrossRef]
- Hassiotou, F.; Evans, J.R.; Ludwig, M.; Veneklaas, E.J. Stomatal crypts may facilitate diffusion of CO2 to adaxial mesophyll cells in thick sclerophylls. Plant Cell Environ. 2009, 32, 1596–1611. [Google Scholar] [CrossRef]
- Roth-Nebelsick, A.; Hassiotou, F.; Veneklaas, E.J. Stomatal crypts have small effects on transpiration: A numerical model analysis. Plant Physiol. 2009, 151, 2018–2027. [Google Scholar] [CrossRef] [Green Version]
- Konrad, W.; Burkhardt, J.; Ebner, M.; Roth-Nebelsick, A. Leaf pubescence as a possibility to increase water use efficiency by promoting condensation. Ecohydrology 2015, 8, 480–492. [Google Scholar] [CrossRef]
- Drabiniok, E.; Neyer, A. Evaporation cooling using a bionic micro porous evaporation system. Heat Transf. Eng. 2019, 40, 1126–1136. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Liu, C.; Xu, Z.; Zhanb, K.; Ke, X.; Wang, L. A microfluidic pump/valve inspired by xylem embolism and transpiration in plants. PLoS ONE 2012, 7, e50320. [Google Scholar]
- Shi, W.; Vieitez, J.R.; Berrier, A.S.; Roseveare, M.W.; Surinach, D.A.; Srijanto, B.R.; Collier, C.P.; Boreyko, J.B. Self-stabilizing transpiration in synthetic leaves. ACS Appl. Mater. Interfaces 2019, 11, 13768–13776. [Google Scholar] [CrossRef] [Green Version]
- Zwieniecki, M.A.; Haaning, K.S.; Boyce, C.K.; Jensen, K.H. Stomatal design principles in synthetic and real leaves. J. R. Soc. Interface 2016, 13, 20160535. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Lee, S.-J. Fabrication of triple-parted stomata-inspired membrane with stimulus-responsive functions. Sci. Rep. 2016, 6, 21258. [Google Scholar] [CrossRef] [Green Version]
- Pan, D.; Cai, Z.; Ji, S.; Fan, S.; Wang, P.; Lao, Z.; Yang, L.; Ni, J.; Wang, C.; Li, J. Microtubes with complex cross section fabricated by C-shaped bessel laser beam for mimicking stomata that opens and closes rapidly. ACS Appl. Mater. Interfaces 2018, 10, 36369–36376. [Google Scholar] [CrossRef]
- Holmes, D.A. Waterproof breathable fabrics. Handb. Tech. Text. 2000, 12, 282. [Google Scholar]
- Wood, J. Bioinspiration in fashion—A review. Biomimetics 2019, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Barthlott, W.; Neinhuis, C. The purity of sacred lotus or escape from contamination in biological surfaces. Planta 1997, 202, 1–8. [Google Scholar] [CrossRef]
- Koch, K.; Bohn, H.F.; Barthlott, W. Hierarchically sculptured plant surfaces and superhydrophobicity. Langmuir 2009, 25, 14116–14120. [Google Scholar] [CrossRef] [PubMed]
- Koch, K.; Bhushan, B.; Barthlott, W. Multifunctional surface structures of plants: An inspiration for biomimetics. Prog. Mater. Sci. 2009, 54, 137–178. [Google Scholar] [CrossRef]
- Koch, K.; Bhushan, B.; Barthlott, W. Diversity of Structure, Morphology and Wetting of Plant Surfaces. Soft Matter 2008, 4, 1943–1963. [Google Scholar] [CrossRef]
- Barthlott, W.; Mail, M.; Bhushan, B.; Koch, K. Plant surfaces: Structures and functions for biomimetic innovations. Nano-Micro Lett. 2017, 9, 23. [Google Scholar] [CrossRef] [Green Version]
- Barthlott, W.; Mail, M.; Neinhuis, C. Superhydrophobic hierarchically structured surfaces in biology: Evolution, structural principles and biomimetic applications. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20160191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poulson, M.; Vogelmann, T. Epidermal focussing and effects upon photosynthetic light-harvesting in leaves of Oxalis. Plant Cell Environ. 1990, 13, 803–811. [Google Scholar] [CrossRef]
- Martin, G.; Josserand, S.A.; Bornman, J.F.; Vogelmann, T.C. Epidermal focussing and the light microenvironment within leaves of Medicago sativa. Physiol. Plant. 1989, 76, 485–492. [Google Scholar] [CrossRef]
- Bone, R.A.; Lee, D.W.; Norman, J. Epidermal cells functioning as lenses in leaves of tropical rain-forest shade plants. Appl. Opt. 1985, 24, 1408–1412. [Google Scholar] [CrossRef]
- Martin, G.; Myres, D.A.; Vogelmann, T.C. Characterization of plant epidermal lens effects by a surface replica technique. J. Exp. Bot. 1991, 42, 581–587. [Google Scholar] [CrossRef]
- Vogelmann, T.C.; Bornman, J.F.; Yates, D.J. Focusing of light by leaf epidermal cells. Physiol. Plant. 1996, 98, 43–56. [Google Scholar] [CrossRef]
- Karabourniotis, G.; Liakopoulos, G.; Bresta, P.; Nikolopoulos, D. The optical properties of leaf structural elements and their contribution to photosynthetic performance and photoprotection. Plants 2021, 10, 1455. [Google Scholar] [CrossRef]
- Levin, D.A. The role of trichomes in plant defense. Q. Rev. Biol. 1973, 48, 3–15. [Google Scholar] [CrossRef]
- Payne, W.W. A glossary of plant hair terminology. Brittonia 1978, 30, 239–255. [Google Scholar] [CrossRef]
- Iriti, M.; Colnaghi, G.; Chemat, F.; Smadja, J.; Faoro, F.; Visinoni, F.A. Histo-cytochemistry and scanning electron microscopy of lavender glandular trichomes following conventional and microwave-assisted hydrodistillation of essential oils: A comparative study. Flavour Fragr. J. 2006, 21, 704–712. [Google Scholar] [CrossRef]
- Bickford, C.P. Ecophysiology of leaf trichomes. Funct. Plant Biol. 2016, 43, 807–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Płachno, B.J.; Stpiczyńska, M.; Adamec, L.; Miranda, V.F.O.; Świątek, P. Nectar trichome structure of aquatic bladderworts from the section Utricularia (Lentibulariaceae) with observation of flower visitors and pollinators. Protoplasma 2018, 255, 1053–1064. [Google Scholar] [CrossRef] [Green Version]
- Göpfert, J.; Heil, N.; Conrad, J.; Spring, O. Cytological development and sesquiterpene lactone secretion in capitate glandular trichomes of sunflower. Plant Biol. 2005, 7, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Rieseberg, L.H.; Soltis, D.E.; Arnold, D. Variation and localization of flavonoid aglycones in Helianthus annuus (Compositae). Am. J. Bot. 1987, 74, 224–233. [Google Scholar] [CrossRef]
- Aschenbrenner, A.-K.; Horakh, S.; Spring, O. Linear glandular trichomes of Helianthus (Asteraceae): Morphology, localization, metabolite activity and occurrence. AoB Plants 2013, 5, plt028. [Google Scholar] [CrossRef]
- Duke, S.; Canel, C.; Rimando, A.; Telle, M.; Duke, M.; Paul, R. Current and potential exploitation of plant glandular trichome productivity. Adv. Bot. Res. 2000, 31, 121–151. [Google Scholar]
- Wagner, G.J.; Wang, E.; Shepherd, R.W. New approaches for studying and exploiting an old protuberance, the plant trichome. Ann. Bot. 2004, 93, 3–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tooker, J.; Peiffer, M.; Luthe, D.S.; Felton, G.W. Trichomes as sensors: Detecting activity on the leaf surface. Plant Signal. Behav. 2010, 5, 73–75. [Google Scholar] [CrossRef]
- Peiffer, M.; Tooker, J.F.; Luthe, D.S.; Felton, G.W. Plants on early alert: Glandular trichomes as sensors for insect herbivores. New Phytol. 2009, 184, 644–656. [Google Scholar] [CrossRef] [PubMed]
- Vinoth, T. Structural, functional and phylogenetic aspects of the colleter. Ann. Bot. 1991, 68, 287–305. [Google Scholar]
- Voigt, D.; Kim, J.; Jantschke, A.; Varenberg, M. Robust, universal, and persistent bud secretion adhesion in horse-chestnut trees. Sci. Rep. 2020, 10, 16925. [Google Scholar] [CrossRef]
- Johnson, B. The injurious effects of the hooked epidermal hairs of French beans (Phaseolus vulgaris L.) on Aphis craccivora Koch. Bull. Entomol. Res. 1953, 44, 779–788. [Google Scholar] [CrossRef]
- Rebora, M.; Salerno, G.; Piersanti, S.; Gorb, E.; Gorb, S. Entrapment of Bradysia paupera (Diptera: Sciaridae) by Phaseolus vulgaris (Fabaceae) plant leaf. Arthropod-Plant Interact. 2020, 14, 499–509. [Google Scholar] [CrossRef]
- Kumar, S.; Soukup, M.; Elbaum, R. Silicification in grasses: Variation between different cell types. Front. Plant Sci. 2017, 8, 438. [Google Scholar] [CrossRef] [Green Version]
- Klančnik, K.; Vogel-Mikuš, K.; Gaberščik, A. Silicified structures affect leaf optical properties in grasses and sedge. J. Photochem. Photobiol. B Biol. 2014, 130, 1–10. [Google Scholar] [CrossRef]
- Světlíková, P.; Hájek, T.; Těšitel, J. Hydathode trichomes actively secreting water from leaves play a key role in the physiology and evolution of root-parasitic rhinanthoid Orobanchaceae. Ann. Bot. 2015, 116, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Bellenot, C.; Routaboul, J.-M.; Laufs, P.; Noël, L.D. Hydathodes. Curr. Biol. 2022, 32, R763–R764. [Google Scholar] [CrossRef] [PubMed]
- Pridgeon, A.M. Absorbing trichomes in the Pleurothallidinae (Orchidaceae). Am. J. Bot. 1981, 68, 64–71. [Google Scholar] [CrossRef]
- Rundel, P. Water uptake by organs other than roots. In Physiological Plant Ecology II; Springer: Berlin/Heidelberg, Germany, 1982; pp. 111–134. [Google Scholar]
- Schwerbrock, R.; Leuschner, C. Foliar water uptake, a widespread phenomenon in temperate woodland ferns? Plant Ecol. 2017, 218, 555–563. [Google Scholar] [CrossRef]
- Schreel, J.D.M.; Leroux, O.; Goossens, W.; Brodersen, C.; Rubinstein, A.; Steppe, K. Identifying the pathways for foliar water uptake in beech (Fagus sylvatica L.): A major role for trichomes. Plant J. 2020, 103, 769–780. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Mo, Y.; Wang, N.; Xing, L.; Qu, Y.; Chen, Y.; Yuan, Z.; Ali, A.; Qi, J.; Fernández, V. The overlooked functions of trichomes: Water absorption and metal detoxication. Plant Cell Environ. 2023, 46, 669–687. [Google Scholar] [CrossRef]
- Fernández, V.; Gil-Pelegrín, E.; Eichert, T. Foliar water and solute absorption: An update. Plant J. 2021, 105, 870–883. [Google Scholar] [CrossRef] [PubMed]
- Schreel, J.D.M.; Steppe, K. Foliar Water Uptake in Trees: Negligible or Necessary? Trends Plant Sci. 2020, 25, 590–603. [Google Scholar] [CrossRef]
- Benzing, D. The absorptive capacities of bromeliad trichomes. Am. J. Bot. 1976, 63, 1009–1014. [Google Scholar] [CrossRef]
- Mez, C. Physiologische Bromeliaceen-Studien I. Die Wasser-Ökonomie der extrem atmosphärischen Tillandsien. Jahrb. Der Wiss. Bot. 1904, 40, 157–229. [Google Scholar]
- Herppich, W.B.; Martin, C.E.; Tötzke, C.; Manke, I.; Kardjilov, N. External water transport is more important than vascular transport in the extreme atmospheric epiphyte Tillandsia usneoides (Spanish moss). Plant Cell Environ. 2019, 42, 1645–1656. [Google Scholar] [CrossRef]
- Ha, N.; Park, J.; Park, S.H.; Seo, E.; Lim, J.H.; Lee, S.J. Domino-like water transport on Tillandsia through flexible trichome wings. New Phytol. 2021, 231, 1906–1922. [Google Scholar] [CrossRef] [PubMed]
- Benzing, D.H.; Seemann, J.; Renfrow, A. The foliar epidermis in Tillandsioideae (Bromeliaceae) and its role in habitat selection. Am. J. Bot. 1978, 65, 359–365. [Google Scholar] [CrossRef]
- Stefano, M.; Papini, A.; Brighigna, L. A new quantitative classification of ecological types in the bromeliad genus Tillandsia (Bromeliaceae) based on trichomes. Rev. Biol. Trop. 2008, 56, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Miranda, T.; Roth-Nebelsick, A.; Junginger, A.; Ebner, M. Habitat conditions, spatial distribution and trichome morphology of different species of Tillandsia growing on trees on the Ilha Grande Island, Brazil. Flora 2020, 272, 151692. [Google Scholar] [CrossRef]
- Bauer, G.; Klein, M.-C.; Gorb, S.N.; Speck, T.; Voigt, D.; Gallenmüller, F. Always on the bright side: The climbing mechanism of Galium aparine. Proc. R. Soc. B Biol. Sci. 2011, 278, 2233–2239. [Google Scholar] [CrossRef] [Green Version]
- Ehleringer, J.; Björkman, O. Pubescence and leaf spectral characteristics in a desert shrub, Encelia farinosa. Oecologia 1978, 36, 151–162. [Google Scholar] [CrossRef]
- Manetas, Y. The importance of being hairy: The adverse effects of hair removal on stem photosynthesis of Verbascum speciosum are due to solar UV-B radiation. New Phytol. 2003, 158, 503–508. [Google Scholar] [CrossRef]
- Ehleringer, J.; Mooney, H. Leaf hairs: Effects on physiological activity and adaptive value to a desert shrub. Oecologia 1978, 37, 183–200. [Google Scholar] [CrossRef]
- Filella, I.; Peñuelas, J. Altitudinal differences in UV absorbance, UV reflectance and related morphological traits of Quercus ilex and Rhododendron ferrugineum in the Mediterranean region. Plant Ecol. 1999, 145, 157–165. [Google Scholar] [CrossRef]
- Karabourniotis, G.; Bornman, J.F. Penetration of UV-A, UV-B and blue light through the leaf trichome layers of two xeromorphic plants, olive and oak, measured by optical fibre microprobes. Physiol. Plant. 1999, 105, 655–661. [Google Scholar] [CrossRef]
- Ripley, B.S.; Pammenter, N.W.; Smith, V.R. Function of Leaf Hairs Revisited: The Hair Layer on Leaves Arctotheca populifolia Reduces Photoinhibition, but Leads to Higher Leaf Temperatures Caused by Lower Transpiration Rates. J. Plant Physiol. 1999, 155, 78–85. [Google Scholar] [CrossRef]
- Holmes, M.G.; Keiller, D. Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: A comparison of a range of species. Plant Cell Environ. 2002, 25, 85–93. [Google Scholar] [CrossRef]
- Liakopoulos, G.; Nikolopoulos, D.; Klouvatou, A.; Vekkos, K.-A.; Manetas, Y.; Karabourniotis, G. The photoprotective role of epidermal anthocyanins and surface pubescence in young leaves of grapevine (Vitis vinifera). Ann. Bot. 2006, 98, 257–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haworth, M.; McElwain, J. Hot, dry, wet, cold or toxic? Revisiting the ecological significance of leaf and cuticular micromorphology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 262, 79–90. [Google Scholar] [CrossRef]
- Koul, M.; Thomas, L.; Karmakar, K. Functional aspects of solanaceae trichomes in heavy metal detoxification. Nord. J. Bot. 2021, 39. [Google Scholar] [CrossRef]
- Barthlott, W.; Schimmel, T.; Wiersch, S.; Koch, K.; Brede, M.; Barczewski, M.; Walheim, S.; Weis, A.; Kaltenmaier, A.; Leder, A.; et al. The Salvinia paradox: Superhydrophobic surfaces with hydrophilic pins for air rentention under water. Adv. Mater. 2010, 22, 2325–2328. [Google Scholar] [CrossRef]
- Gandyra, D.; Walheim, S.; Gorb, S.; Ditsche, P.; Barthlott, W.; Schimmel, T. Air retention under water by the floating fern Salvinia: The crucial role of a trapped air layer as a pneumatic spring. Small 2020, 16, 2003425. [Google Scholar] [CrossRef]
- Miresmailli, S.; Isman, M.B. Botanical insecticides inspired by plant–herbivore chemical interactions. Trends Plant Sci. 2014, 19, 29–35. [Google Scholar] [CrossRef]
- Szyndler, M.W.; Haynes, K.F.; Potter, M.F.; Corn, R.M.; Loudon, C. Entrapment of bed bugs by leaf trichomes inspires microfabrication of biomimetic surfaces. J. R. Soc. Interface 2013, 10, 20130174. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Liu, S.; Jiao, J.; Lu, T.J.; Xu, F. Trichomes as a natural biophysical barrier for plants and their bioinspired applications. Soft Matter 2017, 13, 5096–5106. [Google Scholar] [CrossRef]
- Gürsoy, M.; Harris, M.; Downing, J.; Barrientos-Palomo, S.; Carletto, A.; Yaprak, A.; Karaman, M.; Badyal, J. Bioinspired fog capture and channel mechanism based on the arid climate plant Salsola crassa. Colloids Surf. Physicochem. Eng. Asp. 2017, 529, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Andrews, H.; Eccles, E.; Schofield, W.; Badyal, J. Three-dimensional hierarchical structures for fog harvesting. Langmuir 2011, 27, 3798–3802. [Google Scholar] [CrossRef] [PubMed]
- Busch, J.; Barthlott, W.; Brede, M.; Terlau, W.; Mail, M. Bionics and green technology in maritime shipping: An assessment of the effect of Salvinia air-layer hull coatings for drag and fuel reduction. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2019, 377, 20180263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tricinci, O.; Pignatelli, F.; Mattoli, V. 3D Micropatterned functional surface inspired by Salvinia molesta via direct laser lithography for air retention and drag reduction. Adv. Funct. Mater. 2023, 2206946. [Google Scholar] [CrossRef]
- Kim, M.; Yoo, S.; Jeong, H.E.; Kwak, M.K. Fabrication of Salvinia-inspired surfaces for hydrodynamic drag reduction by capillary-force-induced clustering. Nat. Commun. 2022, 13, 5181. [Google Scholar] [CrossRef]
- Raux, P.S.; Gravelle, S.; Dumais, J. Design of a unidirectional water valve in Tillandsia. Nat. Commun. 2020, 11, 396. [Google Scholar] [CrossRef] [Green Version]
- Fiorello, I.; Meder, F.; Mondini, A.; Sinibaldi, E.; Filippeschi, C.; Tricinci, O.; Mazzolai, B. Plant-like hooked miniature machines for on-leaf sensing and delivery. Commun. Mater. 2021, 2, 103. [Google Scholar] [CrossRef]
- Yu, S.; Chen, J.; Liang, G.; Ding, X.; Tang, Y.; Li, Z. White hairy layer on the Boehmeria nivea leaf—Inspiration for reflective coatings. Bioinspir. Biomim. 2019, 15, 016003. [Google Scholar] [CrossRef]
- Yun, M.J.; Sim, Y.H.; Cha, S.I.; Lee, D.Y. Omnidirectional light capture by solar cells mimicking the structures of the epidermal cells of leaves. Sci. Rep. 2019, 9, 10308. [Google Scholar] [CrossRef] [Green Version]
- Vogelmann, T.C.; Martin, G. The functional significance of palisade tissue: Penetration of directional versus diffuse light. Plant Cell Environ. 1993, 16, 65–72. [Google Scholar] [CrossRef]
- Vogelman, T.C.; Nishio, J.N.; Smith, W.K. Leaves and light capture: Light propagation and gradients of carbon fixation within leaves. Trends Plant Sci. 1996, 1, 65–70. [Google Scholar] [CrossRef]
- Momayyezi, M.; Borsuk, A.M.; Brodersen, C.R.; Gilbert, M.E.; Théroux-Rancourt, G.; Kluepfel, D.A.; McElrone, A.J. Desiccation of the leaf mesophyll and its implications for CO2 diffusion and light processing. Plant Cell Environ. 2022, 45, 1362–1381. [Google Scholar] [CrossRef] [PubMed]
- Vignolini, S.; Moyroud, E.; Glover, B.J.; Steiner, U. Analysing photonic structures in plants. J. R. Soc. Interface 2013, 10, 20130394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansen, V.E.; Onelli, O.D.; Steiner, L.M.; Vignolini, S. Photonics in nature: From order to disorder. Funct. Surf. Biol. III Divers. Phys. Phenom. 2017, 10, 53–89. [Google Scholar]
- Thomas, K.R.; Kolle, M.; Whitney, H.M.; Glover, B.J.; Steiner, U. Function of blue iridescence in tropical understorey plants. J. R. Soc. Interface 2010, 7, 1699–1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gould, K.S.; Lee, D.W. Physical and ultrastructural basis of blue leaf iridescence in four Malaysian understory plants. Am. J. Bot. 1996, 83, 45–50. [Google Scholar] [CrossRef]
- Strout, G.; Russell, S.D.; Pulsifer, D.P.; Erten, S.; Lakhtakia, A.; Lee, D.W. Silica nanoparticles aid in structural leaf coloration in the Malaysian tropical rainforest understorey herb Mapania caudata. Ann. Bot. 2013, 112, 1141–1148. [Google Scholar] [CrossRef]
- Jacobs, M.; Lopez-Garcia, M.; Phrathep, O.; Lawson, T.; Oulton, R.; Whitney, H.M. Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency. Nat. Plants 2016, 2, 16162. [Google Scholar] [CrossRef] [Green Version]
- Kjernsmo, K.; Whitney, H.M.; Scott-Samuel, N.E.; Hall, J.R.; Knowles, H.; Talas, L.; Cuthill, I.C. Iridescence as camouflage. Curr. Biol. 2020, 30, 551–555.e553. [Google Scholar] [CrossRef] [Green Version]
- Harwood, R.; Théroux-Rancourt, G.; Barbour, M.M. Understanding Airspace in Leaves: 3D Anatomy and Directional Tortuosity; Wiley Online Library: Hoboken, NJ, USA, 2021. [Google Scholar]
- Evans, J.R.; Kaldenhoff, R.; Genty, B.; Terashima, I. Resistances along the CO2 diffusion pathway inside leaves. J. Exp. Bot. 2009, 60, 2235–2248. [Google Scholar] [CrossRef] [Green Version]
- Evans, J.R. Leaf anatomy enables more equal access to light and CO2 between chloroplasts. New Phytol. 1999, 143, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.C.; Canny, M.J.; Holloway-Phillips, M.; Stuart-Williams, H.; Cernusak, L.A.; Márquez, D.A.; Farquhar, G.D. Humidity gradients in the air spaces of leaves. Nat. Plants 2022, 8, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Roth-Nebelsick, A. Computer-based studies of diffusion through stomata of different architecture. Ann. Bot. 2007, 100, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Boyer, J.S. Water transport. Annu. Rev. Plant Physiol. 1985, 36, 473–516. [Google Scholar] [CrossRef]
- Brodribb, T.J.; Feild, T.S.; Sack, L. Viewing leaf structure and evolution from a hydraulic perspective. Funct. Plant Biol. 2010, 37, 488–498. [Google Scholar] [CrossRef]
- Yianoulis, P.; Tyree, M.T. A model to investigate the effect of evaporative cooling on the pattern of evaporation in sub-stomatal cavities. Ann. Bot. 1984, 53, 189–206. [Google Scholar] [CrossRef]
- Tyree, M.T.; Yianoulis, P. The site of water evaporation from sub-stomatal cavities, liquid path resistances and hydroactive stomatal closure. Ann. Bot. 1980, 46, 175–193. [Google Scholar] [CrossRef]
- Wullschleger, S.D.; Oosterhuis, D.M. The occurrence of an internal cuticle In cotton (Gossypium hirsutum L.) leaf stomates. Environ. Exp. Bot. 1989, 29, 229–235. [Google Scholar] [CrossRef]
- Pesacreta, T.C.; Hasenstein, K.H. The internal cuticle of Cirsium horridulum (Asteraceae) leaves. Am. J. Bot. 1999, 86, 923–928. [Google Scholar] [CrossRef]
- Rockwell, F.E.; Holbrook, N.M.; Stroock, A.D. The competition between liquid and vapor transport in transpiring leaves. Plant Physiol. 2014, 164, 1741–1758. [Google Scholar] [CrossRef] [Green Version]
- Earles, J.M.; Théroux-Rancourt, G.; Roddy, A.B.; Gilbert, M.E.; McElrone, A.J.; Brodersen, C.R. Beyond porosity: 3D leaf intercellular airspace traits that impact mesophyll conductance. Plant Physiol. 2018, 178, 148–162. [Google Scholar] [CrossRef] [Green Version]
- Satter, R.L.; Galston, A.W. Mechanisms of control of leaf movements. Annu. Rev. Plant Physiol. 1981, 32, 83–110. [Google Scholar] [CrossRef]
- O’regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663. [Google Scholar] [CrossRef]
- Mariotti, N.; Bonomo, M.; Fagiolari, L.; Barbero, N.; Gerbaldi, C.; Bella, F.; Barolo, C. Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells. Green Chem. 2020, 22, 7168–7218. [Google Scholar] [CrossRef]
- Guo, S.; Song, C.; Liu, F.; Zeng, D.; Yuan, H.; Liu, X.; Jiang, H.; Cheng, G.J. Bionic optical leaf for photoreduction of CO2 from noble metal atom mediated graphene nanobubble arrays. ACS Nano 2022, 16, 1909–1918. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Q.; Yang, W.; Li, M.; Song, Y. Aquatic plant inspired hierarchical artificial leaves for highly efficient photocatalysis. J. Mater. Chem. A 2013, 1, 7760–7766. [Google Scholar] [CrossRef]
- Lee, S.J.; Kim, H.; Ahn, S. Water transport in porous hydrogel structures analogous to leaf mesophyll cells. Microfluid Nanofluid 2015, 18, 775–784. [Google Scholar] [CrossRef]
- Mader, A.; Langer, M.; Knippers, J.; Speck, O. Learning from plant movements triggered by bulliform cells: The biomimetic cellular actuator. J. R. Soc. Interface 2020, 17, 20200358. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; He, J.; Shang, W.; Deng, T.; Gu, J.; Su, H.; Liu, Q.; Zhang, W.; Zhang, D. Optical functional materials inspired by biology. Adv. Opt. Mater. 2016, 4, 195–224. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, J.; Liu, X.; Zhang, H.; Wang, D.; Chen, Z.; Zhang, D.; Fan, T. Bio-inspired photonic materials: Prototypes and structural effect designs for applications in solar energy manipulation. Adv. Funct. Mater. 2018, 28, 1705309. [Google Scholar] [CrossRef]
- Roth-Nebelsick, A.; Uhl, D.; Mosbrugger, V.; Kerp, H. Evolution and function of leaf venation architecture: A review. Ann. Bot. 2001, 87, 553–566. [Google Scholar] [CrossRef]
- Sack, L.; Scoffoni, C. Leaf venation: Structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol. 2013, 198, 983–1000. [Google Scholar] [CrossRef] [PubMed]
- Ellis, B.; Daly, D.C.; Hickey, L.J.; Johnson, K.; Mitchell, J.D.; Wilf, P.; Wing, S.L. Manual of Leaf Architecture; The New York Botanical Garden Press: Ithaca, NY, USA, 2009. [Google Scholar]
- Jeje, A.A. The flow and dispersion of water in the vascular network of dicotyledonous leaves. Biorheology 1985, 22, 285–302. [Google Scholar] [CrossRef]
- Brodribb, T.J.; Jordan, G.J. Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees. New Phytol. 2011, 192, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Carins Murphy, M.R.; Jordan, G.J.; Brodribb, T.J. Differential leaf expansion can enable hydraulic acclimation to sun and shade. Plant Cell Environ. 2012, 35, 1407–1418. [Google Scholar] [CrossRef]
- Uhl, D.; Walther, H. Sun leaf or shade leaf?–Known facts in the light of new data with implications for palaeobotany. Feddes Repert. 2000, 111, 165–174. [Google Scholar] [CrossRef]
- Klich, M.a.G. Leaf variations in Elaeagnus angustifolia related to environmental heterogeneity. Environ. Exp. Bot. 2000, 44, 171–183. [Google Scholar] [CrossRef]
- Sack, L.; Dietrich, E.M.; Streeter, C.M.; Sánchez-Gómez, D.; Holbrook, N.M. Leaf palmate venation and vascular redundancy confer tolerance of hydraulic disruption. Proc. Natl. Acad. Sci. USA 2008, 105, 1567–1572. [Google Scholar] [CrossRef] [Green Version]
- Katifori, E.; Szöllősi, G.J.; Magnasco, M.O. Damage and fluctuations induce loops in optimal transport networks. Phys. Rev. Lett. 2010, 104, 048704. [Google Scholar] [CrossRef] [Green Version]
- Walls, R.L. Angiosperm leaf vein patterns are linked to leaf functions in a global-scale data set. Am. J. Bot. 2011, 98, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Yapp, R.H. Spiraea ulmaria, L., and its bearing on the problem of xeromorphy in marsh plants. Ann. Bot. 1912, 26, 815–870. [Google Scholar] [CrossRef]
- Niinemets, Ü.; Portsmuth, A.; Tena, D.; Tobias, M.; Matesanz, S.; Valladares, F. Do we underestimate the importance of leaf size in plant economics? Disproportional scaling of support costs within the spectrum of leaf physiognomy. Ann. Bot. 2007, 100, 283–303. [Google Scholar] [CrossRef]
- Niklas, K.J. Plant Biomechanics: An Engineering Approach to Plant form and Function; University of Chicago Press: Chicago, IL, USA, 1992. [Google Scholar]
- Onoda, Y.; Westoby, M.; Adler, P.B.; Choong, A.M.; Clissold, F.J.; Cornelissen, J.H.; Díaz, S.; Dominy, N.J.; Elgart, A.; Enrico, L. Global patterns of leaf mechanical properties. Ecol. Lett. 2011, 14, 301–312. [Google Scholar] [CrossRef] [Green Version]
- Durand, M.; Weaire, D. Optimizing transport in a homogeneous network. Phys. Rev. E 2004, 70, 046125. [Google Scholar] [CrossRef]
- Corson, F. Fluctuations and redundancy in optimal transport networks. Phys. Rev. Lett. 2010, 104, 048703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noblin, X.; Mahadevan, L.; Coomaraswamy, I.A.; Weitz, D.A.; Holbrook, N.M.; Zwieniecki, M.A. Optimal vein density in artificial and real leaves. Proc. Natl. Acad. Sci. USA 2008, 105, 9140–9144. [Google Scholar] [CrossRef] [Green Version]
- Patino-Ramirez, F.; Arson, C. Transportation networks inspired by leaf venation algorithms. Bioinspir. Biomim. 2020, 15, 036012. [Google Scholar] [CrossRef]
- Alston, M.E.; Barber, R. Leaf venation, as a resistor, to optimize a switchable IR absorber. Sci. Rep. 2016, 6, 31611. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Mao, M.; Li, D.; Liu, Y.; Jin, Z. Characterization of leaf-inspired microfluidic chips for pumpless fluid transport. J. Bionic Eng. 2014, 11, 109–114. [Google Scholar] [CrossRef]
- Hermann, M. FracTherm–Fraktale Hydraulikstrukturen für energieeffiziente Wärmetauscher: Konstruktionsprinzipien aus der Natur. Erneuerbare Energ. 2003, 9, 74–76. [Google Scholar]
- Guo, N.; Leu, M.C.; Koylu, U.O. Bio-inspired flow field designs for polymer electrolyte membrane fuel cells. Int. J. Hydrogen Energy 2014, 39, 21185–21195. [Google Scholar] [CrossRef]
- Iranzo, A.; Arredondo, C.; Kannan, A.; Rosa, F. Biomimetic flow fields for proton exchange membrane fuel cells: A review of design trends. Energy 2020, 190, 116435. [Google Scholar] [CrossRef]
- Ronellenfitsch, H. Optimal elasticity of biological networks. Phys. Rev. Lett. 2021, 126, 038101. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; He, X.; Wang, M.; Shu, H.; Xue, K. Comparisons of bioinspired piezoelectric wind energy harvesters with different layout of stiffeners based on leaf venation prototypes. Sens. Actuators A Phys. 2019, 298, 111570. [Google Scholar] [CrossRef]
- Villar, R.; Olmo, M.; Atienza, P.; Garzón, A.J.; Wright, I.J.; Poorter, H.; Hierro, L.A. Applying the economic concept of profitability to leaves. Sci. Rep. 2021, 11, 49. [Google Scholar] [CrossRef] [PubMed]
- Bloom, A.J. Plant economics. Trends Ecol. Evol. 1986, 1, 98–100. [Google Scholar] [CrossRef]
- Bloom, A.J.; Chapin, F.S.; Mooney, H.A. Resource limitation in plants- an economic analogy. Ann. Rev. Ecol. Syst. 1985, 16, 363–392. [Google Scholar] [CrossRef]
- Kramer, P.J. Water Relations of Plants; Academic Press: San Diego, CA, USA, 1983. [Google Scholar]
- Manzoni, S.; Vico, G.; Katul, G.; Faye, P.A.; Polley, W.; Palmroth, S.; Porporato, A. Optimizing stomatal conductance for maximum carbon gain under water stress: A meta-analysis across plant functional types and climates. Funct. Ecol. 2011, 25, 456–467. [Google Scholar] [CrossRef]
- Katul, G.; Manzoni, S.; Palmroth, S.; Oren, R. A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. Ann. Bot. 2010, 105, 431–442. [Google Scholar] [CrossRef] [Green Version]
- Berninger, F.; Mäkela, A.; Hari, P. Optimal control of gas exchange during drought: Empirical evidence. Ann. Bot. 1996, 77, 469–476. [Google Scholar] [CrossRef] [Green Version]
- Hari, P.; Mäkela, A.; Berninger, F.; Pohja, T. Field evidence for the optimality hypothesis of gas exchange in plants. Funct. Plant Biol. 1999, 26, 239–244. [Google Scholar] [CrossRef]
- Katul, G.; Palmroth, S.; Oren, R. Leaf stomatal responses to vapour pressure deficit under current and CO2-enriched atmosphere explained by the economics of gas exchange. Plant Cell Environ. 2009, 32, 968–979. [Google Scholar] [CrossRef]
- Konrad, W.; Roth-Nebelsick, A.; Grein, M. Modelling of stomatal density response to atmospheric CO2. J. Theor. Biol. 2008, 253, 638–658. [Google Scholar] [CrossRef]
- Larcher, W. Physiological Plant Ecology, 4th ed.; Cambridge University Press: Cambridge, UK, 2003; p. 513. [Google Scholar]
- Lösch, R. Wasserhaushalt der Pflanzen; Quelle & Meyer: Wiebelsheim, Germany, 2003. [Google Scholar]
- Miranda, T.; Ebner, M.; Traiser, C.; Roth-Nebelsick, A. Diurnal pattern of stomatal conductance in the large-leaved temperate liana Aristolochia macrophylla depends on spatial position within the leaf lamina. Ann. Bot. 2013, 111, 905–915. [Google Scholar] [CrossRef] [Green Version]
- Givnish, T. Adaptive significance of evergreen vs. deciduous leaves: Solving the triple paradox. Silva Fenn. 2002, 36, 703–743. [Google Scholar] [CrossRef]
- Kikuzawa, K.; Lechowicz, M.J. Ecology of Leaf Longevity; Springer Science & Business Media: Berlin, Germany, 2011. [Google Scholar]
- Reich, P.B. The world-wide ‘fast–slow’ plant economics spectrum: A traits manifesto. J. Ecol. 2014, 102, 275–301. [Google Scholar] [CrossRef]
- Neuner, G. Frost resistance in alpine woody plants. Front. Plant Sci. 2014, 5, 654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuner, G.; Xu, B.; Hacker, J. Velocity and pattern of ice propagation and deep supercooling in woody stems of Castanea sativa, Morus nigra and Quercus robur measured by IDTA. Tree Physiol. 2010, 30, 1037–1045. [Google Scholar] [CrossRef] [Green Version]
- Kikuzawa, K.; Onoda, Y.; Wright, I.J.; Reich, P.B. Mechanisms underlying global temperature-related patterns in leaf longevity. Glob. Ecol. Biogeogr. 2013, 22, 982–993. [Google Scholar] [CrossRef]
- Royer, D.L. Stomatal density and stomatal index as indicators of palaeoatmospheric CO2 concentration. Rev. Palaeobot. Palynol. 2001, 114, 1–28. [Google Scholar] [CrossRef]
- Pahl, G.; Beitz, W. Pahl/Beitz Konstruktionslehre; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Roth-Nebelsick, A. How much biology is in the product? Role and relevance of biological evolution and function for bio-inspired design. Theory Biosci. 2022, 141, 233–247. [Google Scholar] [CrossRef] [PubMed]
- Penick, C.A.; Cope, G.; Morankar, S.; Mistry, Y.; Grishin, A.; Chawla, N.; Bhate, D. The comparative approach to bio-inspired design: Integrating biodiversity and biologists into the design process. Integr. Comp. Biol. 2022, 62, 1153–1163. [Google Scholar] [CrossRef]
Leaf Structure/Trait | Biological Function/Task | Biomimetic Application | References |
---|---|---|---|
Leaf shape and size | Heat transfer, self-shading, competition, unknown * | Heat transfer (cooling of buildings and solar panels) | [30,31,32] |
Stomata | Regulated gas exchange | Evaporative cooling, drug delivery, particle micromanipulation, microfluidic pump or valve, breathable fabrics, water harvesting, smart membranes | [58,59,60,62,63,64,65] |
Epidermis and trichomes | Various protective functions (e.g., evaporation, herbivores, pathogens, irradiation, heat), water capture, water absorption, climbing, channeling of light, mechanical stabilization, unknown * | Capillary water conduction, drag reduction, antifouling, insect control, fog harvesting, valve concepts, adhesion and climbing for robotics, light reflectance, light capture | [123,124,125,126,127,128,129,130,131,132,133,134,135,136] |
Mesophyll | Photosynthesis, mechanical stabilization by turgor, light conduction, various metabolic processes, water storage (in leaf succulents), leaf movements | Electricity generation, photoreduction, photocatalysis, water transport, actuator concepts | [161,162,163,164,165,166,167,168] |
Venation | Supply and distribution of water, export of assimilates, mechanical stabilization | Transport in networks, microfluidics, heat exchange, mechanical stabilization | [179,185,186,187,188,189,190,191,192,193,194,195] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roth-Nebelsick, A.; Krause, M. The Plant Leaf: A Biomimetic Resource for Multifunctional and Economic Design. Biomimetics 2023, 8, 145. https://doi.org/10.3390/biomimetics8020145
Roth-Nebelsick A, Krause M. The Plant Leaf: A Biomimetic Resource for Multifunctional and Economic Design. Biomimetics. 2023; 8(2):145. https://doi.org/10.3390/biomimetics8020145
Chicago/Turabian StyleRoth-Nebelsick, Anita, and Matthias Krause. 2023. "The Plant Leaf: A Biomimetic Resource for Multifunctional and Economic Design" Biomimetics 8, no. 2: 145. https://doi.org/10.3390/biomimetics8020145
APA StyleRoth-Nebelsick, A., & Krause, M. (2023). The Plant Leaf: A Biomimetic Resource for Multifunctional and Economic Design. Biomimetics, 8(2), 145. https://doi.org/10.3390/biomimetics8020145