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Abstract: Many pivotal and knotty engineering problems in practical applications boil down to
optimization problems, which are difficult to resolve using traditional mathematical optimization
methods. Metaheuristics are efficient algorithms for solving complex optimization problems while
keeping computational costs reasonable. The carnivorous plant algorithm (CPA) is a newly proposed
metaheuristic algorithm, inspired by its foraging strategies of attraction, capture, digestion, and repro-
duction. However, the CPA is not without its shortcomings. In this paper, an enhanced multistrategy
carnivorous plant algorithm called the UCDCPA is developed. In the proposed framework, a good
point set, Cauchy mutation, and differential evolution are introduced to increase the algorithm’s
calculation precision and convergence speed as well as heighten the diversity of the population
and avoid becoming trapped in local optima. The superiority and practicability of the UCDCPA
are illustrated by comparing its experimental results with several algorithms against the CEC2014
and CEC2017 benchmark functions, and five engineering designs. Additionally, the results of the
experiment are analyzed again from a statistical point of view using the Friedman and Wilcoxon
rank-sum tests. The findings show that these introduced strategies provide some improvements in
the performance of the CPA, and the accuracy and stability of the optimization results provided by
the proposed UCDCPA are competitive against all algorithms. To conclude, the proposed UCDCPA
offers a good alternative to solving optimization issues.

Keywords: carnivorous plant algorithm; good point set; Cauchy mutation; differential evolution;
engineering design

1. Introduction

Recently, as technologies such as artificial intelligence, engineering design, urban
transport planning, complex networks, and data processing have continued to develop,
people are being faced with increasingly complex optimization problems [1,2]. It is very
difficult and time-consuming to solve these problems with numerous variables and con-
straints because most optimization problems [3–5] in the real world have the following
characteristics: large amounts of calculation, nonlinear constraints, nonconvexity, and a
large and complex solution space [6]. Traditional optimization methods often struggle to
solve these complex optimization problems and metaheuristic optimization algorithms
have been introduced to overcome them [7]. These algorithms are capable of solving
such complex problems in an iterative process. The low computational cost, flexibility,
and simplicity of such algorithms have led to an increased interest among researchers in
developing metaheuristic algorithms. Single-solution and population-based algorithms are
the two broad groups into which metaheuristic algorithms fall. A single-solution algorithm
creates a random solution and refines it until the best outcome is achieved; population-
based algorithms produce a random collection of solutions and update those solutions
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throughout the course of iterations until the optimal answer is discovered. For a given
problem, a single-solution-based algorithm may fall into a local optimum and thus fail to
find the global optimum because it only generates and updates a random set of solutions.
In contrast, population-based algorithms can find the global optimal solution by relying on
information sharing because they generate a set of solutions, and they can eliminate local
optimization. Therefore, population-based algorithms have become the focus of current
research. Population-based algorithms can be divided into four categories [8]. They are
based on evolution theory, natural phenomena, human activities, and swarm intelligence.

The evolutionary processes of reproduction, mutation, recombination, and selection
serve as the basis for evolutionary algorithms. The genetic algorithm (GA) [9], one of
the evolutionary theory-based algorithms, determines the best population by evolving
the search space of a candidate population; the differential evolution algorithm (DE) [10]
only requires a few simple control variables; and the symbiotic organism search (SOS)
algorithm [11] imitates the symbiotic interaction tactics used by organisms in an ecosystem
to survive and procreate.

Inspiration from natural phenomena can be divided into physics, chemistry, and
biology. Physical laws such as gravity, electromagnetic force, inertia force, the heating and
cooling of materials, etc., serve as inspiration for algorithms based on physical laws, such
as the water cycle algorithm (WCA) [12], the multiverse optimizer (MVO) [13], and the
black hole algorithm (BHO) [14], which simulates the attraction and absorption phenomena
of black holes. Thermal diffusion served as an inspiration for simulated annealing (SA) [15].
The gravitational search algorithm (GSA) [16] is a recent algorithm that has been inspired
by the Newtonian law of gravity and motion. Inspired by chemical reactions, the chemical
reaction optimization algorithm (CRO) [17] recreates the chemical reaction of molecular
interactions by reaching a low-energy stable state in the CRO. In terms of biology, based
on the growth, division, and competition of bacteria in nature, Yang [18] suggested a
network division approach. This method provides a uniform network divided into general
processes. It is vital for the workload balance node.

Intelligent algorithms based on human activities include harmony search (HS) [19],
teaching–learning-based optimization (TLBO) [20], and imperialist competition algorithm
(ICA) [21]. All of these algorithms have their roots in human activities such as guitar tuning,
educational practices, and imperial colonialism.

The swarm intelligence (SI) optimization method is a solution algorithm that was de-
veloped in accordance with the behavioral norms, survival criteria, and other mechanisms
underlying the cooperative behavior of organisms or communities in nature. Because of its
great effectiveness, straightforward structure, and straightforward execution, it has drawn
the interest and research of many academics. Ant colony optimization (ACO) [22] is the SI
optimization technique that best represents the field. There are many other algorithms such
as the particle swarm optimization (PSO) [23], the gray wolf optimizer (GWO) [24], the sine
cosine algorithm (SCA) [25], the whale optimization algorithm (WOA) [26], the moth–flame
optimization algorithm (MFO) [27], hawks optimization (HHO) [28], the carnivorous plant
algorithm (CPA) [29], and so on. Through information sharing and population cooperation,
these algorithms encourage the evolution of the population toward the overall optimal
goal. They simulate the foraging behavior of various populations and update individual
behavior in a specific random manner. The application of intelligent algorithms is also
extensive [30–32].

The CPA is a swarm intelligence optimization algorithm. The design of the CPA
is inspired by carnivorous plants in nature. A model of the CPA was constructed by
simulating the processes of predation, growth, and reproduction of carnivorous plants.
When it comes to addressing frequent and complex optimization problems in a variety of
sectors, the CPA algorithm has more clear advantages than other metaheuristic algorithms.
However, the CPA method has several drawbacks, as do other optimization techniques.
One of the CPA’s biggest drawbacks is that it tends to fall into local optimization and is not
very good at exploring the search space.
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This research proposes an enhanced CPA named UCDCPA, which enhances the
performance and accuracy of the CPA. (1) The initial definition of the algorithm population
by using the uniform initialization strategy of a good point set can effectively improve
the uniformity of the distribution of the initial population, increase the effective area
covered by the initial population in the whole feasible region, and increase the algorithm’s
calculation precision and convergence speed. (2) The Cauchy mutation strategy is used
for the initial population, which can increase the diversity of the initial population and
reduce the probability of the leading offspring of the initial population falling into the local
optimal solution. (3) Differential evolution is performed on the mixed population in the
CPA algorithm. This enhances population variety, gives the algorithm mutation, crossover,
and selection processes, and effectively lowers the likelihood that the algorithm would
enter local optimization. The main contributions of this study are as follows:

• An enhanced CPA named UCDCPA is proposed. Three efficient strategies, i.e., good
point set, Cauchy mutation, and differential evolution are applied to the UCDCPA to
tackle the complex optimization tasks effectively.

• The performance of the UCDCPA is checked against the CEC2014 [33] and CEC2017 [34]
test functions. The experimental results are compared with state-of-the-art algorithms,
and some statistical analysis is carried out.

• The UCDCPA is applied to five classical engineering design problems. Specifically,
pressure vessel design problems, welded beam design problems, tension/compression
spring design (TCSD) problems, compound gear design problems, and cantilever
structure problems. At the same time, some advanced algorithms are selected to
compare their performance with the UCDCPA.

The remainder of the essay is structured as follows: The CPA algorithm is described in
Section 2. The UCDCPA method is thoroughly explained in Section 3. In Section 4, real-
world engineering optimization issues and numerical tests are used to demonstrate how
well the UCDCPA performs in optimization. Finally, a brief summary of the information
presented in this article is given and the next line of research is discussed.

2. Overview of the CPA

The CPA [29] simulates the process of predation by carnivorous plants, including
the process through which carnivorous plants attract, capture, digest, and reproduce.
The CPA starts by randomly initializing a set of solutions and divides the solutions into
carnivorous plants and prey, then iterates according to the growth and reproduction
process, and updates the fitness value in real time. The algorithm circulates the growth
and reproduction process until the criteria for termination are satisfied. Each process is
described in the following subsections.

2.1. Initialization

The CPA initializes a population with n individuals divided into carnivorous plants
and prey as nCPlant and nPrey, respectively. Each individual is randomly initialized by
Equation (1).

Individuali,j = Lbj + (Ubj − Lbj)× rand (1)

where Ubj, Lbj is the upper bound and lower bound of the j-th dimension of the individual,
respectively, and rand is a random number in the range of [0,1].

A predetermined fitness function assesses each person’s fitness and the calculated
fitness value is saved.

2.2. Classification and Grouping

The individuals are arranged in ascending order according to their fitness values (for
the minimization problem). The first nCPlant individuals, after ranking, are carnivorous
plant CP, and the remaining nPrey individuals were prey.
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The top-ranked carnivorous plant receives the prey with the highest fitness value dur-
ing the grouping phase. The second and third-ranked carnivorous plants, respectively, are
given the second and third-ranked prey. The process is repeated until the carnivorous plant
ranked nCPlant is assigned the prey ranked nCPlant. The visualization of the carnivorous
plants and the prey is presented in Figure 1. On the left side of the picture, there are three
different levels of prey, representing individuals of different qualities. The right side of the
figure shows the grouping process of the algorithm.
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Figure 1. The grouping process of the CPA.

2.3. Growth (Exploration)

Because of energy demand, carnivorous plants draw, capture, and consume prey. Prey
are attracted by the plant’s aroma, but occasionally succeed in escaping the carnivorous
plant’s control. As a result, an attraction rate is offered here.

Prey must be chosen at random by each group. The prey is caught and devoured by
the carnivorous plant for growth if the attraction rate surpasses the random number of
[0–1]. The model is as the following:

NewCPi,j = growth× CPi,j + (1− growth)× Preyv,j (2)

growth = growth_rate× rand (3)

where CPi,j refers to the carnivorous plant in rank i, and Preyv,j is a randomly selected prey
in group i. The attraction rate in the CPA is assigned as 0.8 for most cases.

Otherwise, if the attraction rate is smaller, the prey will be able to avoid the trap
and survive.

NewPreyi,j = growth× Preyu,j + (1− growth)× Preyv,j u 6= v (4)

growth =

{
growth_rate× rand f (Preyv) > f (Preyu)

1− growth_rate× rand f (Preyv) < f (Preyu)
(5)

where Preyu,j is another randomly selected prey in the ith group. The growth process is
repeated until it meets termination conditions.
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2.4. Reproduction (Exploitation)

Only the best carnivorous plants in the CPA were permitted to procreate. This is
to make sure that the CPA algorithm’s exploitation is focused on the best solution. The
reproduction is described as follows:

NewCPi,j = CP1,j + Reproduction_rate× rand×matei,j (6)

matei,j =

{
CPv,j − CPi,j f (CPi) > f (CPv)

CPi,j − CPv,j f (CPi) < f (CPv)
, i 6= v 6= 1 (7)

where CP1,j is the current best solution. During the reproduction process, the v is selected
randomly for each dimension j.

2.5. Fitness Update and Combine the Population

A new group with a dimension is created when the newly formed population combines
with the previous population. According to fitness values, the members of the new group
are sorted in ascending order, and the top n individuals from the sorted group are chosen
as new candidate solutions. This elitist selection approach makes sure that better solutions
are chosen to be replicated in the following generation.

3. Improved Carnivorous Plant Algorithm

An enhanced carnivorous plant algorithm (UCDCPA) is proposed to enhance the
CPA’s performance using three additional strategies: good point set uniform initialization,
Cauchy mutation, and differential evolution. Firstly, the introduction of a good point set
uniform initialization strategy improves the uniformity of initial population distribution
and increases the effective area covered by the initial population in the whole feasible region.
Secondly, a Cauchy mutation provides various opportunities for the initial population,
increases the diversity of the initial population, and reduces the probability of the leading
offspring of the initial population falling into the local optimal solution. Last but not
least, the concept of differential evolution primarily addresses the issue that the CPA
subgeneration population is prone to local optimization, offers mutation, crossover, and
selection operations, and enhances the algorithm’s capacity to exit local optimization.

3.1. Good Point Set Uniform Initialization

The initial population in the CPA is produced at random, which theoretically has a
uniform distribution; however, the distribution in the search space cannot be guaranteed to
be uniform due to the impact of population size. The point set produced by the good point
set method [35] has a greater distribution range and a low individual repetition rate, and it
is equally dispersed over the search space. The good point set method can obtain a more
stable, uniform, and wide initial population. The specific steps are as follows:

Step 1: Given that the size of the population is n, and d is the dimension of the problem.

rj = ej, 1 ≤ j ≤ d (8)

Step 2: Based on Step 1, the points generated by the set of good points can be expressed
as follows:

ri,j = i ·
⌊
i · rj

⌋
(9)

Step 3: Introduce the good point set into population initialization, then the position of
the individual is:

Individuali,j = Lbj + ri,j(Ubj − Lbj) (10)

where 1 ≤ j ≤ d, i = 1, 2, ..., n.
Figure 2 depicts the distribution of coordinate points created in two-dimensional space

using the random methods and the good point set method, and the number of coordinate
points is 1000. Figure 2 shows that the coordinate points created by the good point set
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are more evenly distributed and there is no repetition, so the quality of the generated
coordinate points is better.
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3.2. Cauchy Mutation

To extend the diversity of the population, the Cauchy mutation operation is carried out
on the initial population so that the initial population can achieve a wider search range and
improve the global optimization ability. The specific process of the Cauchy mutation [36] is
as follows.

Cauchy mutation is based on the Cauchy probability density function, as described by
Equation (11):

g(x; x0, γ) =
1

πγ[1 + ( x−x0
γ )

2
]

(11)

where x0 is a positional parameter, γ is a random variable larger than 0, and x is a real
number. In this article, x0 = 0 and γ = 1. This is the standard Cauchy distribution. By
analyzing its probability density function, it can be seen that it has no specific mean and
variance, but its mode and median are equal to the position parameter x0. The distribution
function is shown in Equation (12):

G(x) =
1
2
+

1
π

arctan(x) (12)

The Cauchy distribution is more uniform than the normal distribution, and the maxi-
mum value of the symmetry axis is gentler than the Gaussian distribution. Such distribution
characteristics allow the Cauchy distribution to have great dispersion characteristics. The
Cauchy mutation formula added in this paper is shown in Equations (13) and (14):

Xibest = Xi + Xi × G(x) (13)

Xi =

{
Xibest, f (Xibest)< f (Xi)

Xi, f (Xibest)≥ f (Xi)
(14)

3.3. Differential Evolution Theory

Differential evolution [10] is added to the CPA because the way that the CPA algorithm
updates the population completely relies on the previous generation of individuals, and



Biomimetics 2023, 8, 162 7 of 40

does not use the location information of the current generation of individuals. The specific
steps of differential evolution are as follows:

3.3.1. Operation of Mutation

Randomly select three individuals Xg
a , Xg

b , Xg
c , and the variation vector is generated by

Equation (15)
Vg

i = Xg
a + F · (Xg

b − Xg
c ) (15)

where F ∈ [0, 2] is the scale factor.

3.3.2. Cross Operation

The cross vector is generated by Equation (16)

Ug
i,j =

{
Vg

i,j, i f (rand ≤ CR, or, j = randi(n))
Xg

i,j, otherwise
, j = 1, 2, · · · , d (16)

where CR is the cross rate, and randi(n) is a random integer of [1–N].

3.3.3. Survival Criterion (Greedy Choice)

The vector with a better objective function value between the cross vector Ug
i and Xg

i

will be used as the next-generation objective vector Xg+1
i .

Xg+1
i =

{
Ug

i , f (Ug
i ) ≤ f (Xg

i )
Xg

i , f (Ug
i ) > f (Xg

i )
(17)

3.4. Detailed Description of the UCDCPA

By introducing good point set uniform initialization, Cauchy mutation, and differential
evolution strategies into the CPA, the performance can be effectively improved. The
following are the specific UCDCPA steps:

Step 1: Define the parameters of the UCDCPA.
Step 2: According to Equation (10), initialize the population.
Step 3: According to Equations (12)–(14), the Cauchy mutation is carried out on the

initial population and the best one was selected for replacement.
Step 4: If the stop criteria are not met, loop through the following operations; otherwise,

end the program.
Step 5: Classify and group the populations obtained after the Cauchy mutation in

Step 3. Rank individuals according to fitness values. The former nCPlant individuals after
the arrangement are regarded as carnivorous plants, and the remaining nPrey individuals
are regarded as prey. The carnivorous plant ranked first in the grouping process receives
the prey with the highest fitness value, and so on.

Step 6: If the attraction rate is greater than the generated random number, a new
carnivorous plant individual is obtained according to Equations (2) and (3). On the contrary,
new prey are generated according to Equations (4) and (5).

Step 7: The first carnivorous plant propagates its offspring according to Equations (6)
and (7).

Step 8: Mix and sort the original population with the new population. Then, select the
top n individuals as the new population.

Step 9: Three individuals, Xg
a , Xg

b , Xg
c , are randomly selected from the new species

group, and the variation vector Vg
i is obtained according to Equation (15).

Step 10: If r is less than the CR, or if j is a random integer equal to 1–n, cross vector
Ug

i,j = Vg
i,j, otherwise Ug

i,j = Xg
i,j.

Step 11: Greedy selection of cross vector Ug
i and current target vector Xg

i . Then go to
Step 4.
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The pseudo-code and the flow chart for the UCDCPA are given by Algorithm 1 and
Figure 3, respectively.

Algorithm 1: The Pseudo code of the UCDCPA

1. Define the parameters of the algorithm.
2. Initialize a population of n individuals with d dimension randomly using Equations (8)–(10).
3. A Cauchy mutation is performed on the initial population according to Equations (12)–(14).
4. Sort the individuals by fitness value, and identify the best individual as g*.
5. Repeat until the stopping condition is met.
6. Classification and grouping of population individuals.
7. for i = 1:nCPlant
8. for Group_cycle = 1:group_iter
9. if attraction_rate > rand
10. Equation (2)
11. else
12. Equation (4)
13. end for
14. end for
15. for i = 1:nCPlant
16. Equation (6)
17. end for
18. Evaluate the fitness of new individuals and combine the old and new populations
19. Sort the individuals and select the top n-ranked individuals for the next generation.
20. Differential evolution is carried out on the newly regenerated population by using
21. Equations (15)–(17).
22. Identify the current best individual g*.
23. end while.
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4. Numerical Experiment and Analysis

This section applies the UCDCPA algorithm to a set of test functions and demonstrates
its superiority using several assessment indicators to prove the efficacy and stability of
the UCDCPA algorithm in solving a variety of problems. The population is limited to
30, and there can be a maximum of 500 iterations. On test functions, each algorithm was
executed 30 times. The operating environment is “Matlab 9.3.0.713579 on a 7th Gen Intel(R)
Core(TM) i5-7200U CPU @ 2.50 GHz 2.71 GHz with 16 GB of RAM”.

Test functions are employed in this part to assess the UCDCPA’s performance. First,
the CEC2014 test function [33] was tested. Second, to make the experimental results more
persuasive, a test on the CEC2017 test function [34] is introduced to lessen the experiment’s
randomness and contingency.

4.1. Parameter Setting

To assess the benefits and drawbacks of the UCDCPA, it is necessary to compare it
with the CPA [29] and other representative algorithms, such as the arithmetic optimization
algorithm [35], the coati optimization algorithm (COA) [36], the circle search algorithm
(CSA) [37], COOT, the golden jackal optimization (GJO) algorithm [38], the rat swarm
optimizer (RSO) [39], and the snake optimizer (SO) [40]. Some of the above algorithms’
parameter settings are presented in Table 1, while others have the same parameters as those
found in the relevant literature.

Table 1. Algorithm parameter setting.

Algorithm Parameter Set Value

SSA Proportion of producers P_percent = 0.2

CPA Each rate setting
attraction_rate = 0.8

growth_rate = 2
reproduction_rate = 1.8

UCDCPA
Variation rate F = 0.5× 2× exp(1− Gm

Gm+1−G )
Cross rate CR = 0.9

4.2. Comparison of UCDCPA and Other Algorithms

To evaluate the effectiveness of the proposed UCDCPA and study the impact of good
point set uniform initialization, Cauchy mutation, and differential evolution strategy on
the CPA, UCDCPA, and CPA [29], the arithmetic optimization algorithm [35], the coati
optimization algorithm (COA) [36], the circle search algorithm (CSA) [37], COOT, the
golden jackal optimization (GJO) algorithm [38], the rat swarm optimizer (RSO) [39], and
the snake optimizer (SO) [40] were compared.

Firstly, the performance of the UCDCPA and each algorithm was tested against the
CEC2014 benchmark function. All algorithms make use of the same experimental param-
eters. The population is limited to 30, the problem’s dimension is 30, and there can be a
maximum of 500 iterations. On test functions, each algorithm was executed 30 times. The
test results for each algorithm based on the CEC2014 test function are shown in Table 2,
which includes the best value, mean value, standard deviation (Std), and rank. The rank
is given by the mean value and Std. First, the mean value is compared. When the mean
value is the same, compare the Std. Items with smaller values have priority. The results are
given according to the average rank of each algorithm. The end row of Table 2 displays
the statistical outcomes of the Wilcoxon rank-sum test (significance level is 0.05) used to
compare the other eight UCDCPA-based algorithms. “+” is the number of comparison
algorithms that benefited the UCDCPA in terms of statistics, “=“ denotes the number of
comparison algorithms that performed equally well, and “−” denotes other cases.
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Table 2. The results of each algorithm based on the CEC2014 test function set.

F Index
Algorithm

AOA COA CSA COOT GJO RSO SO CPA UCDCPA

F1

Best 1.9514E+09 1.5536E+09 1.5395E+09 1.3384E+09 8.9338E+09 1.6496E+09 6.0687E+09 1.3384E+09 1.3384E+09
Mean 2.1804E+09 1.8037E+09 1.7997E+09 1.3416E+09 9.9229E+09 1.8955E+09 6.2075E+09 1.3387E+09 1.3385E+09

Std 9.0926E+07 1.6225E+08 1.7284E+08 2.9883E+06 4.8937E+08 1.8298E+08 1.0778E+08 5.5732E+05 7.4499E+04
Rank 7 5 4 3 9 6 8 2 1

F2

Best 8.8122E+10 7.9635E+10 7.4658E+10 6.5317E+10 2.6807E+11 7.4235E+10 2.2424E+11 6.5325E+10 6.5324E+10
Mean 8.9885E+10 8.6069E+10 8.2928E+10 6.5317E+10 2.7781E+11 8.1317E+10 2.2602E+11 6.5340E+10 6.5335E+10

Std 1.0436E+09 3.5636E+09 4.3173E+09 4.0629E+02 4.6046E+09 3.5123E+09 1.4763E+09 1.2301E+07 6.7195E+06
Rank 7 6 5 1 9 4 8 3 2

F3

Best 7.8285E+04 7.1451E+04 6.3714E+04 5.4267E+04 2.7270E+05 7.0994E+04 2.3188E+05 5.4378E+04 5.4426E+04
Mean 8.5159E+04 7.9614E+04 7.5663E+04 6.0061E+04 2.8741E+05 7.6962E+04 2.4460E+05 5.6205E+04 5.7388E+04

Std 2.7135E+03 3.4274E+03 6.8448E+03 3.2032E+03 5.5788E+03 3.3212E+03 6.5889E+03 1.0904E+03 2.4630E+03
Rank 7 6 4 3 9 5 8 1 2

F4

Best 1.8941E+04 1.7133E+04 1.5770E+04 1.4415E+04 8.8229E+04 1.5961E+04 6.8574E+04 1.4415E+04 1.4415E+04
Mean 2.0624E+04 1.8901E+04 1.8105E+04 1.4421E+04 9.2630E+04 1.7664E+04 6.9590E+04 1.4417E+04 1.4416E+04

Std 7.5524E+02 9.9267E+02 1.1830E+03 6.8554E+00 2.3244E+03 8.7779E+02 6.8663E+02 1.8640E+00 1.0466E+00
Rank 7 6 5 3 9 4 8 2 1

F5

Best 520.85 5.21E+02 5.20E+02 520.11 520.93 520.71 521.33 520.94 520.89
Mean 521.00 5.21E+02 5.21E+02 520.54 521.37 521.02 521.39 521.07 521.03

Std 0.08 8.03E−02 3.07E−01 0.23 0.10 0.11 0.03 0.05 0.06
Rank 3 6 2 1 8 4 9 7 5

F6

Best 644.73 642.78 641.01 635.73 750.17 642.61 739.72 634.42 633.06
Mean 646.80 645.42 643.86 637.83 754.97 644.17 744.09 636.09 634.03

Std 0.96 1.14 1.76 1.49 1.74 0.92 1.56 0.94 0.50
Rank 7 6 4 3 9 5 8 2 1

F7

Best 1617.92 1460.07 1451.98 1430.41 3488.85 1540.79 3032.47 1430.46 1430.45
Mean 1650.31 1551.33 1557.37 1430.53 3559.75 1588.44 3050.75 1430.56 1430.49

Std 16.43 38.04 47.02 0.34 34.71 39.85 14.61 0.11 0.03
Rank 7 4 5 2 9 6 8 3 1

F8

Best 1124.28 1112.08 1009.86 967.87 1812.76 1063.44 1418.59 961.85 963.65
Mean 1161.42 1142.87 1080.79 982.72 1867.41 1108.18 1457.42 966.28 966.36

Std 18.94 10.73 38.60 11.22 30.18 19.77 19.49 1.53 1.29
Rank 7 6 4 3 9 5 8 1 2
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Table 2. Cont.

F Index
Algorithm

AOA COA CSA COOT GJO RSO SO CPA UCDCPA

F9

Best 1219.58 1246.68 1124.28 1080.42 1958.59 1183.55 1720.72 1064.84 1073.25
Mean 1264.48 1273.83 1176.37 1098.62 2080.52 1232.56 1795.39 1084.63 1082.07

Std 21.45 13.73 46.15 12.42 48.01 21.14 26.53 10.23 6.08
Rank 6 7 4 3 9 5 8 2 1

F10

Best 7644.20 8397.83 5607.98 4252.20 23,535.81 7926.79 16,452.52 4218.94 4144.42
Mean 8880.93 9035.39 6833.78 4804.01 25,043.01 8469.02 17,701.11 4420.90 4289.61

Std 515.89 345.36 761.04 309.82 807.52 248.72 684.07 182.88 114.29
Rank 6 7 4 3 9 5 8 2 1

F11

Best 8593.04 8622.52 6516.24 5151.18 21,583.81 8337.22 15,249.30 4955.96 4936.69
Mean 9575.61 9830.41 8029.47 5772.96 23,926.04 8959.48 16,580.37 5308.01 5206.60

Std 489.65 515.46 902.15 407.17 1062.96 307.49 677.47 197.94 176.11
Rank 6 7 4 3 9 5 8 2 1

F12

Best 1201.74 1202.22 1201.12 1200.26 1200.95 1201.49 1200.69 1200.03 1200.37
Mean 1202.65 1203.49 1202.80 1201.19 1201.87 1202.74 1202.12 1200.17 1202.72

Std 0.48 0.61 1.29 0.67 1.25 0.66 0.99 0.11 0.58
Rank 5 9 8 2 3 7 4 1 6

F13

Best 1309.54 1309.29 1308.77 1308.47 1309.05 1309.00 1308.23 1308.47 1308.47
Mean 1310.01 1309.73 1309.35 1308.47 1309.15 1309.43 1308.26 1308.48 1308.47

Std 0.15 0.23 0.27 0.00 0.06 0.28 0.02 0.00 0.00
Rank 9 8 6 2 5 7 1 4 3

F14

Best 1745.65 1708.54 1712.35 1685.40 2234.88 1723.59 2112.58 1685.43 1685.42
Mean 1763.24 1730.73 1733.38 1685.40 2256.98 1743.86 2118.71 1685.48 1685.46

Std 7.21 7.37 12.13 0.01 10.41 16.81 4.25 0.03 0.02
Rank 7 4 5 1 9 6 8 3 2

F15

Best 332,373.40 170,995.00 161,041.51 95,661.51 14,209,601.07 252,677.50 7,516,854.07 95,688.99 95,677.95
Mean 480,825.82 245,627.59 285,726.42 96,109.98 16,696,930.44 367,890.48 7,913,546.51 95,726.60 95,707.22

Std 74,855.30 49,660.44 77,446.38 1073.22 1,361,809.32 99,043.12 244,376.43 20.58 18.31
Rank 7 4 5 3 9 6 8 2 1

F16

Best 1613.58 1613.26 1613.04 1612.84 1645.74 1613.29 1646.47 1612.70 1612.97
Mean 1613.90 1613.82 1613.65 1613.46 1646.83 1613.56 1647.35 1613.14 1613.27

Std 0.16 0.18 0.26 0.22 0.72 0.13 0.38 0.21 0.12
Rank 7 6 5 3 8 4 9 1 2
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Table 2. Cont.

F Index
Algorithm

AOA COA CSA COOT GJO RSO SO CPA UCDCPA

F17

Best 4.27E+08 3.38E+08 3.38E+08 3.25E+08 1.79E+09 3.34E+08 1.48E+09 3.25E+08 3.25E+08
Mean 5.40E+08 3.99E+08 3.92E+08 3.25E+08 1.90E+09 3.69E+08 1.48E+09 3.25E+08 3.25E+08

Std 5.42E+07 2.54E+07 4.74E+07 4.47E+02 9.32E+07 2.33E+07 1.59E+07 7.40E+01 6.93E+01
Rank 7 6 5 3 9 4 8 2 1

F18

Best 1.1436E+10 1.0018E+10 1.0018E+10 1.0016E+10 4.0532E+10 1.0016E+10 3.9518E+10 1.0016E+10 1.0016E+10
Mean 1.2344E+10 1.1023E+10 1.0752E+10 1.0016E+10 4.2795E+10 1.0418E+10 3.9545E+10 1.0016E+10 1.0016E+10

Std 4.5746E+08 6.7397E+08 5.8952E+08 2.1281E+01 1.0419E+09 4.6019E+08 3.9749E+07 3.9205E+00 2.2977E+00
Rank 7 6 5 3 9 4 8 2 1

F19

Best 2479.35 2412.94 2388.13 2379.70 10,973.13 2392.06 10,241.85 2378.28 2378.01
Mean 2558.96 2495.82 2455.76 2381.06 11,640.88 2428.73 10,276.93 2379.43 2378.89

Std 43.80 45.65 46.06 1.09 320.71 34.17 33.56 0.60 0.42
Rank 7 6 5 3 9 4 8 2 1

F20

Best 8.8904E+08 6.9325E+08 6.9322E+08 6.9318E+08 6.6115E+05 6.9321E+08 2.7941E+05 6.9318E+08 6.9318E+08
Mean 1.2599E+09 8.6846E+08 7.9064E+08 6.9318E+08 8.5743E+05 7.2958E+08 3.1482E+05 6.9318E+08 6.9318E+08

Std 1.8284E+08 2.2780E+08 2.0671E+08 1.7719E+01 9.0647E+04 9.6233E+07 2.8322E+04 8.0687E+00 3.4602E+00
Rank 9 8 7 5 2 6 1 4 3

F21

Best 1.3358E+09 7.8918E+08 7.8918E+08 7.8918E+08 4.6016E+08 7.8918E+08 3.8403E+08 7.8918E+08 7.8918E+08
Mean 1.5792E+09 1.0404E+09 9.3176E+08 7.8918E+08 5.2214E+08 1.0254E+09 3.8548E+08 7.8918E+08 7.8918E+08

Std 1.3087E+08 1.9006E+08 1.5341E+08 4.0963E+02 3.7660E+07 2.4918E+08 2.7548E+06 1.5085E+02 1.2546E+02
Rank 9 8 6 5 2 7 1 4 3

F22

Best 1.8761E+06 1.2536E+06 1.2534E+06 1.2528E+06 3.8079E+05 1.2535E+06 3.6752E+05 1.2528E+06 1.2528E+06
Mean 2.4232E+06 1.5075E+06 1.4324E+06 1.2533E+06 4.6737E+05 1.3894E+06 3.6966E+05 1.2530E+06 1.2530E+06

Std 3.5813E+05 2.7838E+05 2.9168E+05 2.4260E+02 5.1250E+04 2.2597E+05 1.3882E+03 1.6331E+02 1.2373E+02
Rank 9 8 7 5 2 6 1 4 3

F23

Best 2500.00 2500.00 2517.34 2500.00 2500.00 2500.00 2500.00 2500.00 2500.00
Mean 2500.00 2500.00 2545.93 2500.00 2500.00 2500.00 2500.00 2500.01 2500.00

Std 0.00E+00 0 1.26E+01 2.21E−06 9.13E−13 0 2.07E−13 4.89E−03 2.96E−05
Rank 1 1 9 6 5 1 4 8 7

F24

Best 2600.00 2600.00 2600.25 2600.00 2600.01 2600.00 2600.00 2601.65 2600.50
Mean 2600.00 2600.00 2610.15 2602.02 2600.04 2600.00 2600.00 2604.32 2600.81

Std 1.15E−03 0.00E+00 4.51E+00 1.85E+00 2.15E−02 0.00E+00 4.47E−04 1.97E+00 2.07E−01
Rank 3 1 9 7 5 1 4 8 6
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Table 2. Cont.

F Index
Algorithm

AOA COA CSA COOT GJO RSO SO CPA UCDCPA

F25

Best 2700.00 2700.00 2700.38 2700.00 2700.00 2700.00 2700.00 2700.00 2700.00
Mean 2700.00 2700.00 2700.74 2700.00 2700.00 2700.00 2700.00 2700.00 2700.00

Std 0.00E+00 0.00E+00 1.59E−01 9.09E−10 1.83E−12 0.00E+00 2.23E−13 2.90E−04 1.47E−06
Rank 1 1 9 6 5 1 4 8 7

F26

Best 2800.00 2800.00 2800.01 2800.00 2800.00 2800.00 2800.00 2800.00 2800.00
Mean 2800.00 2800.00 2800.03 2800.00 2800.00 2800.00 2800.00 2800.01 2800.01

Std 0.00E+00 0.00E+00 1.44E−02 7.66E−12 1.30E−08 2.07E−13 6.00E−05 4.25E−03 3.46E−03
Rank 1 1 9 4 5 3 6 8 7

F27

Best 2900.00 2900.00 2959.45 2900.00 2900.00 2900.00 2900.00 2900.00 2900.00
Mean 2900.00 2900.00 3975.98 2900.00 2900.00 2900.00 2900.13 3021.24 2963.95

Std 0.00E+00 0.00E+00 1.63E+03 2.99E−09 7.83E−13 0.00E+00 7.31E−01 1.94E+02 4.19E+01
Rank 1 1 9 5 4 1 6 8 7

F28

Best 3000.00 3000.00 3069.40 3000.00 3000.00 3000.00 3000.00 3000.00 3000.00
Mean 3000.00 3000.00 4567.59 3000.00 3000.00 3000.00 3000.00 3209.08 3149.76

Std 0.00E+00 0.00E+00 2.23E+03 2.92E−09 2.02E−12 0.00E+00 2.57E−05 2.81E+02 8.02E+01
Rank 1 1 9 5 4 1 6 8 7

F29

Best 3.10E+03 3100 9,706,580.724 3100.00 3100 3100 3100 4177.03 3125.08
Mean 3.10E+03 3100 56,600,545.86 3100.00 3100 3100 3100 10,297.95 3201.08

Std 0.00E+00 0 15,192,070.38 5.21E−03 1.37E−07 0 3.38E−13 5467.43 80.62
Rank 1 1 9 6 5 1 4 8 7

F30

Best 3.20E+03 3200 2,064,310.154 3200 3200.000583 3200 3200 3360.02 3200.82
Mean 3.20E+03 3200 3,813,585.33 3200.00 3200.001049 3200.00 3200 3858.60 3205.79

Std 0.00E+00 0 851,270.6626 0.00 0.000287461 0.00E+00 9.03E−12 434.30 5.03
Rank 1 1 9 5 6 1 4 8 7

Mean rank 5.43 4.90 6.03 3.57 6.80 4.17 6.13 4.00 3.30
Result 6 5 7 2 9 4 8 3 1
+/=/− 8/2/20 8/0/22 0/2/28 13/2/15 12/0/18 8/2/20 13/0/17 3/7/20 −/−/−/
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It can be seen from the data in Table 2 that our proposed UCDCPA algorithm can
obtain the minimum value on 11 test functions, holds second place in the remaining 5 test
functions, and there are 20 functions in the top three. The overall ranking is 3.30, which is
in first place. On functions F3, F8, F12, and F16, the effect of the UCDCPA is not as good
as that of the CPA, except for simple multimodal functions F12, the difference is minute,
and the optimal value is very close. Among the eight composition functions of F23–F30,
although the results are not as good as other comparison algorithms, they are better than
those for the CPA. This shows that our improved algorithm has an obvious improvement
effect. From the results of “+/=/−” in the table, compared with the CPA, the UCDCPA
has great improvements in stability. Among the 30 functions, 20 are better than ARO, and
7 perform similarly; only 3 are worse than the CPA. In comparison with other algorithms,
the UCDCPA also has obvious advantages.

To compare the nine algorithms more intuitively, to simplify the content and shorten
the length of the article, Figures 4 and 5 show the convergence curve (Average of 30 operation
results) and boxplots of all algorithms on the same CEC2014 test sets. The complete
convergence curve and boxplots can be found in Figures A1 and A2. Figure 5 shows
that the proposed UCDCPA has the best stability over the majority of the test functions.
Combining the information in Table 2, it is clear that the proposed UCDCPA primarily
enhances the stability and accuracy of the CPA. Since the original CPA can achieve values
that are nearly optimal in some test functions, the proposed UCDCPA essentially accelerates
the convergence rate of these test functions. In a comprehensive conclusion, the presented
UCDCPA offers clear advantages over the other eight algorithms.
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To observe the ranking of each algorithm more intuitively, Figure 6 shows the ranking
of all nine algorithms on 30 test functions. The smaller the area in the radar chart, the better
the algorithm. It can be seen that the UCDCPA has the smallest area, so the UCDCPA
performed the best against the CEC2014 test set.
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The performance of each algorithm and UCDCPA was then evaluated once again using
the CEC2017 benchmark function. The identical settings and experimental parameters as
before were used. The test results for the nine algorithms on the CEC2017 test function are
shown in Table 3.
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Table 3. The results of each algorithm based on the CEC2017 test function set.

F Index
Algorithm

AOA COA CSA COOT GJO RSO SO CPA UCDCPA

F1

Best 6.96E+10 6.40E+10 5.86E+10 5.59E+10 2.33E+11 6.34E+10 1.91E+11 5.59E+10 5.59E+10
Mean 7.32E+10 7.00E+10 6.70E+10 5.59E+10 2.41E+11 6.60E+10 1.93E+11 5.59E+10 5.59E+10
Std 1.88E+09 3.17E+09 3.41E+09 2.67E+07 4.20E+09 1.44E+09 1.08E+09 1.88E+07 4.78E+06

Rank 7 6 5 1 9 4 8 3 2

F3

Best 85,044.97 72,332.55 68,149.83 60,867.5 311,129.87 74,233.75 304,642.3 64,533.78 64,517.17
Mean 90,479.28 85,647.27 81,644.45 64,245.49 332,312.2 80,393.4 327,971.08 68,794.97 68,164.19
Std 2847.68 4355.04 6275.45 1737.85 6184.6 2943.46 9416.48 1966.07 1509.82

Rank 7 6 5 1 9 4 8 3 2

F4

Best 26,488.83 22,108.1 20,314.41 19,393.32 99,000.51 22,653.84 80,416.02 19,393.97 19,393.72
Mean 28,358.87 23,957.51 23,833.92 19,393.92 103,966.78 25,730.38 81,616.57 19,396.35 19,394.45
Std 1005.02 723.92 1715.46 1.09 2432.27 2241.11 763.89 3.25 0.49

Rank 7 5 4 1 9 6 8 3 2

F5

Best 946.24 916.64 838.25 762.31 1707.55 838.28 1410.9 768.81 768.19
Mean 980.14 966.36 921.17 802.49 1791.65 911.64 1475.34 795.23 791.25
Std 17.53 18.19 44.59 16.65 43.84 27.96 25.48 10.92 10.18

Rank 7 6 5 3 9 4 8 2 1

F6

Best 688.63 691.21 672.97 662.55 682.94 676.08 663.69 660.02 657.37
Mean 701.71 702.21 684.78 667.72 689.74 693.4 666.59 662.5 660.53
Std 5.81 5.22 7.57 3.06 5.38 6.49 1.48 1.76 1.65

Rank 8 9 5 4 6 7 3 2 1

F7

Best 1428.41 1361.23 1214.3 1132.17 3236 1336.76 2690.8 1122.69 1112.87
Mean 1463 1455.69 1374.18 1207.06 3437.53 1391.88 2792.63 1163.45 1137.49
Std 18.12 36.49 59.98 42.37 78.32 26.1 54.53 23.89 15.34

Rank 7 6 4 3 9 5 8 2 1

F8

Best 1121.69 1144.29 1020.03 981.54 2135.87 1065.63 1920.28 972.56 970.28
Mean 1172.48 1176.61 1090.92 1003.63 2282.34 1134 1962.08 992.03 984.31
Std 20.78 15.85 40.25 13.72 46.93 22.89 26.01 9.41 7.43

Rank 6 7 4 3 9 5 8 2 1

F9

Best 8120.94 10,311.72 6153.63 4882.99 37,198.65 7647.01 55,433.95 4809.7 9504.28
Mean 11,063.65 12,331.8 10,051.96 6365.98 65,082.02 10,760.46 71,394.03 6248.02 10,566.12
Std 1370.08 932.13 2721.43 901.49 18,797.13 1286.47 7660.7 2372.38 541.29

Rank 6 7 3 2 8 5 9 1 4

F10

Best 8210.32 8449.16 6531.75 4721.36 23,052.26 7194.6 17,350.85 4437.85 4524.28
Mean 9075.77 9531.32 7835.56 5439.08 24,892.66 8074.75 18,536.66 5101.85 5046.05
Std 395.89 418.53 948.21 398.42 899.62 533.48 635.83 319 224.01

Rank 6 7 4 3 9 5 8 2 1

F11

Best 2.16E+07 1.83E+07 1.83E+07 1.83E+07 1.04E+12 1.83E+07 8.79E+11 1.83E+07 1.83E+07
Mean 6.94E+07 2.02E+07 2.30E+07 1.83E+07 1.59E+12 1.93E+07 8.82E+11 1.83E+07 1.83E+07
Std 3.13E+07 6.87E+06 1.18E+07 17.18 3.94E+11 2,995,138.49 9,003,578,632 6.05 5.19

Rank 7 5 6 3 9 4 8 2 1

F12

Best 2.24E+10 2.06E+10 1.91E+10 1.85E+10 1.92E+11 2.02E+10 1.64E+11 1.85E+10 1.85E+10
Mean 2.49E+10 2.24E+10 2.17E+10 1.85E+10 2.00E+11 2.25E+10 1.65E+11 1.85E+10 1.85E+10
Std 9.48E+08 9.79E+08 1.25E+09 3.23E+06 3.50E+09 1.49E+09 8.12E+08 5.35E+04 1.98E+04

Rank 7 5 4 3 9 6 8 2 1

F13

Best 3.30E+10 2.86E+10 2.86E+10 2.86E+10 4.66E+10 2.86E+10 4.41E+10 2.86E+10 2.86E+10
Mean 3.61E+10 3.09E+10 3.02E+10 2.86E+10 4.85E+10 3.21E+10 4.42E+10 2.86E+10 2.86E+10
Std 1.46E+09 1.85E+09 1.80E+09 1.54E+02 1.10E+09 2.79E+09 4.77E+07 4.67E+01 3.47E+01

Rank 7 5 4 3 9 6 8 2 1

F14

Best 3.95E+08 2.86E+08 2.86E+08 2.86E+08 2.08E+08 2.86E+08 1.89E+08 2.86E+08 2.86E+08
Mean 5.30E+08 3.41E+08 3.23E+08 2.86E+08 2.69E+08 2.98E+08 1.89E+08 2.86E+08 2.86E+08
Std 8.81E+07 5.86E+07 6.89E+07 1.51E+01 3.70E+07 2.71E+07 1.52E+05 6.54E+00 4.37E+00

Rank 9 8 7 5 2 6 1 4 3

F15

Best 3.14E+09 2.97E+09 2.97E+09 2.97E+09 2.80E+10 2.97E+09 2.79E+10 2.97E+09 2.97E+09
Mean 3.66E+09 3.16E+09 3.27E+09 2.97E+09 2.93E+10 3.03E+09 2.79E+10 2.97E+09 2.97E+09
Std 3.13E+08 1.86E+08 3.88E+08 1.73E+03 7.98E+08 1.21E+08 1.34E+07 8.94E+00 8.55E+00

Rank 7 5 6 3 9 4 8 2 1
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Table 3. Cont.

F Index
Algorithm

AOA COA CSA COOT GJO RSO SO CPA UCDCPA

F16

Best 17,902.11 15,436.27 15,509.67 14,481.07 23,217.34 15,864.76 19,668.88 14,458.22 14,473.92
Mean 20,667.79 17,722.05 17,581.48 15,076.45 25,378.02 16,751.56 20,397.27 14,891.61 14,776.26
Std 1149.15 1028.18 1436.1 341.67 809.46 555.94 421.89 219.71 166.64

Rank 8 6 5 3 9 4 7 2 1

F17

Best 66,689.36 57,907.37 57,117.16 56,609.44 26,517,855.16 57,391.92 24,582,274.02 56,590.26 56,589.9
Mean 102,835.52 61,986.7 62,600.6 56,895.25 32,596,475.94 65,765.57 24,615,145.06 56,771.83 56,736.15
Std 14,040.69 4745.2 9976.28 172.09 4,126,332.61 12,805.85 163,000.24 107.86 97.93

Rank 7 4 5 3 9 6 8 2 1

F18

Best 1.97E+09 1.38E+09 1.38E+09 1.37E+09 1.82E+08 1.38E+09 1.61E+08 1.37E+09 1.37E+09
Mean 2.50E+09 1.67E+09 1.76E+09 1.37E+09 2.33E+08 1.49E+09 1.61E+08 1.37E+09 1.37E+09
Std 2.69E+08 2.68E+08 4.13E+08 9.87E+05 3.58E+07 1.59E+08 5.02E+05 2.11E+01 2.96E+00

Rank 9 7 8 5 2 6 1 4 3

F19

Best 3.38E+09 3.12E+09 3.12E+09 3.12E+09 2.86E+10 3.12E+09 2.85E+10 3.12E+09 3.12E+09
Mean 3.71E+09 3.15E+09 3.26E+09 3.12E+09 2.98E+10 3.35E+09 2.85E+10 3.12E+09 3.12E+09
Std 2.72E+08 3.86E+07 1.95E+08 3.13E+03 8.12E+08 2.85E+08 8.67E+05 5.05E+00 5.14E+00

Rank 7 4 5 3 9 6 8 2 1

F20

Best 3.45E+03 3.42E+03 3.32E+03 3.22E+03 6.29E+03 3.36E+03 5.50E+03 3.22E+03 3.21E+03
Mean 3.73E+03 3.65E+03 3.54E+03 3.31E+03 6.98E+03 3.47E+03 6.08E+03 3.27E+03 3.26E+03
Std 1.25E+02 8.94E+01 1.21E+02 7.20E+01 4.18E+02 1.09E+02 2.79E+02 3.32E+01 3.81E+01

Rank 7 6 5 3 9 4 8 2 1

F21

Best 2.97E+03 2.91E+03 2.82E+03 2.73E+03 7.69E+03 2.89E+03 6.04E+03 2.74E+03 2.74E+03
Mean 3.02E+03 2.96E+03 2.92E+03 2.78E+03 7.97E+03 2.93E+03 6.15E+03 2.75E+03 2.75E+03
Std 2.89E+01 2.57E+01 5.49E+01 2.67E+01 1.86E+02 2.75E+01 6.98E+01 1.51E+01 7.63E+00

Rank 7 6 4 3 9 5 8 2 1

F22

Best 9.94E+03 9.91E+03 8.62E+03 7.61E+03 2.74E+04 9.24E+03 2.21E+04 7.29E+03 7.31E+03
Mean 1.06E+04 1.06E+04 9.61E+03 8.15E+03 2.90E+04 9.94E+03 2.32E+04 7.64E+03 7.57E+03
Std 3.33E+02 3.34E+02 7.18E+02 3.23E+02 9.22E+02 3.44E+02 4.74E+02 2.02E+02 1.82E+02

Rank 7 6 4 3 9 5 8 2 1

F23

Best 5.70E+03 5.78E+03 5.18E+03 4.58E+03 1.06E+04 5.54E+03 8.46E+03 4.45E+03 4.37E+03
Mean 6.39E+03 6.22E+03 5.81E+03 4.88E+03 1.12E+04 5.88E+03 8.99E+03 4.63E+03 4.57E+03
Std 2.51E+02 1.79E+02 3.94E+02 1.96E+02 3.53E+02 1.97E+02 1.89E+02 8.54E+01 8.39E+01

Rank 7 6 4 3 9 5 8 2 1

F24

Best 4.98E+03 4.85E+03 4.80E+03 4.64E+03 1.46E+04 4.85E+03 1.31E+04 4.64E+03 4.64E+03
Mean 5.02E+03 4.98E+03 4.91E+03 4.65E+03 1.48E+04 4.93E+03 1.31E+04 4.66E+03 4.65E+03
Std 2.50E+01 4.77E+01 5.59E+01 1.76E+01 1.12E+02 4.68E+01 5.86E+01 1.67E+01 1.89E+01

Rank 7 6 4 1 9 5 8 3 2

F25

Best 6.74E+03 5.78E+03 5.48E+03 5.09E+03 2.45E+04 5.88E+03 2.05E+04 5.09E+03 5.09E+03
Mean 7.30E+03 6.35E+03 6.25E+03 5.09E+03 2.56E+04 6.42E+03 2.07E+04 5.09E+03 5.09E+03
Std 2.62E+02 4.38E+02 4.59E+02 2.67E+00 5.73E+02 4.09E+02 1.04E+02 4.11E−01 3.13E−01

Rank 7 5 4 3 9 6 8 2 1

F26

Best 1.35E+04 1.28E+04 1.21E+04 1.13E+04 5.02E+04 1.25E+04 4.33E+04 1.13E+04 1.12E+04
Mean 1.40E+04 1.36E+04 1.31E+04 1.15E+04 5.20E+04 1.30E+04 4.39E+04 1.14E+04 1.14E+04
Std 2.91E+02 3.24E+02 5.53E+02 1.35E+02 7.89E+02 3.38E+02 4.56E+02 1.02E+02 7.71E+01

Rank 7 6 5 3 9 4 8 2 1

F27

Best 8.04E+03 8.25E+03 6.84E+03 6.31E+03 1.90E+04 7.64E+03 1.63E+04 6.29E+03 6.15E+03
Mean 8.74E+03 8.71E+03 7.86E+03 6.71E+03 2.00E+04 8.08E+03 1.69E+04 6.52E+03 6.47E+03
Std 2.87E+02 2.00E+02 5.73E+02 2.20E+02 4.24E+02 1.84E+02 3.19E+02 1.36E+02 1.80E+02

Rank 7 6 4 3 9 5 8 2 1

F28

Best 8.87E+03 7.97E+03 7.94E+03 7.19E+03 3.33E+04 8.02E+03 2.87E+04 7.19E+03 7.19E+03
Mean 9.15E+03 8.60E+03 8.52E+03 7.19E+03 3.43E+04 8.51E+03 2.91E+04 7.20E+03 7.19E+03
Std 1.70E+02 2.23E+02 3.24E+02 1.12E+00 5.45E+02 2.89E+02 1.87E+02 1.06E+00 7.13E−01

Rank 7 6 5 1 9 4 8 3 2

F29

Best 5.87E+04 4.59E+04 3.51E+04 3.15E+04 1.08E+06 3.67E+04 7.26E+05 3.15E+04 3.15E+04
Mean 7.46E+04 5.64E+04 4.70E+04 3.19E+04 1.22E+06 4.58E+04 7.62E+05 3.18E+04 3.16E+04
Std 9.69E+03 5.89E+03 9.72E+03 4.84E+02 1.12E+05 6.61E+03 2.34E+04 3.38E+02 2.46E+02

Rank 7 6 5 3 9 4 8 2 1
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Table 3. Cont.

F Index
Algorithm

AOA COA CSA COOT GJO RSO SO CPA UCDCPA

F30

Best 7.38E+09 5.97E+09 6.16E+09 5.65E+09 4.42E+10 6.19E+09 3.67E+10 5.65E+09 5.65E+09
Mean 8.15E+09 6.96E+09 6.77E+09 5.65E+09 4.56E+10 6.64E+09 3.73E+10 5.65E+09 5.65E+09
Std 3.11E+08 4.41E+08 3.96E+08 1.54E+06 7.63E+08 5.17E+08 4.18E+08 1.85E+06 4.04E+05

Rank 7 6 5 1 9 4 8 3 2
Mean rank 7.1 5.97 4.76 2.72 8.38 4.97 7.34 2.31 1.45

Result 7 6 4 3 9 5 8 2 1
+/=/− 2000/1/28 0/0/29 2000/1/28 2008/1/20 2/0/27 2000/1/28 2/0/27 1/13/15 −/−/−/

From Table 3, we can see that our proposed UCDCPA can obtain the minimum value
on 20 test functions, achieves second place in the remaining 6 test functions, and is in the
top three on 28 test functions, with an overall ranking of 1.45, ranking first. In the seventh,
simple multimodal test functions F4–F10, only on F9 the UCDCPA was less effective than
the CPA and won first place in five test functions. In the hybrid test functions F11–F20,
the UCDCPA was superior to the CPA, with an obvious improvement effect. Eight of
the ten functions reach first place. In the set of composition functions, the UCDCPA
embodies the advantage, with 70% of functions being first, and 100% of functions being
in the top two, which fully demonstrates the UCDCPA’s ability in the computational
processing of composition functions. Overall, our proposed UCDCPA has advantages over
the nine algorithm species and outperforms the comparison algorithms. From the results
of “+/=/−” in the table, compared with the CPA, the UCDCPA has great improvements
in stability. Among the 29 functions, 15 are better than the CPA, and 13 perform similarly;
only one is worse than the CPA. In comparison with other algorithms, the UCDCPA also
has obvious advantages.

To visually compare the nine algorithms, the convergence curves (average of
30 operation results) of the nine algorithms in the same CEC2017 test functions are given in
Figure 7, and the boxplots of each algorithm in the same CEC2017 test functions are given in
Figure 8. The complete convergence curve and boxplots can be found in Figures A3 and A4.
From Figure 8, we can see that the UCDCPA has a more obvious advantage in stability
compared to the CPA and others. Combining Table 3 and Figure 7, it is clear that the pro-
posed UCDCPA primarily enhances computational correctness when compared to the CPA,
due to the CPA already achieving high convergence speed on some test functions, such as
F6, F16, and F19. A thorough analysis reveals that the suggested UCDCPA algorithm has
several benefits over the other eight methods.
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Figure 9 shows the ranking of the nine algorithms on 29 test functions of CEC2017.
Consistent with the results on the CEC2014 test set, on the CEC2017 test set, the UCD-
CPA again has the smallest area and the best performance, gaining advantages over all
nine algorithms.
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5. Improved Carnivorous Plant Algorithm (UCDCPA) for Engineering Design
5.1. Pressure Vessel Design Problems

The primary objective of the pressure vessel design [41] is to reduce the cost of the
vessel’s materials, forming, and welding. As shown in Figure 10, the four variables in this
problem are the inner radius (R), the length of the cylindrical section without taking the
head into account (L), the thickness of the head (Th), and the thickness of the shell (Ts).
The four constraint functions and the problem’s mathematical formulation are provided in
Equation (18).

min f = 19.84T2
s R + 1.7781ThR2 + 0.6224TsRx4 + 3.1661T2

s L
Meet to 0.0193R ≤ Ts

−Th + 0.00954R ≤ 0
πR2L + 4

3 πR3+ ≥ 1.296.000
L ≤ 240

where 0 ≤ Ts, Th ≤ 100; 10 ≤ R, L ≤ 200.

(18)
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Figure 10. Diagram illustrating the pressure vessel issue.

The proposed UCDCPA was used to deal with the pressure vessel design problem,
and the results were compared to the CPA and the other 12 algorithms. In Table 4, each
algorithm’s minimum cost and related variable values are displayed, and it can be seen
that the UCDCPA works better. Table 5 illustrates the statistical findings for each algorithm,
with the UCDCPA outperforming the others in terms of the best solution, average solution,
worst solution, and standard deviation. A smaller standard deviation suggests that an
algorithm is more robust. This leads to the conclusion that, in comparison to competing
algorithms, the proposed UCDCPA offers a competitive advantage.

Table 4. Results for the comparison of algorithm performance in the pressure vessel design issue.

Algorithms Ts Th R L Optimum
Cost

BWO [42] 1.35762647 1.093437138 67.69082252 113.0682817 7452.833749
GSA [16] 0.90125717 0.881298174 46.32687683 167.7379974 8900.046643
AOA [43] 0.780590299 0.385783281 40.44361782 198.3877341 5894.187289
AO [44] 0.847809404 0.433226318 43.66107194 160.3307465 6149.803509

HHO [28] 0.882129626 0.438803464 45.70354005 136.5566478 6098.410688
RSO [39] 1.023595723 0.548121786 53.00397707 78.53244426 6752.320707
SCA [25] 0.828990697 0.453075845 42.86366246 171.8211562 6238.443072

WOA [26] 0.845217747 0.414401057 42.25129909 174.7516586 6193.691409
PSO [23] 0.789311349 0.389923651 40.87077061 192.4817157 5907.740366
SHO [45] 1.45363783 0.864019419 69.21011101 10 10,953.58287
MVO [13] 0.83997938 0.41617848 43.49393648 160.2903645 6011.610548

HS [19] 1.057860805 0.616265357 53.79451517 128.7466594 9381.627416
CPA [29] 0.779207674 0.385163555 40.37358135 199.2501794 5887.103014
UCDCPA 0.818807403 0.404738252 42.42550141 172.6257773 5885.317546
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Table 5. Statistical results for the algorithms in the pressure vessel design problem.

Algorithms Best Mean Worst Std

BWO [42] 7452.833749 8668.096187 9835.931831 645.6007505
GSA [16] 8900.046643 22,826.83618 33,709.70179 6739.746909
AOA [43] 5894.187289 6073.39365 6467.034139 176.6077507
AO [44] 6149.803509 6703.38539 7650.836881 445.6648705

HHO [28] 6098.410688 6773.338116 7321.578979 373.4757438
RSO [39] 6752.320707 13,303.19277 36,017.19213 7139.553858
SCA [25] 6238.443072 6740.990306 8667.698978 596.9230292

WOA [26] 6193.691409 7788.515478 14,356.43308 2207.831263
PSO [23] 5907.740366 6215.186207 6817.609346 308.9590064
SHO [45] 10,953.58287 20,683.71124 38,772.72675 7522.154569
MVO [13] 6011.610548 6454.018394 7244.10122 305.5658618

HS [19] 9381.627416 13,219.79192 16,750.36369 2431.426944
CPA [29] 5887.103014 6011.158017 6307.525495 1.25E+02
UCDCPA 5885.317546 5885.317546 5885.317546 1.87E−12

5.2. Welded Beam Design Problem

The welded beam design problem aims to determine the lowest fabrication cost for a
welded beam [46]. The length of the clamped bar (l), the height of the bar (t), the thickness
of the bar (b), and the thickness of the weld (h) are the four design factors that need to
be optimized, as shown in Figure 11. In addition, seven constraints are to be satisfied by
applying loads to the top of the bars. The specific design problem is shown in Equation (19).

min f = 0.04811tb(l + 14) + 1.10471h2l
subject to τ([h, l, t, b]) ≤ τmax

σ([h, l, t, b]) ≤ σmax
δ([h, l, t, b]) ≤ δmax
h ≤ b
P ≤ Pc([h, l, t, b])
0.125 ≤ h
0.04811tb(l + 14) ≤ 0.5− 1.10471h2

where 0.1≤ h, b ≤ 2; 0.1 ≤ l, t ≤ 10;

(19)
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Figure 11. Diagram of the welded beam issue.

The welded beam design problem has been solved using the presented UCDCPA,
and its performance was evaluated against that of the CPA and the other 12 intelligent
algorithms. For each method, the minimum costs and accompanying ideal variable values
are listed in Table 6. The GWO, PSO, and CPA algorithms all calculate good results, and
the minimum cost of the CPA is consistent with the optimal cost of the UCDCPA, but
the proposed UCDCPA is better. Table 7 displays the statistical outcomes for all methods.
The standard deviation of the UCDCPA is zero, indicating that the algorithm has strong
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robustness. The best solution, average solution, worst solution, and standard deviation
obtained using the UCDCPA are all better than those obtained using other algorithms.
This leads to the conclusion that the proposed UCDCPA has a competitive advantage over
existing algorithms in tackling this problem in every scenario.

Table 6. Results for the comparison of algorithm performance in the welded beam design issue.

Algorithms h l t b Optimum
Cost

GSA [16] 0.162851394 4.54597146 8.638236427 0.250005147 2.060084936
AOA [43] 0.204277902 3.303984088 9.04125477 0.205706549 1.700621531
AO [44] 0.189374632 3.547522386 9.134755541 0.206786696 1.73521502

HHO [28] 0.188109377 3.905038631 9.030136455 0.206025348 1.755250851
RSO [39] 0.149913681 6.263663498 8.735493845 0.223742119 2.060920727
SCA [25] 0.197001179 3.447630359 9.061850711 0.210734829 1.750779615

WOA [26] 0.187626514 3.496137108 9.55526453 0.203278952 1.770945189
GWO [24] 0.205639834 3.258414504 9.038918564 0.205727445 1.696210777
PSO [23] 0.205717244 3.253567261 9.036950989 0.205728009 1.695333367
SHO [45] 0.15716373 4.788258496 9.265491874 0.243779909 2.172339171
HS [19] 0.133846407 5.896646319 9.090787017 0.239299182 2.199069081

CPA [29] 0.20572964 3.253120041 9.03662391 0.20572964 1.695247165
UCDCPA 0.20572964 3.253120041 9.03662391 0.20572964 1.695247165

Table 7. Statistical outcomes for the algorithms in the welded beam design problem.

Algorithms Best Mean Worst Std

GSA [16] 2.060084936 2.260378901 2.395427434 0.103945911
AOA [43] 1.700621531 2.010126216 3.41715675 0.456539458
AO [44] 1.73521502 1.858312119 2.045979674 0.089512879

HHO [28] 1.755250851 1.843976042 2.196985884 0.105249207
RSO [39] 2.060920727 5.242901347 46.8049853 9.818645738
SCA [25] 1.750779615 1.83018928 1.927682829 0.043302748

WOA [26] 1.770945189 2.078361923 3.598644235 0.456109982
GWO [24] 1.696210777 1.698075685 1.706826075 0.002303005
PSO [23] 1.695333367 1.696054342 1.700382568 0.001099938
SHO [45] 2.172339171 8.41388697 57.61069741 12.82400304
HS [19] 2.199069081 2.961271545 3.338760975 0.264197415

CPA [29] 1.695247165 1.695247165 1.695247165 1.14E−16
UCDCPA 1.695247165 1.695247165 1.695247165 0

5.3. Tension/Compression Spring Design (TCSD) Problem

Finding the values of the three parameters of the wire diameter (u1), mean coil diameter
(u2), and the number of effective coils (u3) is the goal of the TCSD problem [47] (see
Figure 12). The TCSD problem is described mathematically in Equation (20).

Min f (
→
u ) = (u3 + 2)u2u2

1

sub g1(
→
u ) = 1−

u3
2u3

71785u4
1
≤ 0

g2(
→
u ) =

4u2
2 − u1u2

12566(u2u3
1 − u4

1)
+

1
5108u2

1
≤ 0

g3(
→
u ) = 1− 140.45u1

u2
2u3

≤ 0

g4(
→
u ) =

u1 + u2

1.5
− 1 ≤ 0

Variables range 0.05 ≤ u1 ≤ 2
0.25 ≤ u2 ≤ 1.30
2.00 ≤ u3 ≤ 15

(20)
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Figure 12. Diagram showing the tension/compression spring.

The minimum cost and accompanying ideal variable values for each algorithm used
to solve the TCSD issue are shown in Table 8. The ALO, CPA, and the UCDCPA all show
good results. Table 9 displays the statistical outcomes for all methods. The UCDCPA’s
calculations of the best solution, average solution, worst solution, and standard deviation
outperform those of the other methods, and the standard deviation, with a significant
advantage, illustrates that the UCDCPA has better robustness. According to the thorough
investigation, the proposed UCDCPA has a considerable competitive edge over other
algorithms in resolving this problem.

Table 8. Results for the comparison of algorithm performance in the TCSD problem.

Algorithms d D N Optimum Cost

GSA [16] 0.054336606 0.411182717 9.27940294 0.013693233
AO [44] 0.053858024 0.382210602 11.05851677 0.014477628

HHO [28] 0.055518108 0.456022463 7.191402658 0.012919253
RSO [39] 0.051578783 0.351426469 11.86143225 0.012959396

WOA [26] 0.053192553 0.393977515 9.397755032 0.012705521
PSO [23] 0.052695325 0.379080507 10.26803936 0.012913703
SMA [48] 0.050025201 0.317991335 13.98116224 0.012717488
SHO [45] 0.05 0.314726583 15 0.01337588
MVO [13] 0.05 0.316210131 14.19550214 0.012802955

HS [19] 0.054112945 0.413019501 9.910684619 0.014404879
ALO [49] 0.050987891 0.340082479 12.33528746 0.012674323
CPA [29] 0.051858341 0.360803904 11.05336423 0.012665752
UCDCPA 0.052565382 0.378168224 10.13392929 0.012665231

Table 9. Statistical outcomes for the algorithms in the TCSD problem.

Algorithms Best Mean Worst Std

GSA [16] 0.013693233 0.017446335 0.021225117 0.002099083
AO [44] 0.014477628 0.016524122 0.020944277 0.001749639

HHO [28] 0.012919253 0.01367488 0.015510811 0.000733611
RSO [39] 0.012959396 4176.97903 42208.32165 10463.97555

WOA [26] 0.012705521 0.013497022 0.017773562 0.001085082
PSO [23] 0.012913703 0.013681989 0.014907415 0.000629188
SMA [48] 0.012717488 0.013097227 0.014225745 0.00051897
SHO [45] 0.01337588 1562.290559 16836.22462 4721.617609
MVO [13] 0.012802955 0.01692502 0.018300031 0.001618284

HS [19] 0.014404879 0.023626948 0.050181296 0.007737902
ALO [49] 0.012674323 0.013843033 0.017642955 0.001814955
CPA [29] 0.012665752 0.012762078 0.013068728 0.00012129
UCDCPA 0.012665231 0.012665231 0.012665232 2.66E−10
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5.4. Compound Gear Design Problem

A mechanical engineering problem, the “gear train design problem” [50], seeks to
reduce the ratio of a particular gear set, denoted as (nBnD)/(nCnA). As can be seen from
Figure 13, the four parameters of this problem are the number of teeth of the gears, which
are integers and range in size from 12 to 60. As a result, the issue of gear train design is
discrete. The variables’ ranges are regarded as constraints.

min f (x) = (
1

6.931
− x3x2

x1x4
)2

subject to:
12 ≤ xi ≤ 60 i = 1, 2, · · · , 4

(21)
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To solve the gear train design challenge, the original algorithm and the other 13 clever
algorithms are compared to the proposed UCDCPA. The minimum cost and accompanying
ideal variable values for each method are displayed in Table 10, and the results obtained
using the GSA, AOA, AO, SCA, GWO, PSO, WHO, MVO, CPA, and the UCDCPA algo-
rithms are similar. Table 11 displays all algorithms’ statistical results. The best, mean,
worst, and Std. obtained using the UCDCPA algorithm are better than others, and the
algorithm’s standard deviation, with considerable advantage, shows that it is more robust
than other methods.

Table 10. Comparison of algorithm performance for the best designs in the gear design problem.

Algorithms x1 x2 x3 x4
Optimum

Cost

GSA [16] 49.09926771 16.58870178 19.96015692 43.40356866 2.700857E−12
AOA [43] 43.71647858 19.7208177 16.4232225 49.45682569 2.700857E−12
AO [44] 49.83084862 16.24845435 19.71874271 43.324778 2.700857E−12
RSO [39] 27.29887237 12 12 37.17778148 1.827380E−08
SCA [25] 49.86378029 19.81902942 16.50739713 43.29977556 2.700857E−12

GWO [24] 49.92736013 19.55850161 16.4773682 43.05012785 2.700857E−12
PSO [23] 49.33432112 19.39566196 16.54612986 43.10005969 2.700857E−12
SMA [48] 51.70131506 13.74783833 30.30206275 53.45404325 2.307816E−11
SHO [45] 55.97209247 40.47794844 12 60 1.381144E−06
WHO [51] 43.86923887 19.45848526 16.13971724 49.58874223 2.700857E−12
MVO [13] 43.18211959 19.81774931 16.368027 49.42425551 2.700857E−12
MFO [27] 51.02233936 26.4068411 15.37123392 53.66313366 2.307816E−11
ALO [49] 53.90915117 20.30000998 13.44122459 34.0496304 2.307816E−11
CPA [29] 43.9192177 19.83148672 16.99034087 49.37036408 2.700857E−12
UCDCPA 49.97261094 19.91168483 16.87627009 43.89722598 2.700857E−12
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Table 11. Statistical outcomes for the algorithms in the gear train design problem.

Algorithms Best Mean Worst Std

GSA [16] 2.700857E−12 1.010642E−09 2.357641E−09 9.394177E−10
AOA [43] 2.700857E−12 2.442156E−09 1.827380E−08 4.358741E−09
AO [44] 2.700857E−12 1.248539E−09 4.503304E−09 1.289949E−09
RSO [39] 1.827380E−08 1.542447E−04 1.646172E−03 3.713617E−04
SCA [25] 2.700857E−12 9.134559E−10 2.357641E−09 7.666596E−10

GWO [24] 2.700857E−12 1.138729E−10 9.921580E−10 3.005126E−10
PSO [23] 2.700857E−12 6.440009E−11 9.921580E−10 2.185927E−10
SMA [48] 2.307816E−11 4.989225E−09 2.726451E−08 7.559668E−09
SHO [45] 1.381144E−06 1.471356E−04 8.349042E−04 2.498206E−04
WHO [51] 2.700857E−12 2.655999E−10 9.921580E−10 3.816328E−10
MVO [13] 2.700857E−12 4.861756E−10 2.357641E−09 6.039829E−10
MFO [27] 2.307816E−11 1.850996E−09 4.503304E−09 1.318984E−09
ALO [49] 2.307816E−11 3.192183E−09 1.827380E−08 4.885282E−09
CPA [29] 2.700857E−12 4.639657E−10 4.503304E−09 1.112919E−09
UCDCPA 2.700857E−12 1.858504E−11 1.166116E−10 2.521680E−11

5.5. Cantilever Structure Problem

The cantilever structure problem is a structural engineering design problem [44]. In
this application, the goal is to reduce a cantilever’s weight while taking into account load-
bearing capacity limits (see Figure 14). The choice variables are the heights of the five
hollow squares that make up the beam.

Min f = 0.06224(h1 + h2 + h3 + h4 + h5),

subject to g =
61
h3

1
+

27
h3

2
+

19
h3

3
+

7
h3

4
+

1
h3

5
− 1 ≤ 0,

meet 0.01 ≤ hi ≤ 100 i = 1, 2, · · · , 5

(22)
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Table 12 shows that there is not much difference between the results calculated using
the UCDCPA and the CPA, with the UCDCPA slightly outperforming the CPA. Table 13
compares the statistical outcomes of this algorithm with other approaches. As shown in the
table, although the solutions obtained using the CPA are highly competitive, the UCDCPA
is slightly better than the CPA when the best, mean, worst, and Std. of the results are
considered together. The effectiveness of the improved algorithm proposed in this paper
is illustrated.
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Table 12. Comparison of algorithm performances for the best designs in the cantilever beam problem.

Algorithms x1 x2 x3 x4 x5
Optimum

Cost

BWO [42] 1.91112381 3.371424243 3.136849543 3.984923889 1.830067654 0.895341162
GSA [16] 2.742172682 2.227520474 2.039099093 1.600194337 0.987632636 0.685438760
AOA [43] 2.837698938 1.949856649 1.857736678 1.523619661 1.031383307 0.697298770
AO [44] 2.726339704 2.243634883 2.035880163 1.580650671 0.97798304 0.685429422
RSO [39] 2.397288674 2.002288903 1.594785803 2.701129185 0.513855729 0.941856920
SCA [25] 2.7851993 2.163499301 1.945893374 1.639149628 1.082000068 0.687731007
PSO [23] 3.336873677 2.237796936 1.603377869 1.935560703 0.831736446 0.726407620
SHO [45] 2.782322365 2.254589461 2.42138236 1.930452462 1.056199247 0.704087739
HS [19] 3.094335154 1.649156667 7.852158097 1.758757853 1.270419628 1.051561683

CPA [29] 2.732785709 2.228074467 2.046348837 1.590249628 0.977632633 0.685408058
UCDCPA 2.732172679 2.228520482 2.041099089 1.590194328 0.977632631 0.685406037

Table 13. Statistical results for the algorithms in the cantilever beam design problem.

Algorithms Best Mean Worst Std

BWO [42] 0.895341162 0.989495691 1.095570621 0.057368242
GSA [16] 0.685438760 0.685424155 0.685768406 8.10282E−05
AOA [43] 0.697298770 0.743549727 0.813673683 0.027671128
AO [44] 0.685429422 0.685533512 0.685860485 0.000101308
RSO [39] 0.941856920 2.016025356 4.559510955 1.097470827
SCA [25] 0.687731007 0.693337949 0.707001376 0.00448995
PSO [23] 0.726407620 0.816503624 0.914341693 0.048147663
SHO [45] 0.704087739 2.0610002 5.193706033 1.737868709
HS [19] 1.051561683 1.529689345 2.035159822 0.287530949

CPA [29] 0.685408058 0.685408058 0.685408058 1.13875E−16
UCDCPA 0.685406037 0.685406037 0.685406037 1.13906E−16

6. Conclusions

In this paper, an improved carnivorous plant algorithm (UCDCPA) is proposed based
on the CPA. After carefully analyzing the process of the CPA, three strategies were intro-
duced to enhance the performance of the CPA. First, the initialization of the population
was completed using the good point set. Secondly, the Cauchy mutation method was used
to increase the initial population diversity. Finally, a differential evolution strategy with
good exploration ability was integrated into the CPA. Numerical tests were conducted on a
total of 59 benchmark functions to test the performance of the proposed UCDCPA. The test
results show that the UCDCPA outperforms the CPA and seven other novel metaheuristics.
To further validate the optimization capability of the UCDCPA, five real engineering prob-
lems were tested. The test results further validate the high performance of the UCDCPA in
solving real-world problems. The future work direction is to extend the UCDCPA to multi-
objective optimization, which can also be applied to training neural networks, computer
graphics, or other problem fields [52,53].
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