Lightweight Structural Biomaterials with Excellent Mechanical Performance: A Review
Abstract
:1. Introduction
2. Cellular Structure Materials
2.1. Open-Cellular Structures
2.2. Closed-Cellular Structures
3. Fibrous Structure Materials
3.1. Fibrous Bundles Structures
3.2. Fibrous Lamellae Structures
4. Sandwich Structure Materials
4.1. Plate Sandwich Structures
4.2. Thin-Walled Cylinder Sandwich Structures
5. Design and Fabrication of Bioinspired Composites
6. Summary and Outlook
- (1)
- There is still significant investigation potential on the interior synergistic processes of lightweight and high mechanical performances of biomaterials. Elaborate theoretical models need to be established to reveal the complicated relationship between structures and mechanical performance of biomaterials. Moreover, developing the on-demand trade-off strategy between lightweight properties and high mechanical performance is the eternal theme for advanced bioinspired composites.
- (2)
- More professional techniques are required to expose the microscopic characterization and inherent biological mechanisms of biomaterials, such as micro-CT, digital image correlation (DIC), and in situ testing. Moreover, due to the inherent complexity of biomaterials, it is necessary to consider various influencing factors when researchers conduct a deep investigation on biomaterials. To precisely predict the behaviors of biomaterials under external force, accurate numerical simulation is a powerful tool for researchers to understand the inner change mechanism of biomaterials. It could provide a more comprehensive and profound elaboration for the uncovered mechanism and discover specific characteristic parameters for future bionic design.
- (3)
- Inspired by excellent biomaterials, how to achieve the rational design and precise fabrication of bioinspired composites is another sustainable topic. To achieve twice the result with half the effort in bionic design, it is necessary and effective to investigate the integration mechanism of lightweight and high mechanical properties within living things. Reliability and simplicity should be maintained during fabrication to minimize the influence of the manufacturing process on the bionic design.
- (4)
- A multidisciplinary collaboration involving bionic science, materials engineering, and chemistry opens up new avenues for the deep investigation of biomaterials, possibly breaking the bottleneck in the developing techniques of advanced bioinspired composites.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Meyers, M.A.; McKittrick, J.; Chen, P.-Y. Structural biological materials: Critical mechanics-materials connections. Science 2013, 339, 773–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, W.D.; Mu, Z.Z.; Zhang, Z.Y.; Wang, Y.F.; Hu, H.D.; Ma, Z.; Huang, L.W.; Wang, Z.; Zhang, B.J.; Li, Y.J.; et al. Cross-scale biological models of species for future biomimetic composite design: A review. Coatings 2021, 11, 1297. [Google Scholar] [CrossRef]
- Chen, P.-Y.; McKittrick, J.; Meyers, M.A. Biological materials: Functional adaptations and bioinspired designs. Prog. Mater. Sci. 2012, 57, 1492–1704. [Google Scholar] [CrossRef]
- Zhao, N.; Wang, Z.; Cai, C.; Shen, H.; Liang, F.Y.; Wang, D.; Wang, C.Y.; Zhu, T.; Guo, J.; Wang, Y.; et al. Bioinspired materials: From low to high dimensional structure. Adv. Mater. 2014, 26, 6994–7017. [Google Scholar] [CrossRef]
- Zhang, B.J.; Han, Q.G.; Zhang, J.Q.; Han, Z.W.; Niu, S.C.; Ren, L.Q. Advanced bio-inspired structural materials: Local properties determine overall performance. Mater. Today 2020, 41, 177–199. [Google Scholar] [CrossRef]
- Yeo, S.J.; Oh, M.J.; Yoo, P.J. Structurally controlled cellular architectures for high-performance ultra-lightweight materials. Adv. Mater. 2019, 31, 1803670. [Google Scholar] [CrossRef]
- Zhang, C.Q.; McAdams, D.A.M.I.; Grunlan, J.C. Nano/micro-manufacturing of bioinspired materials: A review of methods to mimic natural structures. Adv. Mater. 2016, 28, 6292–6321. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, J.H.; Wang, Z.; Niu, S.C.; Zhang, J.Q.; Han, Z.W.; Mu, Z.Z.; Li, B.; Ren, L.Q. Biological vibration damping strategies and mechanisms. J. Bionic Eng. 2023. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, Q.; Xu, Z.Q.; Wu, L.M.; Liu, X.M. Bionic volute tongue optimization design of multi-blade centrifugal fan inspired by the wave leading-edge of humpback whale flippers. J. Bionic Eng. 2023. [Google Scholar] [CrossRef]
- Greco, L.; Buccino, F.; Xu, Z.; Vergani, L.; Berto, F.; Guagliano, M.; Razavi, S.M.J.; Bagherifard, S. Design and analysis of energy absorbent bioinspired lattice structures. J. Bionic Eng. 2023. [Google Scholar] [CrossRef]
- Naleway, S.E.; Porter, M.M.; McKittrick, J.; Meyers, M.A. Structural design elements in biological materials: Application to bioinspiration. Adv. Mater. 2015, 27, 5455–5476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Yang, W.; McKittrick, J.; Meyers, M.A. Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog. Mater. Sci. 2016, 76, 229–318. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, T.N.; Pissarenko, A.; Herrera, S.A.; Kisailus, D.; Lubarda, V.A.; Meyers, M.A. A lightweight, biological structure with tailored stiffness: The feather vane. Acta Biomater. 2016, 41, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, T.; Emmerlich, J.; Baumgartner, W.; Schneider, J.M.; Wagner, H. Flexural stiffness of feather shafts: Geometry rules over material properties. J. Exp. Biol. 2012, 215, 405–415. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, T.N.; Wang, B.; Espinosa, H.D.; Meyers, M.A. Extreme lightweight structures: Avian feathers and bones. Mater. Today 2017, 20, 377–391. [Google Scholar] [CrossRef]
- Espinosa, H.D.; Juster, A.L.; Latourte, F.J.; Loh, O.Y.; Gregoire, D.; Zavattieri, P.D. Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials. Nat. Commun. 2011, 2, 173. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, M.; Saruwatari, K.; Kogure, T.; Yamamoto, Y.; Nishimura, T.; Kato, T.; Nagasawa, H. An acidic matrix protein, pif, is a key macromolecule for nacre formation. Science 2009, 325, 1388–1390. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Stokes, A.G.; McKittrick, J. Comparison of the structure and mechanical properties of bovine femur bone and antler of the North American elk (Cervus elaphus canadensis). Acta Biomater. 2009, 5, 693–706. [Google Scholar] [CrossRef] [PubMed]
- Launey, M.E.; Chen, P.-Y.; McKittrick, J.; Ritchie, R.O. Mechanistic aspects of the fracture toughness of elk antler bone. Acta Biomater. 2010, 6, 1505–1514. [Google Scholar] [CrossRef]
- Wegst, U.G.K.; Bai, H.; Saiz, E.; Tomsia, A.P.; Ritchie, R.O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.S.; Cheng, Q.F. High-performance nanocomposites inspired by nature. Adv. Mater. 2017, 29, 1702959. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Zhang, Z.F.; Ritchie, R.O. On the materials science of nature’s arms race. Adv. Mater. 2018, 30, 1705220. [Google Scholar] [CrossRef]
- Aizenberg, J.; Weaver, J.C.; Thanawala, M.S.; Sundar, V.C.; Morse, D.E.; Fratzl, P. Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale. Science 2005, 309, 275–278. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.H.; Xie, Y.M.; Huang, X.D.; Zhou, S.W.; Ruan, D. Mechanical properties of luffa sponge. J. Mech. Behav. Biomed. Mater. 2012, 15, 141–152. [Google Scholar] [CrossRef]
- Yang, T.; Jia, Z.A.; Chen, H.S.; Deng, Z.F.; Liu, W.K.; Chen, L.N.; Li, L. Mechanical design of the highly porous cuttlebone: A bioceramic hard buoyancy tank for cuttlefish. Proc. Natl. Acad. Sci. USA 2020, 117, 23450–23459. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yin, S.; Yu, T.X.; Xu, J. Crushing resistance and energy absorption of pomelo peel inspired hierarchical honeycomb. Int. J. Impact Eng. 2019, 125, 163–172. [Google Scholar] [CrossRef]
- John, M.J.; Thomas, S. Biofibres and biocomposites. Carbohydr. Polym. 2008, 71, 343–364. [Google Scholar] [CrossRef]
- Shen, J.H.; Xie, Y.M.; Zhou, S.W.; Huang, X.D.; Ruan, D. Water-responsive rapid recovery of natural cellular material. J. Mech. Behav. Biomed. Mater. 2014, 34, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.C.; Kisailus, D.; Meyers, M.A. Hydration-induced reversible deformation of biological materials. Nat. Rev. Mater. 2021, 6, 264–283. [Google Scholar] [CrossRef]
- Weaver, J.C.; Milliron, G.W.; Allen, P.; Miserez, A.; Rawal, A.; Garay, J.; Thurner, P.J.; Seto, J.; Mayzel, B.; Friesen, L.J.; et al. Unifying design strategies in demosponge and hexactinellid skeletal systems. J. Adhes. 2010, 86, 72–95. [Google Scholar] [CrossRef]
- Miserez, A.; Weaver, J.C.; Thurner, P.J.; Aizenberg, J.; Dauphin, Y.; Fratzl, P.; Morse, D.E.; Zok, F.W. Effects of laminate architecture on fracture resistance of sponge biosilica: Lessons from nature. Adv. Funct. Mater. 2008, 18, 1241–1248. [Google Scholar] [CrossRef]
- Cha, J.N.; Stucky, G.D.; Morse, D.E.; Deming, T.J. Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature 2000, 403, 289–292. [Google Scholar] [CrossRef]
- Huang, W.; Restrepo, D.; Jung, J.-Y.; Su, F.Y.; Liu, Z.Q.; Ritchie, R.O.; McKittrick, J.; Zavattieri, P.; Kisailus, D. Multiscale toughening mechanisms in biological materials and bioinspired designs. Adv. Mater. 2019, 31, 1901561. [Google Scholar] [CrossRef]
- Woesz, A.; Weaver, J.C.; Kazanci, M.; Dauphin, Y.; Aizenberg, J.; Morse, D.E.; Fratzl, P. Micromechanical properties of biological silica in skeletons of deep-sea sponges. J. Mater. Res. 2006, 21, 2068–2078. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, M.C.; Aizenberg, J.; Weaver, J.C.; Bertoldi, K. Mechanically robust lattices inspired by deep-sea glass sponges. Nat. Mater. 2021, 20, 237–241. [Google Scholar] [CrossRef]
- Birchall, J.D.; Thomas, N.L. On the architecture and function of cuttlefish bone. J. Mater. Sci. 1983, 18, 2081–2086. [Google Scholar] [CrossRef]
- Ward, P.D.; Von Boletzky, S. Shell implosion depth and implosion morphologies in three species of Sepia (Cephalopoda) from the Mediterranean Sea. J. Mar. Biolog. Assoc. U. K. 1984, 64, 955–966. [Google Scholar] [CrossRef]
- Rocha, J.H.G.; Lemos, A.F.; Kannan, S.; Agathopoulos, S.; Ferreira, J.M.F. Hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones. J. Mater. Chem. 2005, 15, 5007–5011. [Google Scholar] [CrossRef]
- Cadman, J.; Zhou, S.W.; Chen, Y.H.; Li, Q. Cuttlebone: Characterisation, application and development of biomimetic materials. J. Bionic Eng. 2012, 9, 367–376. [Google Scholar] [CrossRef]
- Mao, A.; Zhao, N.F.; Liang, Y.H.; Bai, H. Mechanically efficient cellular materials inspired by cuttlebone. Adv. Mater. 2021, 33, 2007348. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Jia, Z.A.; Yang, T.; Li, L. Multiscale mechanical design of the lightweight, stiff, and damage-tolerant cuttlebone: A computational study. Acta Biomater. 2022, 154, 312–313. [Google Scholar] [CrossRef] [PubMed]
- Thielen, M.; Speck, T.; Seidel, R. Viscoelasticity and compaction behaviour of the foam-like pomelo (Citrus maxima) peel. J. Mater. Sci. 2013, 48, 3469–3478. [Google Scholar] [CrossRef]
- Fischer, S.F.; Thielen, M.; Loprang, R.R.; Seidel, R.; Fleck, C.; Speck, T.; Bührig-Polaczek, A. Pummelos as concept generators for biomimetically inspired low weight structures with excellent damping properties. Adv. Eng. Mater. 2010, 12, B658–B663. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Olah, A.; Baer, E. Mechanical compressive behavior of pomelo peel and multilayer polymeric film/foam systems. Bioinspir. Biomim. 2022, 17, 056004. [Google Scholar] [CrossRef]
- Wang, B.; Pan, B.; Lubineau, G. Morphological evolution and internal strain mapping of pomelo peel using X-ray computed tomography and digital volume correlation. Mater. Des. 2018, 137, 305–315. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.J.; Ji, B.H.; Jäger, I.L.; Arzt, E.; Fratzl, P. Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc. Natl. Acad. Sci. USA 2003, 100, 5597–5600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Studart, A.R. Biological and bioinspired composites with spatially tunable heterogeneous architectures. Adv. Funct. Mater. 2013, 23, 4423–4436. [Google Scholar] [CrossRef]
- Dunlop, J.W.C.; Weinkamer, R.; Fratzl, P. Artful interfaces within biological materials. Mater. Today 2011, 14, 70–78. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Zhang, Y.Y.; Zhang, M.Y.; Tan, G.Q.; Zhu, Y.K.; Zhang, Z.F.; Ritchie, R.O. Adaptive structural reorientation: Developing extraordinary mechanical properties by constrained flexibility in natural materials. Acta Biomater. 2019, 86, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Song, P.A.; Dai, J.F.; Chen, G.R.; Yu, Y.M.; Fang, Z.P.; Lei, W.W.; Fu, S.Y.; Wang, H.; Chen, Z.-G. Bioinspired design of strong, tough, and thermally stable polymeric materials via nanoconfinement. ACS Nano 2018, 12, 9266–9278. [Google Scholar] [CrossRef]
- Song, P.A.; Xu, Z.G.; Lu, Y.; Guo, Q.P. Bio-inspired hydrogen-bond cross-link strategy toward strong and tough polymeric materials. Macromolecules 2015, 48, 3957–3964. [Google Scholar] [CrossRef]
- Keten, S.; Xu, Z.P.; Ihle, B.; Buehler, M.J. Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nat. Mater. 2010, 9, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Speck, T.; Burgert, I. Plant stems: Functional design and mechanics. Annu. Rev. Mater. Res. 2011, 41, 169–193. [Google Scholar] [CrossRef]
- Zimmermann, E.A.; Gludovatz, B.; Schaible, E.; Dave, N.K.N.; Yang, W.; Meyers, M.A.; Ritchie, R.O. Mechanical adaptability of the Bouligand-type structure in natural dermal armour. Nat. Commun. 2013, 4, 2634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Sherman, V.R.; Gludovatz, B.; Mackey, M.; Zimmermann, E.A.; Chang, E.H.; Schaible, E.; Qin, Z.; Buehler, M.J.; Ritchie, R.O.; et al. Protective role of Arapaima gigas fish scales: Structure and mechanical behavior. Acta Biomater. 2014, 10, 3599–3614. [Google Scholar] [CrossRef]
- Chen, S.-M.; Gao, H.-L.; Zhu, Y.-B.; Yao, H.-B.; Mao, L.-B.; Song, Q.-Y.; Xia, J.; Pan, Z.; He, Z.; Wu, H.-A.; et al. Biomimetic twisted plywood structural materials. Natl. Sci. Rev. 2018, 5, 703–714. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Shishehbor, M.; Guarin-Zapata, N.; Kirchhofer, N.D.; Li, J.; Cruz, L.; Wang, T.F.; Bhowmick, S.; Stauffer, D.; Manimunda, P.; et al. A natural impact-resistant bicontinuous composite nanoparticle coating. Nat. Mater. 2020, 19, 1236–1243. [Google Scholar] [CrossRef]
- Tadayon, M.; Amini, S.; Masic, A.; Miserez, A. The mantis shrimp saddle: A biological spring combining stiffness and flexibility. Adv. Funct. Mater. 2015, 25, 6437–6447. [Google Scholar] [CrossRef]
- Wu, K.J.; Song, Z.Q.; Zhang, S.S.; Ni, Y.; Cai, S.Q.; Gong, X.L.; He, L.H.; Yu, S.-H. Discontinuous fibrous Bouligand architecture enabling formidable fracture resistance with crack orientation insensitivity. Proc. Natl. Acad. Sci. USA 2020, 117, 15465–15472. [Google Scholar] [CrossRef]
- Becker, N.; Oroudjev, E.; Mutz, S.; Cleveland, J.P.; Hansma, P.K.; Hayashi, C.Y.; Makarov, D.E.; Hansma, H.G. Molecular nanosprings in spider capture-silk threads. Nat. Mater. 2003, 2, 278–283. [Google Scholar] [CrossRef]
- Shao, Z.Z.; Vollrath, F. Materials: Surprising strength of silkworm silk. Nature 2002, 418, 741. [Google Scholar] [CrossRef]
- Vollrath, F.; Knight, D.P. Liquid crystalline spinning of spider silk. Nature 2001, 410, 541–548. [Google Scholar] [CrossRef]
- Vehoff, T.; Glišović, A.; Schollmeyer, H.; Zippelius, A.; Salditt, T. Mechanical properties of spider dragline silk: Humidity, hysteresis, and relaxation. Biophys. J. 2007, 93, 4425–4432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackledge, T.A.; Hayashi, C.Y. Silken toolkits: Biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775). J. Exp. Biol. 2006, 209, 2452–2461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fratzl, P.; Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 2007, 52, 1263–1334. [Google Scholar] [CrossRef] [Green Version]
- Yarger, J.L.; Cherry, B.R.; van der Vaart, A. Uncovering the structure-function relationship in spider silk. Nat. Rev. Mater. 2018, 3, 18008. [Google Scholar] [CrossRef]
- Du, N.; Liu, X.Y.; Narayanan, J.; Li, L.; Lim, M.L.M.; Li, D.Q. Design of superior spider silk: From nanostructure to mechanical properties. Biophys. J. 2006, 91, 4528–4535. [Google Scholar] [CrossRef] [Green Version]
- Van Beek, J.D.; Hess, S.; Vollrath, F.; Meier, B.H. The molecular structure of spider dragline silk: Folding and orientation of the protein backbone. Proc. Natl. Acad. Sci. USA 2002, 99, 10266–10271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, C.Y.; Shipley, N.H.; Lewis, R.V. Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int. J. Biol. Macromol. 1999, 24, 271–275. [Google Scholar] [CrossRef]
- Rammensee, S.; Slotta, U.; Scheibel, T.; Bausch, A.R. Assembly mechanism of recombinant spider silk proteins. Proc. Natl. Acad. Sci. USA 2008, 105, 6590–6595. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.M.; Yao, H.M.; Ortiz, C.; Xu, J.Q.; Dao, M. Bio-inspired interfacial strengthening strategy through geometrically interlocking designs. J. Mech. Behav. Biomed. Mater. 2012, 15, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Hing, K.A. Bone repair in the twenty–first century: Biology, chemistry or engineering? Philos. Trans. A Math. Phys. Eng. Sci. 2004, 362, 2821–2850. [Google Scholar] [CrossRef] [PubMed]
- Glimcher, M.J. Bone: Nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation. Rev. Mineral. Geochem. 2006, 64, 223–282. [Google Scholar] [CrossRef]
- Zhu, L.S.; Luo, D.; Liu, Y. Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. Int. J. Oral Sci. 2020, 12, 6. [Google Scholar] [CrossRef] [Green Version]
- Blob, R.W.; Snelgrove, J.M. Antler stiffness in moose (Alces alces): Correlated evolution of bone function and material properties? J. Morphol. 2006, 267, 1075–1086. [Google Scholar] [CrossRef]
- Yaraghi, N.A.; Guarín-Zapata, N.; Grunenfelder, L.K.; Hintsala, E.; Bhowmick, S.; Hiller, J.M.; Betts, M.; Principe, E.L.; Jung, J.-Y.; Sheppard, L.; et al. A sinusoidally architected helicoidal biocomposite. Adv. Mater. 2016, 28, 6835–6844. [Google Scholar] [CrossRef] [Green Version]
- Li, X.D.; Nardi, P. Micro/nanomechanical characterization of a natural nanocomposite material—The shell of Pectinidae. Nanotechnology 2004, 15, 211–217. [Google Scholar] [CrossRef]
- Ling, S.J.; Kaplan, D.L.; Buehler, M.J. Nanofibrils in nature and materials engineering. Nat. Rev. Mater. 2018, 3, 18016. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.X.; Dai, G.Z.; Xu, Y.L.; Iwamoto, M. Optimal composite structures in the forewings of beetles. Compos. Struct. 2007, 81, 432–437. [Google Scholar] [CrossRef]
- Yang, R.G.; Zaheri, A.; Gao, W.; Hayashi, C.; Espinosa, H.D. AFM identification of beetle exocuticle: Bouligand structure and nanofiber anisotropic elastic properties. Adv. Funct. Mater. 2017, 27, 1603993. [Google Scholar] [CrossRef]
- Chen, J.X.; Zu, Q.; Wu, G.; Xie, J.; Tuo, W.Y. Review of beetle forewing structures and their biomimetic applications in China: (II) On the three-dimensional structure, modeling and imitation. Mater. Sci. Eng. C 2015, 55, 620–633. [Google Scholar] [CrossRef] [PubMed]
- Rivera, J.; Hosseini, M.S.; Restrepo, D.; Murata, S.; Vasile, D.; Parkinson, D.Y.; Barnard, H.S.; Arakaki, A.; Zavattieri, P.; Kisailus, D. Toughening mechanisms of the elytra of the diabolical ironclad beetle. Nature 2020, 586, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Chao, C.; McKittrick, J. Axial compression of a hollow cylinder filled with foam: A study of porcupine quills. Acta Biomater. 2013, 9, 5297–5304. [Google Scholar] [CrossRef]
- Seki, Y.; Bodde, S.G.; Meyers, M.A. Toucan and hornbill beaks: A comparative study. Acta Biomater. 2010, 6, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.J.; Zhang, B.J.; Niu, S.C.; Zhang, Z.Y.; Song, W.D.; Wang, Y.F.; Zhang, S.; Li, B.; Mu, Z.Z.; Han, Z.W.; et al. Porous morphology and graded materials endow hedgehog spines with impact resistance and structural stability. Acta Biomater. 2022, 147, 91–101. [Google Scholar] [CrossRef]
- Seki, Y.; Schneider, M.S.; Meyers, M.A. Structure and mechanical behavior of a toucan beak. Acta Mater. 2005, 53, 5281–5296. [Google Scholar] [CrossRef]
- Lingham-Soliar, T.; Murugan, N. A new helical crossed-fibre structure of β-keratin in flight feathers and its biomechanical implications. PLoS ONE 2013, 8, e65849. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Meyers, M.A. Light like a feather: A fibrous natural composite with a shape changing from round to square. Adv. Sci. 2017, 4, 1600360. [Google Scholar] [CrossRef]
- Wang, B.; Meyers, M.A. Seagull feather shaft: Correlation between structure and mechanical response. Acta Biomater. 2017, 48, 270–288. [Google Scholar] [CrossRef]
- Lingham-Soliar, T.; Bonser, R.H.C.; Wesley-Smith, J. Selective biodegradation of keratin matrix in feather rachis reveals classic bioengineering. Proc. R. Soc. B. 2010, 277, 1161–1168. [Google Scholar] [CrossRef] [Green Version]
- McKittrick, J.; Chen, P.-Y.; Bodde, S.G.; Yang, W.; Novitskaya, E.E.; Meyers, M.A. The structure, functions, and mechanical properties of keratin. JOM 2012, 64, 449–468. [Google Scholar] [CrossRef]
- Bodde, S.G.; Meyers, M.A.; McKittrick, J. Correlation of the mechanical and structural properties of cortical rachis keratin of rectrices of the Toco Toucan (Ramphastos toco). J. Mech. Behav. Biomed. Mater. 2011, 4, 723–732. [Google Scholar] [CrossRef]
- Lingham-Soliar, T. Feather structure, biomechanics and biomimetics: The incredible lightness of being. J. Ornithol. 2014, 155, 323–336. [Google Scholar] [CrossRef]
- Sullivan, T.N.; Hung, T.-T.; Velasco-Hogan, A.; Meyers, M.A. Bioinspired avian feather designs. Mater. Sci. Eng. C 2019, 105, 110066. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.H.; Ye, C.; Zhang, W.W.; Xu, A.C.; Chen, S.X.; Ren, J.; Ling, S.J. Nanofibril organization in silk fiber as inspiration for ductile and damage-tolerant fiber design. Adv. Fiber Mater. 2019, 1, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.Q.; Yu, K.Q.; Li, J.T.; Leng, X.Q.; Wang, M.L.; Zhang, X.S.; An, B.G.; Fei, B.; Wei, W.; Zhuang, H.C.; et al. Spider silk supercontraction-inspired cotton-hydrogel self-adapting textiles. Adv. Fiber Mater. 2022, 4, 1572–1583. [Google Scholar] [CrossRef]
- Guo, J.H.; Zhang, H.; Zhang, H.; Chen, H.X.; Gu, Z.; Zhang, D.G.; Zhao, Y.J. Jellyfish tentacle-inspired hydrogel microfibers implanted with discrete structural color microsphere tactile sensing units. Adv. Fiber Mater. 2022, 4, 1209–1218. [Google Scholar] [CrossRef]
- Cai, Z.-B.; Li, Z.-Y.; Ding, Y.; Zheng, J.; Liu, J.-H.; Zhou, Z.-R. Preparation and impact resistance performance of bionic sandwich structure inspired from beetle forewing. Compos. Part B-Eng. 2019, 161, 490–501. [Google Scholar] [CrossRef]
- He, C.L.; Chen, J.X.; Wu, Z.S.; Xie, J.; Zu, Q.; Lu, Y. Simulated effect on the compressive and shear mechanical properties of bionic integrated honeycomb plates. Mater. Sci. Eng. C 2015, 50, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Abo Sabah, S.H.; Kueh, A.B.H.; Al-Fasih, M.Y. Comparative low-velocity impact behavior of bio-inspired and conventional sandwich composite beams. Compos. Sci. Technol. 2017, 149, 64–74. [Google Scholar] [CrossRef]
- Shahbazi, M.-A.; Ghalkhani, M.; Maleki, H. Directional freeze-casting: A bioinspired method to assemble multifunctional aligned porous structures for advanced applications. Adv. Eng. Mater. 2020, 22, 2000033. [Google Scholar] [CrossRef]
- Khoury, R.E.; Nagiah, N.; Mudloff, J.A.; Thakur, V.; Chattopadhyay, M.; Joddar, B. 3D bioprinted spheroidal droplets for engineering the heterocellular coupling between cardiomyocytes and cardiac fibroblasts. Cyborg Bionic Syst. 2021, 2021, 9864212. [Google Scholar] [CrossRef] [PubMed]
- Louis, F.; Piantino, M.; Liu, H.; Kang, D.H.; Sowa, Y.; Kitano, S.; Matsusaki, M. Bioprinted vascularized mature adipose tissue with collagen microfibers for soft tissue regeneration. Cyborg Bionic Syst. 2021, 2021, 1412542. [Google Scholar] [CrossRef]
- Liu, R.; Yao, G.; Xu, Z.; Guo, X.; Li, J.; Yu, Z.; Liang, P.; Zhang, Z.; Han, C. Mechanical characteristics analysis of 3d-printing novel chiral honeycomb array structures based on functional principle and constitutive relationship. J. Bionic Eng. 2023. [Google Scholar] [CrossRef]
- van der Elst, L.; Faccini de Lima, C.; Gokce Kurtoglu, M.; Koraganji, V.N.; Zheng, M.; Gumennik, A. 3D Printing in fiber-device technology. Adv. Fiber Mater. 2021, 3, 59–75. [Google Scholar] [CrossRef]
- Zhang, B.J.; Han, Q.G.; Qin, H.L.; Zhang, J.Q.; Niu, S.C.; Han, Z.W.; Ren, L.Q. Bending resistance and anisotropy of basalt fibers laminate composite with bionic helical structure. J. Bionic Eng. 2022, 19, 799–815. [Google Scholar] [CrossRef]
- Han, Q.G.; Shi, S.Q.; Liu, Z.H.; Han, Z.W.; Niu, S.C.; Zhang, J.Q.; Qin, H.L.; Sun, Y.B.; Wang, J.H. Study on impact resistance behaviors of a novel composite laminate with basalt fiber for helical-sinusoidal bionic structure of dactyl club of mantis shrimp. Compos. Part B-Eng. 2020, 191, 107976. [Google Scholar] [CrossRef]
- Wang, Y.F.; Mu, Z.Z.; Zhang, Z.Y.; Song, W.D.; Zhang, S.; Hu, H.D.; Ma, Z.; Huang, L.W.; Zhang, D.S.; Wang, Z.; et al. Interfacial reinforced carbon fiber composites inspired by biological interlocking structure. iScience 2022, 25, 104066. [Google Scholar] [CrossRef]
- Song, W.D.; Chen, Y.; Mu, Z.Z.; Wang, Y.F.; Zhang, Z.Y.; Wang, Z.; Liu, L.P.; Zhang, B.J.; Li, Y.J.; Li, B.; et al. A feather-inspired interleaf for enhanced interlaminar fracture toughness of carbon fiber reinforced polymer composites. Compos. Part B-Eng. 2022, 236, 109827. [Google Scholar] [CrossRef]
- Song, P.A.; Xu, Z.G.; Dargusch, M.S.; Chen, Z.-G.; Wang, H.; Guo, Q.P. Granular nanostructure: A facile biomimetic strategy for the design of supertough polymeric materials with high ductility and strength. Adv. Mater. 2017, 29, 1704661. [Google Scholar] [CrossRef]
- Seo, S.; Lee, D.W.; Ahn, J.S.; Cunha, K.; Filippidi, E.; Ju, S.W.; Shin, E.; Kim, B.-S.; Levine, Z.A.; Lins, R.D.; et al. Significant performance enhancement of polymer resins by bioinspired dynamic bonding. Adv. Mater. 2017, 29, 1703026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Mu, Z.; Wang, Y.; Song, W.; Yu, H.; Zhang, S.; Li, Y.; Niu, S.; Han, Z.; Ren, L. Lightweight Structural Biomaterials with Excellent Mechanical Performance: A Review. Biomimetics 2023, 8, 153. https://doi.org/10.3390/biomimetics8020153
Zhang Z, Mu Z, Wang Y, Song W, Yu H, Zhang S, Li Y, Niu S, Han Z, Ren L. Lightweight Structural Biomaterials with Excellent Mechanical Performance: A Review. Biomimetics. 2023; 8(2):153. https://doi.org/10.3390/biomimetics8020153
Chicago/Turabian StyleZhang, Zhiyan, Zhengzhi Mu, Yufei Wang, Wenda Song, Hexuan Yu, Shuang Zhang, Yujiao Li, Shichao Niu, Zhiwu Han, and Luquan Ren. 2023. "Lightweight Structural Biomaterials with Excellent Mechanical Performance: A Review" Biomimetics 8, no. 2: 153. https://doi.org/10.3390/biomimetics8020153
APA StyleZhang, Z., Mu, Z., Wang, Y., Song, W., Yu, H., Zhang, S., Li, Y., Niu, S., Han, Z., & Ren, L. (2023). Lightweight Structural Biomaterials with Excellent Mechanical Performance: A Review. Biomimetics, 8(2), 153. https://doi.org/10.3390/biomimetics8020153