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Abstract: High wear rates during the tillage process often result in significant financial losses and
wasted farming seasons. In this paper, a bionic design was used to reduce tillage wear. Inspired
by wear-resistant animals with ribbed structures, the bionic ribbed sweep (BRS) was designed by
combining a ribbed unit with a conventional sweep (CS). BRSs with different parameters (width ϕ,
height h, angle θ, and interval λ) were simulated and optimized using the DEM and RSM methods at
a working depth of 60 mm to evaluate the magnitude and trends of three responses: tillage resistance
(TR), number of contacts between the sweep and soil particles (CNSP), and Archard wear value
(AW). The results showed that a protective layer could be created on the surface of the sweep with a
ribbed structure to reduce abrasive wear. Analysis of variance proved that factors ϕ, θ, and λ had
significant effects on AW, CNSP, and TR, while factor h was insignificant. An optimal solution was
obtained using the desirability method, including 8.88 mm ϕ, 1.05 mm h, 3.01 mm λ, and 34.46◦ θ.
Wear tests and simulations showed that wear loss could be effectively reduced at different speeds by
the optimized BRS. It was found to be feasible to create a protective layer to reduce partial wear by
optimizing the parameters of the ribbed unit.

Keywords: biomimetic design; DEM; abrasive wear; Archard wear; sweep

1. Introduction

As agricultural technology has progressed, the wear failure of tillage has worsened [1].
Nearly 60% of financial losses have been attributed to missed production time due to part
replacement and maintenance [2]. Of these wear failures, abrasive wear accounts for up
to 50% [3]. Low-stress abrasion occurs when soil-engaging components come into direct
contact with soil particles during the tillage process. This can erode the edges and surfaces
of parts, consuming more energy and reducing product quality [4]. The problems caused
by wear are extremely serious; therefore, scholars have used various methods to increase
the wear resistance of tillage components.

Previous studies have focused on decreasing abrasive wear by increasing the surface
hardness of tillage parts. Approaches to improving wear resistance include the use of
high-strength materials [5], heat treatment [6,7], and the application of hardfacing materials
to the base metal [8,9].

All of these techniques can significantly extend the lifespan of tools. One of the most
effective methods of creating new materials is the bionic approach. Natural organisms
have developed remarkable abilities to adapt to their environments over hundreds of
millions of years of evolution. Some plants and animals have surfaces that are consistently
structured and shaped reasonably [10,11]. The tamarisk and scorpion that survive in
sandy environments, the sea conch that lives in a highly abrasive mud environment, and
the mole shell that lives in soil have all served as sources of inspiration. Tian, et al. [12]
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investigated the microstructures of shell surfaces to understand their anti-wear mechanisms.
Su, et al. [13] found that mole shells were covered with ribs capable of resisting variable
natural frictional erosion. Similarly, Huang, et al. [14] and Yin, et al. [15] discovered that the
grooved structures on tamarisk surfaces could provide erosion resistance. Some researchers
have created samples with ribbed or grooved surfaces with varying widths, spacings, and
angles to study anti-wear mechanisms [16–18].

The discrete element method (DEM), developed by Cundall and Strack [19], is com-
monly used to simulate dynamic processes. Scholars have utilized this technique in
modeling various agricultural engineering processes. These processes include optimizing
soil–tool interactions [20,21], estimating tillage disturbance caused by tools [22,23], and sim-
ulating grain mixture screening and cleaning processes [24,25]. This technique has proven
to be effective in achieving these objectives. DEM can also be used to simulate abrasive
wear during tillage. Kalacska, et al. [26] confirmed the wear mechanism by simulating soil
particle movement in contact with a tine using DEM. Zhang, et al. [27] simulated the wear
behavior of several bionic surfaces using the EDEM Archard wear model and found that
the results matched experimental outcomes. Awuah, et al. [28] assessed the geometric and
vibrational properties of various tines using DEM, demonstrating its ability to accurately
predict component wear and tillage resistance. Tong, Mohammad, Zhang, Ma, Rong, Chen,
and Menon [1] investigated how changes in Farrer scallop morphology affect wear patterns.
Previous studies did not analyze the combined effect of the bionic unit size system on the
wear resistance of tillage components.

The purpose of this study was to use bionics methods to reduce the wear of tillage
components caused by soil particles and to focus on the influence of specific parameters
on wear resistance. In this investigation, ribbed units were integrated with a conventional
sweep (CS) to produce a biomimetic ribbed sweep (BRS), which was designed to replicate
the wear-resistant characteristics of shell-like organisms. The DEM was employed to
simulate the tillage process. The response surface methodology was utilized to optimize
the width, height, intervals, and angles of the ribbed unit in order to create a BRS with
optimal wear resistance.

2. Materials and Methods
2.1. Design of BRS

A conventional sweep (CS), which is commonly used, was modified to incorporate
a bionic ribbed unit into the design of a biomimetic ribbed sweep (BRS), as depicted in
Figure 1. The design was inspired by the ribbed surface features of shells and pangolins.
The primary characteristics of the bionic ribbed unit included the width ϕ, height h, angle
θ, and intervals λ. The presence of ribbed units altered the interaction between soil particles
and the sweep surface, resulting in the separation of soil into two layers. As shown in
Figure 2, these layers consisted of a protection layer with a small speed difference between
soil particles and the sweep, and a wear layer with a large speed difference. This alteration
shifted the wear process from being between the soil and sweep to being between the
sweep and the protection layer, as well as between the protective and wear layers [15,29].
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Figure 1. Schematic of biomimetic samples covered with various ribbed units extracted from S. Sub-
crenata [12] and Pangolin squama [16]. 

 
Figure 2. A schematic diagram of the wear reduction mechanism by the ribbed unit. 
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Soil samples were taken from the topsoil layer (0–10 cm) [30] in the experimental field 

of the Jilin Agricultural University, Changchun, Jilin Province. The soil density was meas-
ured to be 1.27 g/cm3 and the soil moisture content was determined to be 22.33%. 

In this study, the tillage procedure was simulated using EDEM software. The main 
parameters employed in EDEM included material characteristics, such as density, Pois-
son’s ratio, and shear modulus, as well as contact property parameters. The Hertz–
Mindlin (no slip) contact model was utilized in this investigation and is characterized by 
three contact coefficients: coefficients of restitution, static friction, and rolling friction. The 
range of soil parameters was determined based on previous studies. Material and interac-
tion parameters were then adjusted using static angle tests to obtain the appropriate pa-
rameters [31,32]. 

2.2.1. Static Angle Tests and Simulation 
The static angle test was conducted using a pipe with an inner diameter of 46 mm 

and a height of 105 mm. The pipe was filled with soil and suspended on the electronic 
universal testing apparatus (C43.104, MTS Systems Co., Ltd., Canton, OH, USA). Soil 
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2.2. DEM Simulation

Soil samples were taken from the topsoil layer (0–10 cm) [30] in the experimental
field of the Jilin Agricultural University, Changchun, Jilin Province. The soil density was
measured to be 1.27 g/cm3 and the soil moisture content was determined to be 22.33%.

In this study, the tillage procedure was simulated using EDEM software. The main
parameters employed in EDEM included material characteristics, such as density, Poisson’s
ratio, and shear modulus, as well as contact property parameters. The Hertz–Mindlin (no
slip) contact model was utilized in this investigation and is characterized by three contact
coefficients: coefficients of restitution, static friction, and rolling friction. The range of soil
parameters was determined based on previous studies. Material and interaction parameters
were then adjusted using static angle tests to obtain the appropriate parameters [31,32].

2.2.1. Static Angle Tests and Simulation

The static angle test was conducted using a pipe with an inner diameter of 46 mm
and a height of 105 mm. The pipe was filled with soil and suspended on the electronic
universal testing apparatus (C43.104, MTS Systems Co., Ltd., Canton, OH, USA). Soil particles
were released from the pipe to create a stable stack as it was dragged upward at a speed of
10 mm/s. Three replicate tests were carried out and six sets of photos were obtained at 30◦

increments. The same settings were used to construct the EDEM simulation shown in Figure 3.
By collecting screenshots at the same 30-degree intervals as the experiment, six sets of soil
stacking photos were obtained in the EDEM. The static angle on both sides of the pile shown
in Table 1 was extracted from the collected pictures using MATLAB (MathWorks, Nadik, MA,
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USA). The results revealed that the experimental mean static angle was 35.69◦, with a standard
deviation (Std. Dev) of 1.16 and a coefficient of variation (C.V) of 3.25%. The simulation’s
average static angle was 35.55◦, with a Std. Dev of 1.09 and a C.V of 3.06%. Both the test and
simulation C.V values were less than 15%, indicating that the results were properly collected
and reliable [33]. The adopted parameters presented in Table 2 were appropriate, as evidenced
by the relative error of 0.39% between the test and simulation.
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Table 1. Simulation and experimental results of static angle test.

Shoot Orientation (deg) Static Angle of Experiment (deg) Static Angle of Simulation (deg)

0 36.9833 35.3445
30 34.5819 35.5740
60 34.3060 35.7740
90 34.8940 34.5803

120 37.2428 35.5314
150 36.1415 36.5112

Parameter Experiment Value Simulation Value

Static angle (deg) 35.6916 35.5526
Std. Dev (deg) 1.1594 1.0894

C.V (%) 3.2483 3.0643

Table 2. Soil and sweep parameters used in the DEM simulation.

Parameters Soil Sweep (Steel)

Particle radius (mm) 1.5
Density of soil particles (kg/m−3) 2550 7850

Poisson’s ratio of soil 0.3 0.3
Shear modulus of soil (MPa) 1 × 108 7.9 × 1010

Coefficient of restitution (with soil) 0.6 0.5
Coefficient of static friction (with soil) 0.54 0.64

Coefficient of rolling friction (with soil) 0.3 0.2

2.2.2. DEM Soil Bin

Figure 4 depicts a virtual soil bin with dimensions of 900 × 800 × 150 mm (long × width
× depth). To create the soil bin, spherical particles with a radius of 1.5 mm were used and
their sizes were randomized between 0.95 and 1.05 times the original size. The bin contained
a total of 3,940,848 particles. In the simulation, the fixed time step was set to be 15% of the
Rayleigh time step (2.4426 × 10−5 s). A 65 Mn steel material was assigned to the sweep model
when it was imported into EDEM, as indicated in Table 2. The tillage speed was set at 1.5 m/s
and the depth was set at 60 mm [26,34].
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In order to replicate the model’s wear, the Archard wear model was incorporated into
the contact setup. A wear factor of 0.8 × 10−12 m2N−1 for NM360 wear-resistant steel was
utilized, as this study mainly focused on the impact of the rib unit on wear [28,35].

The soil bin was divided into three zones: the stable zone, the test zone, and the border
zone. The simulation results included mean values for tillage resistance (TR), contact
number between sweep and soil particles (CNSP), and Archard wear value (AW) in the
test zone.

2.3. RSM Experimental Design and Optimization

The single-factor pretest yielded approximations for the ranges of four factors: ϕ
value of 5–15 mm, h value of 0.5–2 mm, λ value of 1–10 mm, and θ value of 0–90◦. A Box–
Behnken experiment with four factors at three levels was conducted using Design-Expert
13.0 software to examine the interactions between the four factors’ impacts on CNSP, AW,
and TR. A total of 29 trials were conducted in a random sequence. The three responses were
evaluated using the average of the DEM results and analyzed using analysis of variance
(ANOVA) to determine the main effects and interacting variables for each response.

To represent the desired ranges for each response, a multiple-response approach
was described using the desirability method [36,37]. The approach used the desirability
function, as shown in Equation (1). The response value was ranked from least to most
favorable based on D, which ranged from 0 to 1. In most cases, a range of 0.8 to 1 in factor D
was considered acceptable and excellent. When this value was less than 0.63, the parameter
quality was regarded as poor [38].

D = (d1 · d2 · . . . · dn)
1
n =

(
n

∏
i=1

di

) 1
n

(1)

where n is the number of the response and di represents each response.
The importance of the response (ri) was determined by modifying the desirability

function D(x) throughout the optimization process using Design-Expert. The importance
(ri) ranged from 1 for the least important to 5 for the most significant. The objective function
was Equation (2) when various importance levels were applied to various responses.
The main goal of this study was lower CNSP and to decrease abrasive wear on sweeps.
Although adding ribbed units would increase TR, the optimization outcome should not
provide an excessively high value. Thus, TR’s importance was set to level 1, while CNSP’s
and AW’s importance was set to level 5. Every response goal used the minimal option. This
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setting ensured that the optimized process could decrease CNSP and AW while decreasing
the rise in TR.

D =
(
dr1

1 · dr2
1 · . . . · drn

1
) 1

∑ ri =

(
n

∏
i=1

dr1
i

) 1
∑ ri

(2)

2.4. Abrasion Wear Test

The abrasion wear test was conducted using a JMM abrasive wear tester (designed by
Jilin University and the Chinese Academy of Agricultural Mechanization Sciences) to verify
the simulation results. As shown in Figure 5, the samples were 60 mm long, 20 mm wide,
and 10 mm thick. The distance between the rotary bin’s axis of rotation and the sample’s
installation position was 400 mm. The sample’s burial depth was 80 mm and the abrasive’s
impact angle on the sample’s surface was 35◦. The abrasive used in this study comprised a
mixture of 96.5% quartz sand (with a particle size ranging from 0.214–0.420 mm) and 3.5%
bentonite (less than 76 µm). Each test set consisted of four samples that were shifted by the
rotating system while sliding, resulting in a total distance of 803.4 m per set. As a result,
the total wear distance for each set was 25708.8 m. Each sample was tested three times at
three different wear speeds: 1.01 m/s, 2.02 m/s, and 3.02 m/s.
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3. Results
3.1. Model Fitting and Checking

Table A1 presents the impact of various BRS parameters on the three responses.
Table A2 provides an overview of the evaluation of the sufficiency and applicability of
the prediction model for the three responses. The quadratic model was found to be the
best prediction model for all responses. The differences between the predicted R2 and the
adjusted R2 were less than 0.2, indicating that the model fit the data well and could be used
for interpolation. The model was deemed appropriate, as the lack of fit value for all three
responses was not significant.

The residual analysis test results of each response-fitting model are shown in Figure 6.
The data points in Figure 6 display a normal distribution trend and are dispersed in a
straight line. There were fewer unpredictable values in the prediction model due to the
smaller discrepancy between the EDEM-simulated data points and the prediction model.
As a result, the model employed in this study was deemed reliable. To analyze all responses,
the ANOVA method was utilized, and the outcomes are presented in Table A3.
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3.2. CNSP Prediction

The number of soil particles that came into contact with the sweep during the DEM
simulation was defined as CNSP. Its value was related to the magnitude of wear [16]. The
DEM simulation results generally increased from 818.72 to 1798.64, with a mean value
of 1143.66 in Table A1. The coding factor regression equation is shown in Equation (3).
For ease of study, we used A to represent factor ϕ, B to represent factor h, C to represent
factor λ, and D to represent factor θ. Table A3 shows that the main influence factors were
A, B, C, D, AB, AC, AD, A2, B2, C2, and D2. The CNSP was significantly impacted by
the individual factors ϕ, h, λ, and θ, all of which tended to initially decrease and then
increase when each factor increased, as shown in Figure 7a. The interaction terms AB,
AC, and AD shown in Figure 8a–c were significant and the contour plots of the response
surfaces for AB and AD were elliptical. This indicates that there was a significant interaction
between the component elements in these phrases. When h was at the middle level for
factor AB, CNSP initially decreased and then increased as ϕ increased; as h increased, the
proportion of CNSP’s decline phase also increased. The interaction effect for factor AC
was not significant, with an increase in factors ϕ or λ; CNSP initially decreased and then
increased. For factor AD, CNSP first decreased and then increased with an increase in ϕ,
and significantly increased with an increase in θ.

CNSP = 853.18 − 94.28A + 60.20B + 97.17C + 131.01D − 297.74AB
−123.51AC + 91.28AD + 204.37A2 + 185.82B2 + 158.82C2 + 152.99D2 (3)
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3.3. AW Prediction

AW represented the mean wear value of the sweep model in the EDEM simulation.
The simulation results showed a minimum value of 0.114848 mm and a maximum value
of 0.114848 mm; the maximum value was 0.26647 mm and the mean value of 0.1774 mm
(Table A1). The coding factor regression equation is presented in Equation (4). Table A3
indicates that A, C, D, AB, AC, BC, BD, AD, A2, B2, C2, and D2 were significant factors for
AW. Although factor B was not significant (p = 0.063), it was retained due to its significant
interaction term. As shown in Figure 7b, the AW of all single factors initially decreased
and subsequently increased with each factor; this trend was similar to that of CNSP. The
response surface diagrams for the interaction terms are shown in Figure 8d–g. The contour
plots for factors AB, BC, and BD were distinctly elliptical, indicating significant interactions
between them. In factor AB, when h was at an intermediate value, AW first decreased then
increased asϕ increased; the diminishing section of AW slowly grew as h increased from its
lowest to highest level. In factor BC, AW first decreased then increased as h increased; for
factor λ, the response had a similar tendency to h, but with a higher increasing proportion.
In terms of BD, AW first decreased then increased as h increased, and it considerably
increased with θ.

AW = 0.1186017 + 0.0074A − 0.0062B + 0.016C + 0.022D − 0.048AB
−0.014AC − 0.018BC + 0.030A2 + 0.058B2 + 0.033C2 + 0.021D2 (4)
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3.4. TR Prediction

TR is one of the major parameters of tillage components. A higher TR requires larger
tractors and increases fuel consumption [39,40]. The simulation results ranged from 133.91
to 179.71, with an average value of 156.87 (Table A1). The coding factor regression equation
is shown in Equation (5). It can be seen in Table A3 that A, B, C, D, CD, B2, and C2 were
significant variables. Figure 7c shows the impact of all single factors on TR: it decreased
as ϕ and θ increased, while it first increased and then decreased as h and λ increased.
Figure 8h shows that the contour of CD was irregularly circular and highly interactive.
As λ increased gradually, the value of TR also increased, but started to decrease more
dramatically as θ increased.

TR = 162.70 − 5.30A + 8.35B + 3.25C − 13.79D − 6.36CD − 5.90B2 − 8.20C2 (5)

3.5. Optimization Results

By using the methods described in Section 2.3, the three response prediction models
were optimized and the results, are displayed in Table 3. The optimal approach had a
desirability rating of 0.925, which was deemed acceptable and excellent. As shown in
Table 3, the best result was obtained with the following parameters: 8.88 mm ϕ, 1.05 mm h,
3.01 mm λ, and 34.46◦ θ. These parameters produced the best solutions of 0.115 mm AW,
825.88 CNSP, and 159.27 N TR. This produced optimal solutions of 0.115 mm AW, 825.88
CNSP, and 159.27 N TR. The results of the response optimization were suitable and reliable,
as they were within the 95% prediction interval, as shown in Table A4. These results could
be used to predict the tillage process.

Table 3. Summary of the optimization results.

Φ (mm) h (mm) λ (mm) θ (◦) AW (mm) CNSP TR (N) Desirability (%)

8.88 1.05 3.01 34.46 0.115 825.88 159.27 0.926

The optimized BRS was re-simulated in EDEM using the same parameters. The
results were 0.124 mm AW, 866.64 CNSP, and 146.72 N TR. The relative errors between
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the simulated value and the predicted value for each case were 7.83%, 4.93%, and 7.88%,
respectively. These findings indicate that the results obtained from the regression equation
were both accurate and efficient [41]. The simulation results for CS were 0.168 mm AW,
1298.23 CNSP, and 129.66 N TR. Compared with CS, the optimized BRS showed a decrease
of 26.19% in AW and a decrease of 33.24% in CNSP, while showing an acceptable increase
of 13.16% in TR due to the resistance at a depth of 60 mm being between 129.66 to 179.17 N,
which would not have a significant effect on the tillage process. To verify the model’s
effectiveness at different tillage speeds, the optimized BRS and CS were simulated in the
same soil bin at speeds of 1 m/s, 2 m/s, and 3 m/s. At a speed of 1 m/s, the simulation
results for CS were 0.141 mm AW, 1381.87 CNSP, and 116.08 N TR, while the results for the
optimized BRS were 0.105 mm AW, 1050.67 CNSP, and 134.52 N TR. At a speed of 2 m/s,
the results for CS were 0.196 mm AW, 1218.08 CNSP, and 144.52 N TR, while those for BRS
were 0.152 mm AW, 631.27 CNSP, and 164.1 N TR. At a speed of 3 m/s, the results for CS
were 0.323 mm AW, 1087.49 CNSP, and 183.99 N TR, while those for BRS were 0.251 mm
AW, 514 CNSP, and 210 N TR.

3.6. Results of Abrasive Wear Test

The results of the wear test are shown in Figure 9, where CS1, CS2, and CS3 represent
the wear of CS at 1 m/s, 2 m/s, and 3 m/s, respectively. The same applied to BRS. As the
wear speed increased, the weight loss also increased. The wear loss of the BRS at three
speeds decreased by 31.497%, 34.355%, and 26.859%, compared with the CS, respectively.
This observation is similar to the findings of Goeke et al. [42], where the loss experienced
during the first wear process was greater than that observed in the subsequent wear
processes. The reason for this difference was attributed to the sample being in its run-in
phase during the initial wear process. During this phase, the surface of the sample was
worn down, resulting in an increase in its surface area. At the same time, the wear loss
was reduced due to strain hardening, which resulted in the formation of an oxide film on
the sample’s surface. The second and third wear processes were in a stable wear phase.
Overall, the optimized sweep showed a significant reduction in wear compared with CS at
different tillage speeds, which is consistent with the simulation results.
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4. Discussion

According to this study, the wear characteristics of the sweep were impacted by the
ribbed unit. For the CNSP and AW responses, the order of importance for factors was λ, θ,
Φ, and h. Parameter h has the least effect, which agreed with the results of Han, et al. [43].
It is feasible to reduce tillage wear by selecting appropriate optimization parameters. In
this study, the lowest value of each factor’s range was considered the low level, the highest
value was considered the high level, and the midpoint between the low and high levels was
considered the medium level. The individual analysis of each factor is described below.
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Φ had a significant effect on the CNSP, AW, and TR. Figure 10a shows that the thickness
of the soil protection layer gradually decreased as the level increased from low to medium.
However, all levels were able to completely enclose the sweep’s surface. At a low level,
an increase in the number of ribbed units on the BRS led to an increase in both CNSP and
AW due to the increase in the contact area between the BRS and soil. As a result, CNSP,
AW, and TR all declined throughout the rise from the low to medium level. The increase
in ϕ from medium to high resulted in an increase in the number of groove units. The soil
particle velocity on the surface of the sweep gradually increased. When it reached a certain
limit, the protective capacity would be smaller than the increase in wear caused by the
increase in area, leading to increases in CNSP and AW. This is consistent with the findings
of Zhang, et al. [29], while the values of CNSP and AW steadily increased, and the value of
TR decreased throughout this period.
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Factor h had a significant effect on CNSP and TR. Although its effect on AW was not
significant, it was still investigated for the reasons outlined in Section 3.3. The effect of
h on the three responses was primarily due to its impact on the ribbed unit’s ability to
hold soil particles. As shown in Figure 10b, at the low level, the surface lacked the ability
to hold particles. The soil particle velocity on the surface of the sweep was high, and the
protective layer generated was almost imperceptible. This resulted in large CNSP and AW
values and poor TR. When h reached a medium level, the velocity on the surface of the
sweep decreased and the thickness of the protective layer increased, which was sufficient to
protect the sweep. It would lead to a significant decrease in CNSP and AW and an increase
in TR. As h increased from the medium to high level, the soil particle velocity on the surface
of the sweep decreased and became similar to the tillage speed. Additionally, the protective
layer remained adequate to completely cover the sweep’s surface at the intermediate level,
which did not affect the CNSP and AW values. However, an increase in the contact area
brought about by h led to an increase in both CNSP and AW. In terms of TR, there was
no difference between the medium and high levels due to the similar thicknesses of the
protective layer.

The influence of λ was found to be significant for all three responses. Its value directly
influenced the capacity to form the protective layer. Figure 10c shows that, at low levels of
λ, due to the high soil particle velocity on the surface of the blade, there was essentially no
protective layer present. As λ increased to a medium level, a consistent protective layer
that completely enclosed the sweep formed. This level had the highest TR and the lowest
CNSP and AW. However, if λwas increased to a high level, soil particles would erode the
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inner surface due to the excessive length [17]. Figure 10c shows that the protective layer’s
thickness was insufficient to cover the surface of the BRS. Therefore, CNSP and AW were
higher at this level than those at the medium level, while TR was lower.

The simulation results for factor θ are presented in Figure 10d. It can be observed
that the thickness of the protective layer was sufficient to completely enclose the sweep at
low and medium levels. Due to the increased number of ribbed units, both CNSP and AW
were higher at a low level than at a medium level. At a high level, however, the protective
layer was virtually non-existent. In line with the findings of Tong, et al. [44], CNSP and AW
were significantly higher at this level compared with those at the previous two levels. As θ
increased, a notable dispersing effect (preventing soil particle accumulation) was observed,
while the hindering effect (formation of a protective layer) became negligible. This resulted
in a lower TR [18]. These results are consistent with those reported by Zhao, et al. [11],
indicating that superior anti-wear performance could be achieved at this angle.

5. Conclusions

In this study, a biomimetic method was proposed to reduce a sweep’s wear during
tillage by generating a protective layer. The impact of the ribbed unit parameters (ϕ, h,
λ, and θ) on the indicators of CNSP, AW, and TR was investigated using DEM and RSM
techniques. BBK tests were performed to obtain the regression equation for each response.
The simulation results for the various ribbed parameter scales were analyzed. It was shown
that the method for minimizing wear by creating a shield of soil particles was feasible.
The regression equations were optimized using the desirability approach, and the final
parameters set (8.88 mm ϕ, 1.05 mm h, 3.01 mm λ, and 34.46◦ θ) were shown to be the
most effective. The relative errors between the predicted and the simulated values were
7.83%, 4.93%, and 7.88%, respectively. The optimized sweep was verified by simulation
and testing with three tillage speed. The results show that, compared with the CS, the
optimized BRS had a greater reduction in both AW and CNSP. Compared with the CS,
the optimized BRS showed a decrease of 26.19% in AW and a decrease of 33.24% in CNSP.
It was proven that reducing wear was feasible by optimizing the ribbed unit parameters
to create an optimal protective layer. According to the abrasive test, the wear loss of the
BRS at three speeds decreased by 31.497%, 34.355%, and 26.859% compared with the CS,
respectively. Further research should consider the potential effect of tillage conditions more
carefully, for example, the tillage speed, depth, and the diameter of soil particles.
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Appendix A

Table A1. Response summary of the EDEM simulation result data.

Response Name Units Observations Minimum Maximum Mean Std. Dev Ratio

R1 AW mm 29 0.114845 0.26647 0.1774 0.0429 2.32
R2 CNSP 29 818.718 1798.64 1143.66 232.59 2.20
R3 TR N 29 133.908 179.71 156.87 12.90 1.34

Table A2. Summary of regression model fits for all response variables.

Source Sequential
p-Value

Lack of Fit
p-Value Adjusted R2 Predicted R2 Remark

AW model fit
summary statistics

Linear 0.2435 0.0003 0.0625 −0.0927
2FI 0.2582 0.0003 0.1530 −0.0506

Quadratic <0.0001 0.0587 0.9444 0.8479 Suggested
Cubic 0.1217 0.0994 0.9718 0.4004

CNSP model fit
summary statistics

Linear 0.0550 0.0014 0.1949 0.0580
2FI 0.0667 0.0023 0.4077 0.3697

Quadratic <0.0001 0.1135 0.9298 0.8125 Suggested
Cubic 0.1133 0.2221 0.9654 0.4298

TR model fit
summary statistics

Linear <0.0001 0.3292 0.7305 0.6791
2FI 0.5965 0.2916 0.7148 0.5783

Quadratic 0.0003 0.9423 0.9136 0.8542 Suggested
Cubic 0.9737 0.5388 0.8440 −0.3190

Table A3. Summary of ANOVA parameters in all responses.

AW
(Quadratic)

CNSP
(Quadratic)

TR
(Quadratic)

Source F-Value p-Value Source F-Value p-Value Source F-Value p-Value

Model 35.89 <0.0001 1 Model 30.62 <0.0001 1 Model 45.21 <0.0001 1

A 5.67 0.0300 1 A 24.91 0.0001 1 A 24.43 <0.0001 1

B 4.00 0.0629 2 B 10.16 0.0054 1 B 60.56 <0.0001 1

C 27.07 <0.0001 1 C 26.47 <0.0001 1 C 9.16 0.0064 1

D 50.98 <0.0001 1 D 48.11 <0.0001 1 D 165.36 <0.0001 1

AB 80.96 <0.0001 1 AB 82.82 <0.0001 1 CD 11.71 0.0026 1

AC 6.58 0.0208 1 AC 14.25 0.0015 1 B2 17.40 0.0004 2

AD 4.19 0.0585 2 AD 7.78 0.0126 1 C2 33.64 <0.0001 1

BC 11.24 0.0040 1 A2 63.28 <0.0001 1

BD 13.37 0.0021 1 B2 52.32 <0.0001 1

A2 52.02 <0.0001 1 C2 38.22 <0.0001 1

B2 185.72 <0.0001 1 D2 35.46 <0.0001 1

C2 61.04 <0.0001 1

D2 25.15 0.0001 1

Lack of fit 4.97 0.0675 2 Lack of fit 3.92 0.09862 Lack of fit 0.3613 0.93872

A: ϕ, B: h, C: λ, D: θ; 1: Statistically significant (p < 0.05); 2: Statistically not significant (p > 0.05).

Table A4. Confirmation data for predictive models.

Solution 1 Predicted
Mean

Predicted
Median Std Dev SE Mean 95% CI Low

for Mean
95% CI High

for Mean
95% TI Low
for 99% Pop

95% TI High
for 99% Pop

AW 0.114916 0.114916 0.009817 0.004112 0.10615 0.12368 0.07136 0.15847
CNSP 825.877 825.877 65.4314 26.8849 769.155 882.599 543.128 1108.63

TR 159.271 159.271 3.71592 1.16935 156.839 161.703 144.376 174.166
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