Multi-Terminal Nonwoven Stochastic Memristive Devices Based on Polyamide-6 and Polyaniline for Neuromorphic Computing
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Material Characterization
3.2. Multi-Terminal Device
3.3. Neural Network Simulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erokhin, V. Memristive Devices for Neuromorphic Applications: Comparative Analysis. BioNanoScience 2020, 10, 834–847. [Google Scholar] [CrossRef]
- Erokhin, V.; Schüz, A.; Fontana, M.P. Organic Memristor and Bio-Inspired Information Processing. Int. J. Unconv. Comput. 2010, 6, 15–32. [Google Scholar]
- Hebb, D.O. The Organization of Behavior: A Neuropsychological Theory; L. Erlbaum Associates: Mahwah, NJ, USA, 2002; ISBN 978-0-8058-4300-2. [Google Scholar]
- Caporale, N.; Dan, Y. Spike Timing–Dependent Plasticity: A Hebbian Learning Rule. Annu. Rev. Neurosci. 2008, 31, 25–46. [Google Scholar] [CrossRef]
- Prudnikov, N.V.; Lapkin, D.A.; Emelyanov, A.V.; Minnekhanov, A.A.; Malakhova, Y.N.; Chvalun, S.N.; Demin, V.A.; Erokhin, V.V. Associative STDP-like Learning of Neuromorphic Circuits Based on Polyaniline Memristive Microdevices. J. Phys. Appl. Phys. 2020, 53, 414001. [Google Scholar] [CrossRef]
- Juzekaeva, E.; Nasretdinov, A.; Battistoni, S.; Berzina, T.; Iannotta, S.; Khazipov, R.; Erokhin, V.; Mukhtarov, M. Coupling Cortical Neurons through Electronic Memristive Synapse. Adv. Mater. Technol. 2019, 4, 1800350. [Google Scholar] [CrossRef]
- Jaeger, H.; Haas, H. Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication. Science 2004, 304, 78–80. [Google Scholar] [CrossRef]
- Cucchi, M.; Abreu, S.; Ciccone, G.; Brunner, D.; Kleemann, H. Hands-on Reservoir Computing: A Tutorial for Practical Implementation. Neuromorphic Comput. Eng. 2022, 2, 032002. [Google Scholar] [CrossRef]
- Kim, D.; Jeon, B.; Lee, Y.; Kim, D.; Cho, Y.; Kim, S. Prospects and Applications of Volatile Memristors. Appl. Phys. Lett. 2022, 121, 010501. [Google Scholar] [CrossRef]
- Midya, R.; Wang, Z.; Asapu, S.; Zhang, X.; Rao, M.; Song, W.; Zhuo, Y.; Upadhyay, N.; Xia, Q.; Yang, J.J. Reservoir Computing Using Diffusive Memristors. Adv. Intell. Syst. 2019, 1, 1900084. [Google Scholar] [CrossRef]
- Ryu, H.; Kim, S. Implementation of a Reservoir Computing System Using the Short-Term Effects of Pt/HfO2/TaOx/TiN Memristors with Self-Rectification. Chaos Solitons Fractals 2021, 150, 111223. [Google Scholar] [CrossRef]
- Cucchi, M.; Gruener, C.; Petrauskas, L.; Steiner, P.; Tseng, H.; Fischer, A.; Penkovsky, B.; Matthus, C.; Birkholz, P.; Kleemann, H.; et al. Reservoir Computing with Biocompatible Organic Electrochemical Networks for Brain-Inspired Biosignal Classification. Sci. Adv. 2021, 7, eabh0693. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.; Ma, W.; Shin, J.H.; Cai, F.; Du, C.; Lee, S.H.; Lu, W.D. Temporal Data Classification and Forecasting Using a Memristor-Based Reservoir Computing System. Nat. Electron. 2019, 2, 480–487. [Google Scholar] [CrossRef]
- Matsukatova, A.N.; Prudnikov, N.V.; Kulagin, V.A.; Battistoni, S.; Minnekhanov, A.A.; Trofimov, A.D.; Nesmelov, A.A.; Zavyalov, S.A.; Malakhova, Y.N.; Parmeggiani, M.; et al. Combination of Organic-Based Reservoir Computing and Spiking Neuromorphic Systems for a Robust and Efficient Pattern Classification. Adv. Intell. Syst. 2023. [Google Scholar] [CrossRef]
- Pecqueur, S.; Mastropasqua Talamo, M.; Guérin, D.; Blanchard, P.; Roncali, J.; Vuillaume, D.; Alibart, F. Neuromorphic Time-Dependent Pattern Classification with Organic Electrochemical Transistor Arrays. Adv. Electron. Mater. 2018, 4, 1800166. [Google Scholar] [CrossRef]
- Milano, G.; Pedretti, G.; Montano, K.; Ricci, S.; Hashemkhani, S.; Boarino, L.; Ielmini, D.; Ricciardi, C. In Materia Reservoir Computing with a Fully Memristive Architecture Based on Self-Organizing Nanowire Networks. Nat. Mater. 2021, 21, 195–202. [Google Scholar] [CrossRef]
- Lapkin, D.A.; Malakhov, S.N.; Demin, V.A.; Chvalun, S.N.; Feigin, L.A. Hybrid Polyaniline/Polyamide-6 Fibers and Nonwoven Materials for Assembling Organic Memristive Elements. Synth. Met. 2019, 254, 63–67. [Google Scholar] [CrossRef]
- Milano, G.; Pedretti, G.; Fretto, M.; Boarino, L.; Benfenati, F.; Ielmini, D.; Valov, I.; Ricciardi, C. Brain-Inspired Structural Plasticity through Reweighting and Rewiring in Multi-Terminal Self-Organizing Memristive Nanowire Networks. Adv. Intell. Syst. 2020, 2, 2000096. [Google Scholar] [CrossRef]
- Prudnikov, N.V.; Malakhova, Y.N.; Emelyanov, A.V.; Borshchev, O.V.; Skorotetcky, M.S.; Polinskaya, M.S.; Peregudova, S.M.; Barteneva, V.M.; Demin, V.A.; Feigin, L.A.; et al. Pulse Programming of Resistive States of a Benzothieno[3,2-B][1]-Benzothiophene-Based Organic Memristive Device with High Endurance. Phys. Status Solidi RRL Rapid Res. Lett. 2021, 16, 2100471. [Google Scholar] [CrossRef]
- van de Burgt, Y.; Lubberman, E.; Fuller, E.J.; Keene, S.T.; Faria, G.C.; Agarwal, S.; Marinella, M.J.; Alec Talin, A.; Salleo, A. A Non-Volatile Organic Electrochemical Device as a Low-Voltage Artificial Synapse for Neuromorphic Computing. Nat. Mater. 2017, 16, 414–418. [Google Scholar] [CrossRef]
- Sarkar, T.; Lieberth, K.; Pavlou, A.; Frank, T.; Mailaender, V.; McCulloch, I.; Blom, P.W.M.; Torricelli, F.; Gkoupidenis, P. An Organic Artificial Spiking Neuron for in Situ Neuromorphic Sensing and Biointerfacing. Nat. Electron. 2022. [Google Scholar] [CrossRef]
- Parr, Z.S.; Rashid, R.B.; Paulsen, B.D.; Poggi, B.; Tan, E.; Freeley, M.; Palma, M.; Abrahams, I.; Rivnay, J.; Nielsen, C.B. Semiconducting Small Molecules as Active Materials for P-Type Accumulation Mode Organic Electrochemical Transistors. Adv. Electron. Mater. 2020, 6, 2000215. [Google Scholar] [CrossRef]
- Erokhin, V.; Berzina, T.; Camorani, P.; Fontana, M.P. Conducting Polymer—Solid Electrolyte Fibrillar Composite Material for Adaptive Networks. Soft Matter 2006, 2, 870–874. [Google Scholar] [CrossRef] [PubMed]
- Erokhin, V.; Berzina, T.; Gorshkov, K.; Camorani, P.; Pucci, A.; Ricci, L.; Ruggeri, G.; Sigala, R.; Schüz, A. Stochastic Hybrid 3D Matrix: Learning and Adaptation of Electrical Properties. J. Mater. Chem. 2012, 22, 22881. [Google Scholar] [CrossRef]
- Malakhova, Y.N.; Korovin, A.N.; Lapkin, D.A.; Malakhov, S.N.; Shcherban, V.V.; Pichkur, E.B.; Yakunin, S.N.; Demin, V.A.; Chvalun, S.N.; Erokhin, V. Planar and 3D Fibrous Polyaniline-Based Materials for Memristive Elements. Soft Matter 2017, 13, 7300–7306. [Google Scholar] [CrossRef] [PubMed]
- Raeesi, F.; Nouri, M.; Haghi, A.K. Electrospinning of Polyaniline-Polyacrylonitrile Blend Nanofibers. e-Polymers 2009, 9. [Google Scholar] [CrossRef]
- Promphet, N.; Rattanarat, P.; Rangkupan, R.; Chailapakul, O.; Rodthongkum, N. An Electrochemical Sensor Based on Graphene/Polyaniline/Polystyrene Nanoporous Fibers Modified Electrode for Simultaneous Determination of Lead and Cadmium. Sens. Actuators B Chem. 2015, 207, 526–534. [Google Scholar] [CrossRef]
- Mousavi, S.; Kang, K.; Park, J.; Park, I. A Room Temperature Hydrogen Sulfide Gas Sensor Based on Electrospun Polyaniline–Polyethylene Oxide Nanofibers Directly Written on Flexible Substrates. RSC Adv. 2016, 6, 104131–104138. [Google Scholar] [CrossRef]
- Zhang, Y.; Rutledge, G.C. Electrical Conductivity of Electrospun Polyaniline and Polyaniline-Blend Fibers and Mats. Macromolecules 2012, 45, 4238–4246. [Google Scholar] [CrossRef]
- Dong, H.; Prasad, S.; Nyame, V.; Jones, W.E. Sub-Micrometer Conducting Polyaniline Tubes Prepared from Polymer Fiber Templates. Chem. Mater. 2004, 16, 371–373. [Google Scholar] [CrossRef]
- Pang, Z.; Fu, J.; Luo, L.; Huang, F.; Wei, Q. Fabrication of PA6/TiO2/PANI Composite Nanofibers by Electrospinning–Electrospraying for Ammonia Sensor. Colloids Surf. Physicochem. Eng. Asp. 2014, 461, 113–118. [Google Scholar] [CrossRef]
- Anwane, R.S.; Kondawar, S.B.; Late, D.J. Bessel’s Polynomial Fitting for Electrospun Polyacrylonitrile/Polyaniline Blend Nanofibers Based Ammonia Sensor. Mater. Lett. 2018, 221, 70–73. [Google Scholar] [CrossRef]
- Zhu, J.; Shao, C.; Li, X.; Han, C.; Yang, S.; Ma, J.; Li, X.; Liu, Y. Immobilization of ZnO/Polyaniline Heterojunction on Electrospun Polyacrylonitrile Nanofibers and Enhanced Photocatalytic Activity. Mater. Chem. Phys. 2018, 214, 507–515. [Google Scholar] [CrossRef]
- Stejskal, J.; Gilbert, R.G. Polyaniline. Preparation of a Conducting Polymer(IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 857–867. [Google Scholar] [CrossRef]
- Kim, H.S.; Jin, H.-J.; Myung, S.J.; Kang, M.; Chin, I.-J. Carbon Nanotube-Adsorbed Electrospun Nanofibrous Membranes of Nylon 6. Macromol. Rapid Commun. 2006, 27, 146–151. [Google Scholar] [CrossRef]
- Rogalski, J.; Bastiaansen, C.; Peijs, T. PA6 Nanofibre Production: A Comparison between Rotary Jet Spinning and Electrospinning. Fibers 2018, 6, 37. [Google Scholar] [CrossRef]
- Malakhov, S.N.; Chvalun, S.N. Structure and Properties of Nonwoven Materials Obtainedby Electrospinning of a Solution and Melt of Polyamide-6. Nanotechnol. Russ. 2020, 15, 451–455. [Google Scholar] [CrossRef]
- Krylova, V.; Dukštienė, N. The Structure of PA-Se-S-Cd Composite Materials Probed with FTIR Spectroscopy. Appl. Surf. Sci. 2019, 470, 462–471. [Google Scholar] [CrossRef]
- Stejskal, J.; Trchová, M. Aniline Oligomers versus Polyaniline. Polym. Int. 2012, 61, 240–251. [Google Scholar] [CrossRef]
- Lapkin, D.A.; Emelyanov, A.V.; Demin, V.A.; Erokhin, V.V.; Feigin, L.A.; Kashkarov, P.K.; Kovalchuk, M.V. Polyaniline-Based Memristive Microdevice with High Switching Rate and Endurance. Appl. Phys. Lett. 2018, 112, 043302. [Google Scholar] [CrossRef]
- Erokhina, S.; Sorokin, V.; Erokhin, V. Skeleton-Supported Stochastic Networks of Organic Memristive Devices: Adaptations and Learning. AIP Adv. 2015, 5, 027129. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prudnikov, N.; Malakhov, S.; Kulagin, V.; Emelyanov, A.; Chvalun, S.; Demin, V.; Erokhin, V. Multi-Terminal Nonwoven Stochastic Memristive Devices Based on Polyamide-6 and Polyaniline for Neuromorphic Computing. Biomimetics 2023, 8, 189. https://doi.org/10.3390/biomimetics8020189
Prudnikov N, Malakhov S, Kulagin V, Emelyanov A, Chvalun S, Demin V, Erokhin V. Multi-Terminal Nonwoven Stochastic Memristive Devices Based on Polyamide-6 and Polyaniline for Neuromorphic Computing. Biomimetics. 2023; 8(2):189. https://doi.org/10.3390/biomimetics8020189
Chicago/Turabian StylePrudnikov, Nikita, Sergey Malakhov, Vsevolod Kulagin, Andrey Emelyanov, Sergey Chvalun, Vyacheslav Demin, and Victor Erokhin. 2023. "Multi-Terminal Nonwoven Stochastic Memristive Devices Based on Polyamide-6 and Polyaniline for Neuromorphic Computing" Biomimetics 8, no. 2: 189. https://doi.org/10.3390/biomimetics8020189
APA StylePrudnikov, N., Malakhov, S., Kulagin, V., Emelyanov, A., Chvalun, S., Demin, V., & Erokhin, V. (2023). Multi-Terminal Nonwoven Stochastic Memristive Devices Based on Polyamide-6 and Polyaniline for Neuromorphic Computing. Biomimetics, 8(2), 189. https://doi.org/10.3390/biomimetics8020189