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Abstract: This paper proposes an improved Bacterial Foraging Optimization for economically optimal
dispatching of the microgrid. Three optimized steps are presented to solve the slow convergence, poor
precision, and low efficiency of traditional Bacterial Foraging Optimization. First, the self-adaptive
step size equation in the chemotaxis process is present, and the particle swarm velocity equation
is used to improve the convergence speed and precision of the algorithm. Second, the crisscross
algorithm is used to enrich the replication population and improve the global search performance of
the algorithm in the replication process. Finally, the dynamic probability and sine-cosine algorithm
are used to solve the problem of easy loss of high-quality individuals in dispersal. Quantitative
analysis and experiments demonstrated the superiority of the algorithm in the benchmark function.
In addition, this study built a multi-objective microgrid dynamic economic dispatch model and dealt
with the uncertainty of wind and solar using the Monte Carlo method in the model. Experiments
show that this model can effectively reduce the operating cost of the microgrid, improve economic
benefits, and reduce environmental pollution. The economic cost is reduced by 3.79% compared to
the widely used PSO, and the economic cost is reduced by 5.23% compared to the traditional BFO.

Keywords: bacterial foraging optimization; microgrid; distributed generation; energy consumption;
renewable energy

1. Introduction

The electricity demand continues to expand with social science and technology devel-
opment. It is challenging to meet electricity demand using only traditional thermal power
generation methods. Distributed generation (DG) is widely used in microgrid systems
and supplies power to regional users because of its flexible control, self-protection, and
schedulability. The energy consumption problems caused by traditional power generation
methods can be alleviated, and the environmental pollution caused by thermal power gen-
eration can be reduced. Wind and photovoltaics are clean and renewable energy sources
in microgrids. However, the intermittence and fluctuations caused by wind speed and
light intensity will challenge the stable operation of the grid system with a large-scale
grid connection of wind turbines and photovoltaic panels. Therefore, it is necessary to
first deal with the uncertainty of wind photovoltaics and then use DG, which can operate
flexibly and cooperate with renewable energy generation technologies to build a microgrid
and optimize its scheduling. This model effectively reduces economic costs and improves
power supply quality and stability.

Many scholars have studied the uncertainty treatment of wind and light. Ref. [1]
proposed a Latin hypercube sampling method to process the uncertainty of wind and solar
data, effectively reducing the impact of wind and light on power grid peak shaving [2].
Combining the roulette wheel mechanism and Monte Carlo thinking to process wind and
light data, using randomly generated scenes to simulate the uncertain process of scenery,
this method can effectively reduce the economic cost of hydrothermal unit scheduling.

Linear programming [3–5], dynamic programming [6,7], Lagrangian relaxation [8],
and nonlinear programming [9,10] have many problems with large-scale power systems,
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such as traditional microgrid dispatching optimization methods. Various electrical con-
straints also increase the complexity and difficulty of microgrid dispatching optimization.
These problems mainly focus on accuracy and computational efficiency. An increasing
number of swarm intelligence algorithms have been applied to microgrid dispatching
optimization to overcome such problems. Some mature swarm intelligence algorithms,
such as PSO [11], GA [12], and WOA [13] are widely used in microgrid dispatching op-
timization due to their advantages of fast convergence and simple processes. However,
these traditional algorithms also easily fall into local optima, have low efficiency, premature
convergence results, and low precision. Many optimization methods have been encoun-
tered in the process of microgrid dispatching optimization. Reference [14] introduced a
simulated annealing algorithm and chaos optimization into the PSO algorithm, enriching
the population diversity, and enhancing the global search ability. Reference [15] presented
a differential evolution algorithm (ED) into the quantum particle swarm optimization
algorithm (QPSO), which improved the ability to jump out of the optimal local solution in
the later stage. Reference [16] proposed using tabu search to optimize particle swarm opti-
mization compared with CLQPSO and short-term microgrid scheduling results. The IPSO
is better than the traditional PSO and Tabu Search (TS) in the two-level energy optimization
scheduling strategy. Reference [17] proposed a BPSO method for scheduling household
energy management systems with distributed power sources. This method can effectively
reduce economic costs, energy consumption, and environmental pollution. Reference [18]
used an adaptive strategy to optimize the GA to improve its convergence accuracy of the
GA algorithm.

Moreover, Reference [19] combined the advantages of the GA and PSO algorithms.
The microgrid dispatching optimization was modeled as a quadratic programming prob-
lem, and the improved GA-PSO algorithm was used. The WOA has a higher solution
quality than the PSO and GA. However, WOA also needs help with problems, such as
premature convergence and low accuracy of the results. To improve the performance of
WOA, Reference [20] uses adaptive inertia weight, spiral search method, and generalized
inverse learning to improve and optimize WOA. The results of multiregion interconnected
microgrid system scheduling prove that this optimization method can effectively improve
the performance of the WOA and reduce the cost of microgrid operation. New swarm
intelligence algorithms have been gradually developed and applied to microgrid economic
dispatch models. Reference [21] proposed an economic dispatch model using the cuckoo
algorithm to optimize multiple microgrids and determined the power supply strategy by
predicting the best state of charge of the battery. This method has a significant improvement
over PSO. Reference [22] utilized a mixture of bacterial foraging algorithms and genetic
algorithms to achieve minimum cost load management [23]. The bacterial foraging algo-
rithm is also used to achieve the scheduling of isolated microgrids, and a large number
of experiments have proven the effectiveness of the proposed method, which can reduce
economic cost. Reference [24] proposed a bald eagle search optimization algorithm (BE-
SOA) to control the scheduling between demand and power supply, which can effectively
reduce energy costs and microgrid emissions costs. Reference [25] proposed applying the
butterfly algorithm to the microgrid scheduling solution. Aiming at the problem of poor
convergence accuracy of the butterfly algorithm and easy falling into a local optimum, they
used Cauchy mutation to improve the position information of the butterfly and expand
the global search performance of the algorithm by using chaotic mapping enriched species
diversity. The method’s effectiveness is proven by scheduling a microgrid cluster system
composed of multiple microgrids. An improved crow algorithm [26] is proposed for micro-
grid scheduling with distributed power sources. By introducing a Levy flight strategy, the
convergence speed and result accuracy of the algorithm can be effectively improved.
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Most swarm intelligence research focuses on solving the performance of algorithms in
the microgrid dispatching process. (2) The main contributions of this study are as follows:

(1) This study improved the algorithm’s speed and considered its accuracy in chemotaxis.
The adaptive step size formula replaces the standard fixed step size, and the PSO
speed formula is introduced to improve the random direction vector (PHI).

(2) The crisscross algorithm is used to improve the population of the algorithm and global
search performance in the replication part.

(3) The dynamic dispersal equation and sine-cosine algorithm were used to improve the
loss of high-quality results and the algorithm’s efficiency for the dispersal part.

The remainder of this paper is organized as follows: the first section builds a microgrid
model with multiple objective cost functions; the second section describes the improvement
of the BFO, quantitatively analyzes the impact of each part of the improvement, and
conducts a comparative test; the third section deals with the uncertain processes of wind
and solar, applies the BFO to the microgrid dispatching model to solve it, and gives the
comparative experimental results; and the fourth section is a summary of the full text.

2. Microgrid Economic Dispatch Model

The microgrid example comprises distributed power sources, such as wind generators,
photovoltaic power generation panels, diesel engines, micro steam turbines, and fuel cells
shown in Figure 1.
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2.1. The Model of DG

As energy generation forms, wind and photovoltaic power have significant volatility
and are affected by many meteorological factors, such as wind speed, wind direction,
light intensity, and temperature. Therefore, the power balance brought by wind power
generation has great uncertainty. A model of a wind turbine follows:
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PW =


0, v < vin or v < vout

Pn, vn ≤ v ≤ vout

(v−vin)
(vn−vin)

Pn, vin ≤ v ≤ vn

. (1)

In Equation (1), (Explain the specific meaning of the formula) PW represents the output
of wind power, Pn represents rated power, and the output of wind power generation is
related to the actual wind speed, where v represents actual wind speed, vin, vout and vn
represent the cut-in wind speed, cut-out wind speed, and rated wind speed, respectively.
When the wind speed is less than the cut-in wind speed or greater than the cut-out wind
speed, the fan is not working. The output power is zero. If the wind speed is between
the rated wind speed and the cut-out wind speed, the fan output is at the rated power
output. When the wind speed is between, the output power of the fan is reflected by the
empirical equation.

Photovoltaic panel model:
PV = rsηV . (2)

Photovoltaic output is positively correlated with light intensity. In Equation (2), PV
represents the output power of solar energy, r represents the light intensity, s represents
the total radiation area of the photovoltaic module, and ηV represents the photoelectric
conversion efficiency of the photovoltaic panel.

Diesel generator model:
The mathematical model of diesel generators is like that of coal-fired units in thermal

power generation, and it has a particular peak-shaving effect in microgrids. The formula is
as follows:

CDE =
N

∑
i=1

(
ai + biPDE + ciP2

DE

)
. (3)

In Equation (3), ai, bi, and ci are the cost coefficients of diesel generators; CDE represents
the cost of power generation; PDE represents the output of generators; N represents the
number of diesel generators.

Micro Turbine Model:
The stand-alone power of a microturbine is small, generally between 20 and 300 KW,

and its formula is as follows:

CMG =
Price

L ∑
PMG(t)∆t

ηMG(t)
. (4)

In Equation (4), Price and L represent the price and calorific value of natural gas,
respectively; PMG(t) represents the output power of the microturbine at time t; ηMG(t)
represents the power generation efficiency at this time, and the efficiencies of different
types of micro-turbines can be obtained by polynomial curve fitting. The model of the
micro turbine is C65; ∆t indicates the operating hours.

Fuel cell model:
Fuel cells are known as the fourth-generation power generation device technology.

Proton exchange membrane fuel cells are selected, and their cost formula is similar to that
of microturbines:

CFC =
Price

L ∑
PFC(t)∆t

ηFC(t)
. (5)

In Equations (5), PFC(t) and ηFC represent the fuel cell’s output power and power
generation efficiency, respectively, where the power generation efficiency can also be
obtained by polynomial curve fitting.

The traditional neural network prediction method for wind and solar output prediction
is unsuitable because wind and solar have volatility and randomness and are affected by
many factors. Traditional wind and solar output forecasting use a neural network to make
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regression predictions on historical power. However, the predicted value often needs to
reflect the influence of uncertain weather conditions on wind and solar output. Aiming at
the uncertainty processing of wind and solar, Ref. [27] proposed a two-stage optimization
model of the microgrid from the two stages of day ahead and real time. This method
can effectively reduce the prediction error and improve the stability of the power supply.
Ref. [28] proposed a microgrid interval optimization method based on affine arithmetic
and used the non-dominated sorting genetic algorithm to solve the framework. The results
show that this method can effectively alleviate the uncertainty brought by renewable energy,
such as wind and solar. Ref. [29] considered the meteorological conditions comprehensively,
using a data-driven Bayesian non-parametric method, modified column, and constraint
generation (CC) to solve the uncertainty problem of the scenery further. This paper uses
the Monte Carlo sampling method to reduce the scene of wind and solar generation.
The uncertain process of wind power and photovoltaic output is simulated by randomly
optimized scenario generation and reduction. The core idea of Monte Carlo is to use
the frequency of events to approximate the probability of event occurrence and use the
Euclidean distance as the basis for scene reduction to iterate. The method is mainly divided
into three parts: building a probability model, sampling, and valuation.

Weibull distribution of wind speed:

f (v, c, k) =
(

k
c

)(v
c

)k−1
e−(

v
c )

k
. (6)

In Equation (6), v represents the actual wind speed, and c and k are Weibull’s
model parameters.

Beta distribution of light intensity:

f (s, α, β) =
Γ(α + β)

Γ(α)Γ(β)
s(α−1)(1− s)(β−1). (7)

In Equation (7), s represents the light intensity α and β is the shape parameter of
the Beta distribution. The wind speed and light intensity data fitted by Weibull and Beta
distributions are, respectively, substituted into the wind turbine output model and the
photovoltaic power generation output model. The wind and solar output prediction is
obtained by using Monte Carlo scene reduction.

2.2. Microgrid Economic Dispatching Model

There are multiple objective functions and constraints in the microgrid dispatching
optimization problem, and most of the research on microgrid scheduling only considers the
cost target of the DG output of the microgrid and the cost of electricity purchase and sale. In
this paper’s microgrid economic dispatching model, there are traditional power generation,
such as microturbines and diesel generators, so the three objective functions of DG cost,
environmental impact cost, and power purchase cost are considered comprehensively.

Power Generation Cost:

F1 = min

(
T

∑
t=1

[
N

∑
i=1

((
Ci, f + Ci,m

)
Pi,t

)])
. (8)

In Equation (8), T represents the scheduling cycle; N represents the total number of
distributed power sources; Ci, f and Ci,m

1 
 

￼ respectively, Pi,t cost and equipment mainte-
nance cost of distributed power sources;

1 
 

￼ represents the output result of the i-th power
source at time t. The installation and maintenance costs of wind turbines and photovoltaic
power generation panels are not considered here.

Environmental Impact Costs:
In the microgrid of this example, there is a distributed power source that uses natural

gas, diesel, and other energy supplies as raw materials for power generation. It is also



Biomimetics 2023, 8, 150 6 of 23

necessary to include the environmental impact cost in the objective function of micro-
grid dispatching optimization to consider the environmental gas pollution caused by the
consumption of these raw materials (mainly refers to CO2, SO2, NOX , etc.):

F2 = min

(
T

∑
t=1

(
N

∑
i=1

(Ci,ePi,t)

))
. (9)

Equation (9), Ci,e represents the pollution gas environmental cost coefficient corre-
sponding to each distributed power supply.

Electricity price cost:
To reflect intuitively the consumption and utilization of the microgrid, consider the

cost of electricity price as the objective optimization function:

F3 = min

(
T

∑
t=1

(
Cgrid,tPgrid,t

))
. (10)

In Equation (10), Cgrid,t represents the real-time electricity price (24 h system); Pgrid,t
represents the power exchange result between the microgrid and the enormous power grid
after considering the user load.

In summary, the objective function of microgrid dispatching optimization can be
expressed as

minF =
3

∑
i=1

Fi. (11)

Micro Turbine Constraints:

Pmin
MG ≤ PMG(t) ≤ Pmax

MG . (12)

In Equation (12), Pmin
MG represents the minimum output constraint of the microturbine;

Pmax
MG represents the maximum power of the microturbine unit output; some studies use the

rated power here.
Diesel Constraints:

Pmin
DE ≤ PDE(t) ≤ Pmax

DE . (13)

Fuel Cell Constraints:
Pmin

FC ≤ PFC(t) ≤ Pmax
FC . (14)

Power exchange constraints between the microgrid and main grid:

Pmin
grid ≤ Pgrid ≤ Pmax

grid . (15)

In the above equation, Pmin
grid Pmax

grid

1 
 

￼ represent the minimum and maximum power
allowed for power exchange between the microgrid and the primary grid.

Microgrid supply and demand balance constraints:

PL,t = Pgrid,t + PMG,t + PDE,t + PFC,t + PW,t + PV,t. (16)

In Equation (16), PL,t represents the total power demanded by the load during the
t period.

3. An Improved Bacterial Foraging Optimization and Its Application

The BFO [30–32] is a new swarm intelligence algorithm mainly divided into chemo-
taxis, replication, and dispersal. (BFO’s Short Insights) Traditional BFOs will face problems,
such as slow convergence speed, poor accuracy of results, easy to fall into local optimiza-
tion, and low efficiency of algorithms. The schematic diagram of E. coli is shown in Figure 2,
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Figure 2a represents the forward swimming process of E. coli, and Figure 2b represents the
overturning process of E. coli.
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3.1. Chemotaxis Process

Chemotaxis is a significant part of the BFO algorithm. It simulates the forward and
reverse of Escherichia coli in the foraging process, as shown in the above picture (Figure 2).
This is used as the primary means of optimization. The following formula can approximate
the process of flipping forward:

θ(i, j + 1, k, l) = θ(i, j, k, l) + C(i)PHI

PHI = ∆i√
∆T i·∆i

(17)

In Equation (17), θ(i, j, k, l) represents the position of the i-th bacterium at the j-th
chemotaxis, k-th replication, and l-th dispersal; C(i) represents the step size of the i-th
bacterium, and the traditional Bacterial Foraging Optimization adopts a fixed step size
formula to find the Optimal solution; PHI represents the random direction of bacteria
forward; ∆i is the defined random direction vector.

Step size C has a significant impact on the convergence speed and accuracy of the
algorithm. Although a more significant step size can increase the convergence speed, it
reduces the accuracy. Although a too-small step size can improve the solution accuracy, it
will cause the algorithm to converge slowly. The fixed step size in the traditional BFO is a
fundamental reason for the slow convergence of the algorithm because it cannot balance
the convergence speed and accuracy. Ref. [33] introduced the step size search formula
of the fish swarm algorithm into the BFO and used an adaptive function to improve the
step size. The speed of this function is very slow at the beginning of the iteration, and the
speed suddenly increases at the end of the iteration. Although this method can improve the
convergence speed to a certain extent, its impact on the global search performance of the
algorithm remains to be verified. For this reason, this paper proposes to use the dynamic
step size formula instead of the traditional fixed value.

C(x) = exp

(
−
(

NcNreNed −
τ

j + (k− 1)Nc + (l − 1)NreNed

) 1
α

)
C. (18)
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In Equation (18), (We rewrote the correlation equation) Nc, Nre, and Ned, respectively,
denote the number of chemotaxis restriction, replication restriction, and dispersal restriction
in the α

1 
 

￼ expressed as the step length coefficient. The above equation makes it possible
to search with a more significant step size in the early stage of the algorithm iteration
and speed up the algorithm’s convergence speed. As the number of iterations increases,
a refined search is performed with a small step size in the later stage of the iteration to
improve the algorithm’s accuracy.

Another factor that plays a crucial role in the convergence speed is the random
direction vector PHI. Due to the random process being included in the definition of the
random direction vector, the convergence speed of the algorithm is limited [34]. For this
reason, this paper proposes a particle swarm algorithm speed formula using dynamic
inertia weight factors to replace the traditional random direction vector.

V(j + 1) = w_nowV(j) + c1r1(Pbesti − Pi) + c2r2(Gbesti − Pi), (19)

w_now =
(w_start− w_end)(Maxiter− iter)

Maxiter
+ w_end. (20)

In Equation (19), V represents the velocity; c1 and c2 represent the weight coefficient; r1
and r2 represent random number; PbestiGbesti

1 
 

￼ represent the current optimal solution and
the optimal global solution, respectively w_now

1 
 

￼ represents the dynamic inertia weight
coefficient. The advantages of the fast solution speed of the particle swarm optimization
algorithm are mainly reflected in the speed and population update formula. The update
of velocity V depends on the optimal solution, which is very different from random
optimization. Many invalid searches are avoided, which is also the main reason for the fast
iteration of the particle swarm optimization algorithm. Replacing the traditional PHI with
the speed formula can speed up the chemotaxis speed of bacteria foraging and significantly
improve the convergence speed and efficiency of the algorithm (Algorithm 1).

Algorithm 1: Chemotaxis process with hybrid dynamic step size and PSO

1 for j = 1:Nc
2 for i = 1:s
3 C = C(x) (C (x) represents the dynamic adaptive step size of the xth bacteria)
4 Calculate the influence of bacterial clustering behavior on fitness value and save as Jl
5 Replacing PHI with Particle Swarm Velocity Formula
6 P(i,j + 1) = P(j) + C * PHI
7 Update fitness value J
8 while (m < Ns)
9 if (J < Jl)
10 Update fitness value J
11 else
12 m = Ns
13 end
14 end
15 Update fitness value Jl
16 end
17 end

3.2. Replication Process

The replication process is the process of simulating the biological elimination competi-
tion of bacteria. After the chemotaxis is completed, the replication operation is performed
according to the accumulated health value of the bacteria, namely:

Ji
Health =

Nc

∑
j=1

J(i, j, k, l). (21)
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In Equation (21), Ji
Health represents the cumulative health value of bacteria i; Nc which

represents the total number of chemotaxis. The BFO algorithm uses the binary replication
method. The cumulative health value is sorted in ascending order, and the first half of high-
quality bacterial individuals are copied to keep the overall number of bacteria unchanged.

The traditional binary replication method has certain disadvantages. Although the
algorithm’s complexity is reduced, the diversity of the population is also significantly
reduced. Currently, the improvement of the BFO replication process mainly focuses on
the hybridization of the population, and the commonly used methods include mixed GA.
Ref. [35] proposed the method of crossing bacterial individuals to improve the population.
However, this paper proposes to use the crisscross algorithm [36–38] to replace the binary
replication method to improve the replication process and ensure the diversity of the
population. The crisscross algorithm has been an emerging swarm intelligence algorithm
in recent years. Each crossover iteration of the crisscross has a comparison process with the
previous generation different from Ref. [35]. The horizontal crossover process is as follows:

MShc(x, d) = r1X(x, d) + (1− r1)X(y, d) + c1(X(x, d)− X(y, d)), (22)

MShc(y, d) = r1X(y, d) + (1− r1)X(x, d) + c1(X(y, d)− X(x, d)). (23)

This equation is expressed as the intersection of X(x, d) and X(y, d) in the d dimension,
which r1 represents a random number between [0, 1] and c1 represents a random number
between [−1, 1]. Two individuals can be crossed to produce two offspring, which can be
decided by updating the health value. High-quality individuals enter the next step of the
vertical crossover process.

The vertical cross process is:

MSvc(x, d1) = rX(x, d1) + (1− r)X(x, d2). (24)

This formula is expressed as crossing bacteria x in two dimensions. The vertical
crossing is a random process. The vertical crossing will be performed only when the
satisfaction probability is less than the crossing probability. This is also the difference from
the horizontal crossing. At the same time, it is only better than the parent generation. The
cross children will be retained for the next iteration. Relying on the CSO to update the
population in different dimensions can effectively broaden the population’s diversity and
enhance the algorithm’s global search performance (Algorithm 2).

Algorithm 2: Replication Process of Hybrid CSO

1 for k = 1:Nre
2 for i = 0:s/2 − 1
3 if rand < Longitudinal crossing probability
4 for j = 1:p
5 Longitudinal crossing of populations
6 end
7 end
8 end
9 Update population according to fitness value
10 for i = 0:p/2 − 1
11 for j = 1:s
12 Horizontal crossing of populations
13 end
14 end
15 end
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3.3. Dispersal Process

Dispersion is significant to ensure that the algorithm jumps out of the optimal local
solution. The algorithm is designed to regenerate a bacterium i according to the initial
population generation formula if the random probability r is less than the fixed dispersal
probability Ped. This method simulates the influence of the external environment on E. coli.
The traditional fixed dispersal probability will bring certain disadvantages. Some high-
quality bacterial individuals will be eliminated, thereby reducing the algorithm’s efficiency
under the fixed probability to satisfy the algorithm’s general nature. This paper introduces
a dynamic probability formula to replace the traditional fixed dispersal probability through:

P(x) = Ped
Jworst − Jx

Jworst − Jbest
. (25)

The probability can be adjusted to a dynamic probability that changes with the health
value. In Equations (25), Jworst represents the worst value of the health degree, Jbest repre-
sents the optimal value of the health degree, and Jx represents the real-time health value
of the x-th bacteria. The probability of individuals with excellent health values being
dispersed decreases while the probability of bacterial individuals with poor health values
being dispersed increases in this way. Thus, the high-quality individuals avoid loss and
ensure the efficiency and performance of the algorithm. Although, the dynamic dispersal
probability can avoid the loss of high-quality solutions as much as possible. This paper
proposes the Sine-Cosine algorithm (SCA) to improve the dispersal process.

SCA is a new swarm intelligence algorithm proposed by Australian scholar Mirjalili
in 2016 [39]. The algorithm utilizes sine and cosine functions inspired by the fluctuating
optimization of sine and cosine functions to fluctuate the initial random candidate solution
toward the optimal solution or vice versa to complete the optimization process.

Xt+1
i = Xt

i + r1 sin(r2)
∣∣r3Pt

i − Xt
i
∣∣, r4 < 0.5, (26)

Xt+1
i = Xt

i + r1 cos(r2)
∣∣r3Pt

i − Xt
i
∣∣, r4 ≥ 0.5. (27)

The above equation Xt
i represents the position of the i-th dimension of the current

solution in the t-th iteration, the value of r1 to r4 means a random number, indicating the
end position of the i-th dimension. r4 is a random number that represents the determination
of the probability of a search strategy. Taking 0.5 allows the two strategies to be performed
with equal probability. When the random number is less than 0.5, a sinusoidal oscillation
search is performed, and when the random number is greater than 0.5, a cosine oscillation
search is performed. Ref. [40] applies the SCA to the process of chemotaxis and uses the
sine-cosine search formula to optimize the random direction vector PHI so that the step size
can be reduced linearly from a to 0. The speed of BFO improves in this model. This paper
proposes using the SCA to improve population generation in dispersal. After satisfying
the dynamic dispersal probability, it is judged again to perform the sine-cosine search. The
terminal position is set as the optimal bacterial position, and the above formula generates
dispersed populations of bacteria that meet the requirements. The dispersed bacteria will
change with the optimization process of the algorithm. Thus, the loss of the optimal value
caused by the randomness of traditional methods is avoided, and the algorithm’s efficiency
is improved (Algorithm 3).
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Algorithm 3: Dispersion process of hybrid dynamic probability and SCA

1 for l = 1:Ned
2 for m = 1:s
3 Dynamic dispersion probability
4 if Ped > rand
5 if r4 < 0.5
6 Sinusoidal oscillation search
7 else
8 Cosine oscillation search
9 end
10 end
11 end
12 end

3.4. Test Analysis

To quantitatively analyze the impact of each improved part on the performance of
the algorithm, this paper uses six test functions to test BFO and BFO with CSO and BFO
with SCA and BFO with CSO and SCA, BFO with PSO, IBFO with PSO, and CSO and
SCA. Moreover, this paper compared BFO with PSO and some improved bacterial foraging
algorithms. The number of iterations is 400, the number of bacteria s is 50, the number
of chemotaxis Nc is 50, the maximum number of steps Ns of one-way movement is 4,
the number of copy operations Nre is 4, the number of dispersal Ned is 2, the traditional
dispersal probability Ped is 0.25, the number of attractants d attract is 0.1, the release rate
of the attractant ommiga attract is 0.2, the number of repellants h repellant is 0.1, and the
release rate ommiga repellant of the repellant is 0.1. Each group of test functions is carried
out in 20 experiments, and the test results are as follows (Table 1, Figures 3–8).

Table 1. Compare test results.

Function Equation Range Optimization
Technique Best Mean std

Sphere f1 =
n
∑

i=1
x2

i [−100–100]

BFO 0.4159 0.5702 0.1178
PSO 0.2074 0.7861 0.5161

BFO with CSO 0.0355 0.0764 0.0196
BFO with SCA 0.3719 0.6327 0.1740

BFO with CSO and SCA 0.0270 0.0803 0.0178
BFO with PSO [34] 0.0846 0.1316 0.0283

BFO with PSO, CSO
and SCA 3.82 × 10−17 4.79 × 10−9 1.34 × 10−8

HR-EBFA [41] 2.69 × 10−4 2.29 × 10−4

RL-BFA [42] 1.14 × 10−2 3.99 × 10−3

Ackley
f2 = −20exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
−

exp
(

1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e

[−32–32]

BFO 2.0337 2.3381 0.1838
BFO with CSO 0.4498 0.6764 0.1175
BFO with SCA 1.7569 2.2496 0.2334

BFO with CSO and SCA 0.4263 0.7015 0.1197
BFO with PSO [34] 0.7634 1.0645 0.1507

BFO with PSO, CSO
and SCA 3.36 × 10−7 0.0010 0.0017

BFOED [43] 8.70 × 10−5 0.7134 0.2977
BFOSA [43] 4.55 × 10−3 1.7133 0.3189
MQBFA [44] 1.2485

Rastrigin f3 =
n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
]

[−5.1–5.1]

BFO 18.5898 42.5381 8.1756
PSO 7.7445 14.5918 4.2319

BFO with CSO 8.4729 13.4023 2.3003
BFO with SCA 24.6527 43.4678 7.8781

BFO with CSO and SCA 4.0887 13.4822 3.3111
BFO with PSO [34] 16.6043 26.8080 4.6352

BFO with PSO, CSO
and SCA 1.39 × 10−12 1.49 × 10−7 2.99 × 10−7

HR-EBFA [41] 8.13 × 10−4 1.09 × 10−3

RL-BFA [42] 1.9000 0.3140
MQBFO [44] 25.6570
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Table 1. Cont.

Function Equation Range Optimization
Technique Best Mean std

Schaffer f4 = 0.5 +
sin2(x2

1−x2
2)−0.5

[1+0.001(x2
1−x2

2)]
2 [−100–100]

BFO 7.65 × 10−8 1.50 × 10−6 1.75 × 10−6

BFO with CSO 1.83 × 10−9 4.88 × 10−8 4.53 × 10−8

BFO with SCA 2.38 × 10−8 7.74 × 10−7 9.23 × 10−7

BFO with CSO and SCA 4.99 × 10−11 9.48 × 10−8 7.95 × 10−8

BFO with PSO [34] 1.72 × 10−7 9.48 × 10−6 1.64 × 10−5

BFO with PSO, CSO
and SCA 5.55 × 10−17 1.05 × 10−10 3.5 × 10−10

HR-EBFA [41] 4.94 × 10−3 2.70 × 10−3

RL-BFA [42] 2.69 × 10−2 3.82 × 10−3

Alpine f5 =
n
∑

i=1
|xi sin xi + 0.1xi | [−10–10]

BFO 0.1789 0.5285 0.1529
PSO 0.0158 0.1231 0.1286

BFO with CSO 0.0291 0.0671 0.0179
BFO with SCA 0.2253 0.5181 0.1338

BFO with CSO and SCA 0.0282 0.0599 0.0142
BFO with PSO [34] 0.0582 0.1410 0.0492

BFO with PSO, CSO
and SCA 2.29 × 10−8 2.90 × 10−4 6.67 × 10−4

Schwefel f6 =
n
∑

i=1
|xi |+

n
∏
i=1
|xi | [−10–10]

BFO 1.0291 2.0283 0.3183
PSO 0.2470 0.4224 0.0944

BFO with CSO 0.4448 0.6637 0.1050
BFO with SCA 1.2810 1.9379 0.2794

BFO with CSO and SCA 0.5394 0.7073 0.0835
BFO with PSO [34] 0.7039 0.9021 0.1191

BFO with PSO, CSO
and SCA 1.93 × 10−7 0.0016 0.0046

Biomimetics 2023, 8, x FOR PEER REVIEW 13 of 24 
 

 

BFO with PSO, CSO and SCA 2.29 × 10−8 2.90 × 10−4 
6.67 × 
10−4 

Schwefel 𝑓 =|𝑥| +ෑ|𝑥|
ୀଵ


ୀଵ  [−10–10] 

BFO 1.0291 2.0283 0.3183 
PSO 0.2470 0.4224 0.0944 

BFO with CSO 0.4448 0.6637 0.1050 
BFO with SCA 1.2810 1.9379 0.2794 

BFO with CSO and SCA 0.5394 0.7073 0.0835 
BFO with PSO [34] 0.7039 0.9021 0.1191 

BFO with PSO, CSO and SCA 1.93 × 10−7 0.0016 0.0046 

 
Figure 3. Convergence curve of f1. 

 
Figure 4. Convergence curve of f2. 

Figure 3. Convergence curve of f1.

Biomimetics 2023, 8, x FOR PEER REVIEW 13 of 24 
 

 

BFO with PSO, CSO and SCA 2.29 × 10−8 2.90 × 10−4 
6.67 × 
10−4 

Schwefel 𝑓 =|𝑥| +ෑ|𝑥|
ୀଵ


ୀଵ  [−10–10] 

BFO 1.0291 2.0283 0.3183 
PSO 0.2470 0.4224 0.0944 

BFO with CSO 0.4448 0.6637 0.1050 
BFO with SCA 1.2810 1.9379 0.2794 

BFO with CSO and SCA 0.5394 0.7073 0.0835 
BFO with PSO [34] 0.7039 0.9021 0.1191 

BFO with PSO, CSO and SCA 1.93 × 10−7 0.0016 0.0046 

 
Figure 3. Convergence curve of f1. 

 
Figure 4. Convergence curve of f2. 

Figure 4. Convergence curve of f2.



Biomimetics 2023, 8, 150 13 of 23
Biomimetics 2023, 8, x FOR PEER REVIEW 14 of 24 
 

 

 
Figure 5. Convergence curve of f3. 

 
Figure 6. Convergence curve of f4. 

 
Figure 7. Convergence curve of f5. 

Figure 5. Convergence curve of f3.

Biomimetics 2023, 8, x FOR PEER REVIEW 14 of 24 
 

 

 
Figure 5. Convergence curve of f3. 

 
Figure 6. Convergence curve of f4. 

 
Figure 7. Convergence curve of f5. 

Figure 6. Convergence curve of f4.

Biomimetics 2023, 8, x FOR PEER REVIEW 14 of 24 
 

 

 
Figure 5. Convergence curve of f3. 

 
Figure 6. Convergence curve of f4. 

 
Figure 7. Convergence curve of f5. 

Figure 7. Convergence curve of f5.



Biomimetics 2023, 8, 150 14 of 23
Biomimetics 2023, 8, x FOR PEER REVIEW 15 of 24 
 

 

 
Figure 8. Convergence curve of f6. 

The ordinate in the figure above represents the function value, and the abscissa rep-
resents the iteration number. By combining the algorithm’s test results and convergence 
curve, SCA comprehensively improves the convergence speed and accuracy of the algo-
rithm. The CSO improves the algorithm’s accuracy more significantly but at the expense 
of convergence speed. Mixing the two will improve the accuracy due to SCA’s efficient 
population dispersal during the dispersal process. It reduces the algorithm speed slightly 
simultaneously because mixing crisscross takes some time. However, the CSO enriches 
the replication population and improves the search performance of the algorithm. The 
convergence result will change abruptly due to the influence of dispersal on population 
initialization when iteration is 200 times. Improving the dispersal process can effectively 
alleviate this situation and make the whole process of algorithm convergence relatively 
smooth. Mixing PSO can significantly improve the convergence rate of BFO because PSO 
can improve the process of E. coli rollover swimming and avoid a lot of invalid random 
searches. The speed update formula of the particle swarm optimization algorithm can 
quickly search for iteration. The BFO integrated with various optimization parts has the 
highest search accuracy and the fastest iteration speed. This paper also compares some 
other algorithms for BFO optimization, such as the Hormone Regulation based Emotional 
Bacterial Foraging Algorithm (HR-EBFA) [41], Bacterial Foraging reinforcement Learning 
Optimization Algorithm (RL-BFA) [42], the improved Quantum Bacterial Foraging Algo-
rithm (MQBFA) [44], and Distribution Estimation based adaptive Bacterial Foraging Al-
gorithm (BFOED) [43]. The improved bacterial foraging algorithm presented in this paper 
has better results than the above methods. 

4. Algorithm Application and Experimental Analysis 
In this paper, microgrid dispatching optimization is designed as the behavior of bac-

teria foraging. The flow chart is as follows: 
Among them, in Figure 9 ,the bacterial population is initialized as a six-dimensional 

array: ( ), , , , ,
c re ed

P zeros N T popsize N N N=  . The first to sixth dimensions corre-
spond to the distributed power supply, the microgrid operating period, the number of 
bacteria, the number of chemotaxes, the number of replications, and the number of dis-
persals. 

Figure 8. Convergence curve of f6.

The ordinate in the figure above represents the function value, and the abscissa rep-
resents the iteration number. By combining the algorithm’s test results and convergence
curve, SCA comprehensively improves the convergence speed and accuracy of the algo-
rithm. The CSO improves the algorithm’s accuracy more significantly but at the expense
of convergence speed. Mixing the two will improve the accuracy due to SCA’s efficient
population dispersal during the dispersal process. It reduces the algorithm speed slightly
simultaneously because mixing crisscross takes some time. However, the CSO enriches
the replication population and improves the search performance of the algorithm. The
convergence result will change abruptly due to the influence of dispersal on population
initialization when iteration is 200 times. Improving the dispersal process can effectively
alleviate this situation and make the whole process of algorithm convergence relatively
smooth. Mixing PSO can significantly improve the convergence rate of BFO because PSO
can improve the process of E. coli rollover swimming and avoid a lot of invalid random
searches. The speed update formula of the particle swarm optimization algorithm can
quickly search for iteration. The BFO integrated with various optimization parts has the
highest search accuracy and the fastest iteration speed. This paper also compares some
other algorithms for BFO optimization, such as the Hormone Regulation based Emotional
Bacterial Foraging Algorithm (HR-EBFA) [41], Bacterial Foraging reinforcement Learn-
ing Optimization Algorithm (RL-BFA) [42], the improved Quantum Bacterial Foraging
Algorithm (MQBFA) [44], and Distribution Estimation based adaptive Bacterial Foraging
Algorithm (BFOED) [43]. The improved bacterial foraging algorithm presented in this
paper has better results than the above methods.

4. Algorithm Application and Experimental Analysis

In this paper, microgrid dispatching optimization is designed as the behavior of
bacteria foraging. The flow chart is as follows:

Among them, in Figure 9, the bacterial population is initialized as a six-dimensional
array: P = zeros(N, T, popsize, Nc, Nre, Ned). The first to sixth dimensions correspond to
the distributed power supply, the microgrid operating period, the number of bacteria, the
number of chemotaxes, the number of replications, and the number of dispersals.
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Figure 9. Flowchart of solving microgrid dispatching by comprehensively improved Bacterial
Foraging Optimization.

4.1. Uncertainty Treatment of Wind Power and Photovoltaic

Given the uncertain influence of wind power and solar, this paper uses meteorological
data from a particular place in Inner Mongolia to predict wind and solar output. It uses
the MC’s idea to generate 100 scenery scenes and then cut them back randomly. The five
output scenes and their probabilities after reduction are shown in the figure below.

According to Figure 10, Scenario 5 has the highest probability. Figure 11 shows
100 random scenarios for simulating wind power output, and Figure 12 shows 100 random
scenarios for simulating photovoltaic output. Figures 13 and 14 show the output after
scenario reduction. The uncertainty process of wind and photovoltaic output are simulated
by using the probability of scenario occurrence. Therefore, this paper uses the forecast data
of the reduced wind and photovoltaic output of Scenario 5, and the reduced wind power
output is shown in Figure 15.
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4.2. Examples of Microgrid Dispatching

The basic parameters of the controllable distributed power generation in Table 2 and
typical daily load and real-time electricity price in Table 3 in this example are as follows:
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Table 2. Basic parameters of controllable distributed power supply.

Controllable Micro
Power Type Life Expectancy/Year Power Lower

Limit/KW
Power Upper

Limit/KW

DE 10 0 60
FC 10 0 40
MT 10 0 65
grid −30 200

The typical daily load [45] and real-time electricity price [46] are as follows:

Table 3. Typical daily load and real-time electricity price.

Time Period/h Load/KW Electricity
Price/(Yuan/(KW·h)) Time Period/h Load/KW Electricity

Price/(Yuan/(KW·h))

00:00–01:00 101.049 0.2400 12:00–13:00 121.629 0.9900
01:00–02:00 79.991 0.1770 13:00–14:00 136.151 1.4900
02:00–03:00 41.862 0.1301 14:00–15:00 137.752 0.9900
03:00–04:00 101.312 0.0969 15:00–16:00 118.824 0.7900
04:00–05:00 67.139 0.0300 16:00–17:00 139.221 0.4000
05:00–06:00 82.000 0.1701 17:00–18:00 157.158 0.3647
06:00–07:00 85.085 0.2710 18:00–19:00 101.689 0.3590
07:00–08:00 110.875 0.3864 19:00–20:00 127.400 0.4130
08:00–09:00 115.249 0.5169 20:00–21:00 135.312 0.4448
09:00–10:00 120.687 0.5260 21:00–22:00 96.692 0.3480
10:00–11:00 98.786 0.8100 22:00–23:00 90.243 0.3000
11:00–12:00 13.944 1.0000 23:00–24:00 109.587 0.2250

Considering the environmental cost, the emission coefficients of each pollutant, and
the corresponding cost coefficients [47] are as follows (Table 4):

Table 4. Pollutant discharge and cost coefficient.

Types of Polluting
Gases

Treatment Cost
(Yuan/kg)

Controllable Power Supply Pollution Gas Emission Coefficient
(g/(KW·h))

DE MT FC

NOx 26.46 3.74 1.82 0.01
SO2 6.237 8.79 2.28 0.003
CO2 0.21 1142.9 724.6 20.4

Figure 16 shows the scheduling results of the microgrid. Wind and photovoltaic
are clean and renewable energy that will be fully output in the microgrid dispatching,
and other distributed power sources will fill the shortage of unmet load demand. It is
necessary to purchase power from the enormous power grid if the combined output of each
distributed power source under the constraint of the upper limit of the maximum power
fails to meet the load demand. Fuel cells are prioritized for most of the operation period,
followed by micro steam turbines and diesel generators because of their low operating costs
and environmental impact. The overflow will be sold to the grid according to the selling
price between hours three and six; the overflow occurs at hours nineteen and twenty-two.
This study will consider adding energy storage equipment into the subsequent research to
improve the absorption capacity of the power grid.
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It can be seen from Figure 17 that the Total cost (T-cost) includes various parts of the
cost, including the operation cost of distributed power supply (O-cost), Environmental
pollution cost (E-cost), and the cost of electricity purchase and sale (P and S-cost). The
operation cost of distributed power supply gradually increases after the start-up of each
distributed power supply and then fluctuates within a specific range; during the stop
phase, the operation cost will gradually decrease. O-cost accounts for a large proportion
of T-cost, followed by E-cost and P-and S-cost. The negative value of the P- and S-cost
represents the profit from electricity sales, and the positive value represents the electricity
purchase expenditure.

The following Table 5 shows the detailed data of each distributed power source and
power grid output in the optimal scheduling results of the microgrid.
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Table 5. Detailed data of microgrid and the output of DG.

Time (h) Grid (KW) DE (KW) MT (KW) FC (KW) PV-WT (KW)

1 54.9847 4.6157 30.5293 8.4419 2.4774
2 13.9208 17.7461 16.7995 30.9069 0.5377
3 −30.0000 49.2007 17.0434 5.5785 2.6790
4 −1.1387 26.5018 63.0595 11.7369 1.1584
5 −27.5462 20.1368 61.1810 11.6811 1.6862
6 −22.2145 2.5391 61.3192 38.5415 1.8147
7 32.4267 24.4806 20.6001 7.5464 0.0312
8 18.7005 9.4939 58.8034 22.6857 1.1915
9 45.4677 12.9296 33.7325 21.9738 1.1454

10 16.0335 47.4314 15.3470 37.2843 4.5908
11 24.6919 8.9679 41.6544 20.0269 3.4449
12 43.7713 24.0744 16.5186 11.3769 8.2029
13 37.6223 28.5550 27.3770 19.6472 8.4275
14 59.9395 3.9189 53.6826 12.2077 6.4023
15 18.4272 55.6835 19.2147 38.5125 5.9142
16 26.2810 8.2503 50.6074 30.9076 2.7776
17 30.4756 29.1353 43.6213 32.8522 3.1366
18 42.2725 28.8073 49.1521 35.8254 1.1007
19 −28.6802 48.2836 64.0777 17.1399 0.8680
20 29.6620 30.3528 45.4651 20.2881 1.6321
21 69.7417 4.8349 52.3628 5.8072 2.5654
22 −21.7034 27.6313 58.7886 31.1348 0.8406
23 22.8784 24.7073 25.0228 17.2717 0.3629

This paper applies IBFO, BFO, and PSO to the microgrid economic dispatching prob-
lem to verify the improved method’s excellence. The number of experiments is 30, and the
experimental results are averaged. In Table 5, the experimental result of IBFO is the best,
which is CNY 1653.4, the experimental result of BFO is CNY 1739.9, and the experimental
result of PSO is CNY 1716.0. The microgrid dispatching cost of IBFO is reduced by 3.79%
compared with PSO. The scheduling cost of the improved bacterial foraging algorithm
is reduced by 5.23% compared with the traditional BFO. The experimental results show
that the improved bacterial foraging algorithm can effectively reduce the cost of economic
dispatching optimization of the microgrid.

5. Conclusions

This paper refines the three main steps of BFO. This study introduced the speed
formula of PSO in the chemotaxis stage to improve the search accuracy and speed. The
adaptive step size is used to modify the standard fixed step size, which made the algorithm
search at high speed in the early iteration. The improvements reduce the step size in the
late iteration. The CrissCross Algorithm is used to enrich the population diversity in the
replication stage. The global search performance of the algorithm is further enhanced.
This research proposes the dynamic dispersal equation to improve the survival of high-
quality individuals’ probability to solve the low efficiency caused by the loss of high-
quality individuals in the dispersal process. This research also proposed SCA to improve
the population generation and further improve the search efficiency of the algorithm.
The influence of each improved part on the algorithm’s performance was quantitatively
analyzed by multiple test functions and compared with many other improved algorithms
for bacterial foraging. The results show that the improved Bacterial Foraging Algorithm
proposed has the best results. This study applied the improved BFO to a microgrid
economic scheduling model considering multiple optimization objectives to prove the
excellent performance. MC is used to reduce the scene by aiming at the uncertainty
processing of scenery force in the model. Finally, the experimental results prove that the
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method proposed can effectively reduce the operating cost of the microgrid, improve
economic benefits, reduce environmental pollution, and ensure the stability of power
consumption for users. In the future, we can study the accommodation of microgrids and
the dispatching of microgrids with multiple energy storage devices.

Author Contributions: Conceptualization, Y.Z. (Yi Zhang); methodology, Y.L.; software, Y.L.; investi-
gation, Y.Z. (Yangkun Zhou); resources, Y.L.; data curation, Y.Z. (Yangkun Zhou); writing—original
draft preparation, Y.Z. (Yangkun Zhou) and Y.Z. (Yi Zhang); writing—review and editing, Y.Z. (Yi
Zhang). All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the fund of the Science and Technology Development Project of Jilin
Province No. 20220203190SF; the fund of the education department of Jilin province No. JJKH20210257KJ.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

Abbreviations

Abbreviations commonly used in articles and abbreviations used in bacterial foraging algorithms:

Name Abbreviation
Particle Swarm Optimization PSO
Genetic Algorithm GA
Differential Evolution Algorithm DE
Whale Optimization Algorithm WOA
Bacterial Foraging Optimization BFO
Sine-Cosine algorithm SCA
Criss-cross Optimization CSO
Distributed Generation DG
PV power PV
Power of Wind PW
Number of chemotaxis restriction Nc
Number of replication restriction Nre
Number of dispersal restriction Ned
Search Step Size C
Probability of dispersion Ped
Fitness value J
Population P
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