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Abstract: With the development of science and technology, many optimization problems in real life
have developed into high-dimensional optimization problems. The meta-heuristic optimization algo-
rithm is regarded as an effective method to solve high-dimensional optimization problems. However,
considering that traditional meta-heuristic optimization algorithms generally have problems such as
low solution accuracy and slow convergence speed when solving high-dimensional optimization
problems, an adaptive dual-population collaborative chicken swarm optimization (ADPCCSO) algo-
rithm is proposed in this paper, which provides a new idea for solving high-dimensional optimization
problems. First, in order to balance the algorithm’s search abilities in terms of breadth and depth, the
value of parameter G is given by an adaptive dynamic adjustment method. Second, in this paper, a
foraging-behavior-improvement strategy is utilized to improve the algorithm’s solution accuracy and
depth-optimization ability. Third, the artificial fish swarm algorithm (AFSA) is introduced to con-
struct a dual-population collaborative optimization strategy based on chicken swarms and artificial
fish swarms, so as to improve the algorithm’s ability to jump out of local extrema. The simulation
experiments on the 17 benchmark functions preliminarily show that the ADPCCSO algorithm is su-
perior to some swarm-intelligence algorithms such as the artificial fish swarm algorithm (AFSA), the
artificial bee colony (ABC) algorithm, and the particle swarm optimization (PSO) algorithm in terms
of solution accuracy and convergence performance. In addition, the APDCCSO algorithm is also
utilized in the parameter estimation problem of the Richards model to further verify its performance.

Keywords: meta-heuristic optimization; chicken swarm optimization; high-dimensional optimization

1. Introduction

High-dimensional optimization problems generally refer to ones with high complex-
ity and dimensions (exceeding 100). It often has the characteristics of non-linearity and
high complexity. In real life, many problems can be expressed as high-dimensional opti-
mization problems, such as large-scale job-shop-scheduling problems [1], vehicle-routing
problems [2], feature selection [3], satellite autonomous observation mission planning [4],
economic environmental dispatch [5], and parameter estimation. These kinds of optimiza-
tion problems often greatly degrade the performance of the optimization algorithm as
the dimension of the optimization problem increases, so it is extremely difficult to obtain
the global optimal solution, which poses a technical challenge to solving many practical
problems. Therefore, the study of high-dimensional optimization problems has important
theoretical and practical significance [6,7].

The meta-heuristic optimization algorithm is a class of random search algorithms pro-
posed by simulating biological intelligence in nature [8], and has been successfully applied
in various fields, such as the Internet of Things [9], network information systems [10,11],
multi-robot space exploration [12], and so on. At present, hundreds of algorithms have
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emerged, such as the particle swarm optimization (PSO) algorithm, the artificial bee colony
(ABC) algorithm, the artificial fish swarm algorithm (AFSA), the bacterial foraging algo-
rithm (BFA), the grey wolf optimizer (GWO) algorithm, and the sine cosine algorithm
(SCA) [13]. These algorithms have become effective methods for solving high-dimensional
optimization problems because of their simple structure and strong exploration and ex-
ploitation abilities. For example, Huang et al. proposed a hybrid optimization algorithm by
combining the frog’s leaping optimization algorithm with the GWO algorithm and verified
the performance of the algorithm on 10 high-dimensional complex functions [14]. Gu
et al. proposed a hybrid genetic grey wolf algorithm for solving high-dimensional complex
functions by combining the genetic algorithm and GWO and verified the performance of
the algorithm on 10 high-dimensional complex test functions and 13 standard test func-
tions [15]. Wang et al. improved the grasshopper optimization algorithm by introducing
nonlinear inertia weight and used it to solve the optimization problem of high-dimensional
complex functions. Experiments on nine benchmark test functions show that the algorithm
has significantly improved convergence speed and convergence accuracy [16].

The chicken swarm optimization (CSO) algorithm is a meta-heuristic optimization
algorithm proposed by Meng et al. in 2014, which simulates the foraging behavior of
chickens in nature [17]. The algorithm realizes rapid optimization through information
interaction and collaborative sharing among roosters, hens, and chicks. Because of its good
solution accuracy and robustness, it has been widely used in network engineering [18,19],
image processing [20–22], power systems [23,24], parameter estimation [25,26], and other
fields. For example, Kumar et al. utilized the CSO algorithm to select the best peer in the
P2P network and proposed an optimal load-balancing strategy. The experimental results
show that it has better load balancing than other methods [18]. Cristin et al. applied the CSO
algorithm to classify brain tumor severity in magnetic resonance imaging (MRI) images and
proposed a brain-tumor image-classification method based on the fractional CSO algorithm.
Experimental results show that this method has good performance in accuracy, sensitivity,
and so on [20]. Liu et al. developed an improved CSO–extreme-learning machine model
by improving the CSO algorithm and applied it to predict the photovoltaic power of a
power system and obtained satisfactory results [23]. Alisan applied the CSO algorithm for
the parameter estimation of the proton exchange membrane fuel cell model, and it exhibit
particularly good performance [25].

Although the CSO algorithm has been successfully applied to various fields and solved
many practical problems, the above application examples are all aimed at low-dimensional
optimization problems. With the increase in the dimensions of the optimization problems,
the CSO algorithm is prone to premature convergence. Therefore, for the optimization
problem of high-dimensional complex functions, Yang et al. constructed a genetic CSO
algorithm by introducing the idea of a genetic algorithm into the CSO algorithm and verified
the performance of the proposed algorithm on 10 benchmark functions [27]. Although the
convergence speed and stability were improved, the solution accuracy is still unsatisfactory.
Gu et al. realized the solution to high-dimensional complex function optimization problems
by removing the chicks in the chicken swarm and introducing an inverted S-shaped inertial
weight to construct an adaptive simplified CSO algorithm [28]. Although the proposed
algorithm is significantly better than some other algorithms in solution accuracy, there is still
room for improvement in convergence speed. By introducing the dissipative structure and
differential mutation operation into the basic CSO algorithm, Han constructed a hybrid CSO
algorithm to avoid premature convergence in solving high-dimensional complex problems,
and verified the performance of the proposed algorithm on 18 standard functions [29].
Although its convergence performance was improved, the solution accuracy should be
further enhanced.

To address the aforementioned issues, we propose an adaptive dual-population collab-
orative CSO (ADPCCSO) algorithm in this paper. The algorithm solves high-dimensional
complex problems by using an adaptive adjustment strategy for parameter G, an improvement
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strategy for foraging behaviors, and a dual-population collaborative optimization strategy.
Specifically, the main technical features and originality of this paper are given below.

(1) The value of parameter G is given using an adaptive dynamic adjustment method,
so as to balance the breadth and depth of the search abilities of the algorithm.

(2) To improve the solution accuracy and depth optimization ability of the CSO
algorithm, an improvement strategy for foraging behaviors is proposed by introducing an
improvement factor and adding a kind of chick’s foraging behavior near the optimal value.

(3) A dual-population collaborative optimization strategy based on the chicken
swarm and artificial fish swarm is constructed to enhance the global search ability of the
whole algorithm.

The simulation experiments on the selected standard test functions and the parameter
estimation problem of the Richards model show that the ADPCCSO algorithm is better
than some other meta-heuristic optimization algorithms in terms of solution accuracy,
convergence performance, etc.

The rest of this paper is arranged as follows. In Section 2, the principle and char-
acteristics of the standard CSO algorithm are briefly introduced. Section 3 describes the
ADPCCSO algorithm proposed in this paper in detail, the improvement strategies of the
algorithm, and the main implementation steps are presented in this section. Simulation ex-
periments and analysis are presented in Section 4 to verify the performance of the proposed
ADPCCSO algorithm. Finally, we conclude the paper in Section 5.

2. The Basic CSO Algorithm

CSO algorithm is a class of random search algorithm based on the collective intel-
ligent behavior of chicken swarms in the process of foraging. In this algorithm, several
randomly generated positions in the search range are regarded as several chickens, and
the fitness function values of chickens are regarded as food sources. In light of the fitness
function values, the whole chicken swarm is divided into the roosters, hens, and chicks,
where roosters have the best fitness values, hens take second place, and chicks have the
worst fitness values. The algorithm relies on the roosters, hens, and chicks to constantly
conduct information interaction and cooperation sharing and finally finds the best food
source [30,31]. The characteristics are as follows:

(1) The whole chicken swarm is divided into several subgroups, and each subgroup is
composed of a rooster, at least one hen and several chicks. The hens and chicks look for
food under the leadership of the roosters in their subgroups, and they will also obtain food
from other subgroups.

(2) In the basic CSO algorithm, once the hierarchical relationship and dominance
relationship between roosters, hens, and chicks are determined, they will remain unchanged
for a certain period until the role update condition is met. In this way, they achieve
information interaction and find the best food source.

(3) The whole algorithm realizes parallel optimization through the cooperation be-
tween roosters, hens, and chicks. The formulas corresponding to their foraging behaviors
are as follows:

The roosters’ foraging behavior:

Xi,j(t + 1) = Xi,j(t)×
(

1 + Randn
(

0, σ2
))

j ∈ (1, 2, . . . Dim) (1)

σ2 =

{
1, fi ≤ fk,

exp
(
( fk − fi)
| fi | + ε

)
, fi > fk

k 6= i (2)

where Xi,j(t) stands for the position of the ith rooster at iteration t. Dim is the dimension of
the problem to be solved. Randn

(
0, σ2) is a random number matrix with a mean value of

0 and a variance of σ2. ε is a smallest positive normalized floating-point number in IEEE
double precision. fk is the fitness function value of any rooster, and k 6= i.

The hens’ foraging behavior is described by
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Xi,j(t + 1) = Xi,j(t) + c1 × rand()×
(
Xr1,j(t)− Xi,j(t)

)
+ c2 × rand()×

(
Xr2,j(t)− Xi,j(t)

)
(3)

c1 = exp(( fi − fr1)/(abs( fi) + ε)) (4)

c2 = exp( fr2 − fi) (5)

where Xi,j(t) is the individual position of the ith hen, Xr1,j(t) is the position of the group-
mate rooster of the ith hen, Xr2,j(t) is a randomly selected chicken, and r2 6= r1.

The chicks’ foraging behavior is described by

Xi,j(t + 1) = Xi,j(t) + FL×
(
Xm,j(t)− Xi,j(t)

)
(6)

where i is an index of the chick, and m is an index of the ith chick’s mother. FL ∈ (0, 2) is a
follow coefficient.

3. ADPCCSO Algorithm

To address the issue of precocious convergence of the basic CSO algorithm in solving
high-dimensional optimization problems, an ADPCCSO algorithm is proposed. First, to
balance the breadth and depth search abilities of the basic CSO algorithm, an s-shaped
function is utilized to adaptively adjust the value of parameter G. Then, in order to improve
the solution accuracy of the algorithm, inspired by the literature [32], an improvement
factor is used to dynamically adjust the foraging behaviors of chickens. At the same time,
when the role-update condition is met, the chicks are arranged to search for food near the
global optimal value, which can enhance the depth optimization ability of the algorithm.
Finally, in view of the fact that the AFSA has unique behavior-pattern characteristics, which
can make the algorithm quickly jump out of the local optimal solution in solving the high-
dimensional optimization problems, it is integrated into the CSO algorithm to construct a
dual-population collaborative optimization strategy based on chicken swarms and artificial
fish swarms to enhance the global search ability, so as to achieve rapid optimization in
the algorithm.

3.1. The Improvement Strategy for Parameter G

In the basic CSO algorithm, the parameter G determines how often the hierarchical
relationship and role assignment of the chicken swarm are updated. The setting of an
appropriate parameter G plays a crucial role in balancing the breadth and depth search
abilities of the algorithm. Too large a value of G means that the information interaction
between individuals is slow, which is not conducive to improving the breadth search ability
of the algorithm. Too small a value of G will make the information interaction between
individuals too frequent, which is not beneficial to enhancing the depth-optimization
ability of the algorithm. Considering that the value of parameter G is a constant in the basic
CSO algorithm, it is not conducive to balancing the search abilities between breadth and
depth. We use Equation (7) to adaptively adjust the value of the parameter G; that is, in
the early stage of the algorithm iteration, let G take a smaller value to enhance the breadth
optimization ability of the algorithm; in the late stage of iteration of the algorithm, let G
take a larger value to enhance the depth-optimization ability of the algorithm.

G = round (40 + 60/(1 + exp(15− 0.5t))) (7)

where t represents the current number of iterations and round () is a rounding function that
can round an element to the nearest integer.

3.2. The Improvement Strategy for Foraging Behaviors

To improve the solution accuracy and depth-optimization ability of the algorithm,
we construct an improvement strategy for foraging behaviors in this section; that is, an
improvement factor is used in updating formulas of chickens. At the same time, in an effort
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to improve the depth optimization ability of CSO algorithm, the chicks’ foraging behavior
near the optimal value is also added.

3.2.1. Improvement Factor

To enhance the optimization ability of the algorithm, a learning factor was integrated
into the foraging formula of roosters in Reference [32], which can be shown as follows:

a(t) = t× (log(ωmax)− log(ωmin))/M− log(ωmax) (8)

ω(t) = exp(−a(t)) (9)

where M is the maximum number of iterations and ωmax and ωmin are the maximum and
minimum values of the learning factor, whose values are 0.9 and 0.4, respectively.

The method in Reference [32] improved the optimization ability of the algorithm to a
certain degree, but it only modified the position update formula of roosters, which is not
conducive to further optimization of the algorithm. Therefore, we slightly modified the
learning factor in Reference [32] and named it the improvement factor; that is, through
trial and error, we set the maximum and minimum values of the improvement factor to
be 0.7 and 0.1, respectively, and then used them in the foraging formulas of roosters, hens,
and chicks. The experimental results have demonstrated that the solution accuracy and
convergence performance are significantly improved. The modified foraging formulas for
roosters, hens, and chicks are shown in Equations (10)–(12):

Xi,j(t + 1) = ω(t)× Xi,j(t)×
(

1 + Randn
(

0, σ2
))

(10)

Xi,j(t + 1) = ω(t)× Xi,j(t) + c1 × rand()×
(
Xr1,j(t)− Xi,j(t)

)
+ c2 × rand()×

(
Xbest,j(t)− Xi,j(t)

)
(11)

Xi,j(t + 1) = ω(t)× Xi,j(t) + FL×
(
Xm,j(t)− Xi,j(t)

)
+ FL×

(
Xbest,j(t)− Xi,j(t)

)
(12)

3.2.2. Chicks’ Foraging Behavior near the Optimal Value

To enhance the depth optimization ability of the CSO algorithm, when the role update
condition is met, chicks are allowed to search for food directly near the current optimal
value. The corresponding formula is as follows:

Xi,j(t + 1) = lb + (ub− lb)× rand() (13)

lb = Xbest,j(t)−
∣∣∣Xbest,j(t)

∣∣∣× rand() (14)

ub = Xbest,j(t) +
∣∣∣Xbest,j(t)

∣∣∣× rand() (15)

where Xbest,j(t) is the global optimal individual position at iteration t. lb and ub are the
upper and lower bounds of an interval set near the current optimal value.

3.3. The Dual-Population Collaborative Optimization Strategy

To speed up the step of the algorithm jumping out of the local extrema, so as to quickly
converge to the global optimal value, in view of the good robustness and global search
ability of AFSA, the AFSA is introduced to construct a dual-population collaborative opti-
mization strategy based on the chicken swarm and artificial fish swarm. With this strategy,
the excellent individuals and several random individuals between the two populations are
exchanged to break the equilibrium state within the population, so that the algorithm jumps
out of the local extrema. The flow chart of the dual-population collaborative optimization
strategy are shown in Figure 1.
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The main steps are as follows:

(1) Population initialization. Randomly generate two initial populations with a popula-
tion size of N: the chicken swarm and the artificial fish swarm.

(2) Chicken swarm optimization. Calculate the fitness function values of the entire
chicken swarm and record the optimal value.

(a) Update the position of chickens.
(b) Update the optimal value of the current chicken swarm.

(3) Artificial fish swarm optimization. Calculate the fitness function values of the entire
artificial fish swarm and record the optimal value.

(i) Update the positions of artificial fish swarm.

Update the positions of the artificial fish swarm; that is, by simulating fish behaviors
of preying, swarming, and following, compare the fitness function values to find out the
best behavior and execute this behavior. Their corresponding formulas are as follows.

The preying behavior:

Xi|next = Xi + rand()× Step×
Xj − Xi∥∥Xj − Xi

∥∥ (16)

Xj = Xi + rand()×Visual (17)

where Xi is the position of the ith artificial fish. Step and Visual represent the step length
and visual field of an artificial fish, respectively.

The swarming behavior:

Xi|next = Xi + rand()× Step× Xc − Xi
‖Xc − Xi‖

(18)

Xc =

n f

∑
ci=1

Xci

n f
(19)



Biomimetics 2023, 8, 210 7 of 30

where nf represents the number of partners within the visual field of the artificial fish. Xc is
the center position.

The following behavior:

Xi|next = Xi + rand()× Step× Xmax − Xi
‖Xmax − Xi‖

(20)

where Xmax is the position of an artificial fish with the optimal food concentration that can
be found within the current artificial fish’s visual field.

(ii) Update the optimal value of the current artificial fish swarm.

(4) Interaction. To realize information interaction and thus break the equilibrium state
within the population, first, select the optimal individuals in the chicken swarm and
artificial fish swarm for exchange, and then select the remaining Num (Num < N)
individuals randomly generated in the two populations for exchange.

(5) Repeat steps (2)–(4) until the specified maximum number of iterations is reached and
the optimal value is output.

3.4. The Design and Implementation of the ADPCCSO Algorithm

To address the premature convergence issue encountered by the basic CSO algorithm
in solving high-dimensional optimization problems, the ADPCCSO algorithm is proposed.
Firstly, the algorithm adjusts the parameter G adaptively and dynamically to balance the
algorithm’s breadth and depth search ability. Then, the solution accuracy and depth-
optimization ability of the algorithm are enhanced by using the improvement strategy
for foraging behaviors described in Section 3.2. Finally, the dual-population collaborative
optimization strategy is introduced to accelerate the step of the algorithm jumping out of
the local extrema. The specific process is as follows:

(1) Parameter initialization. The numbers of roosters, hens, and chicks are 0.2 × N,
0.6 × N, and N − 0.2 × N − 0.6 × N, respectively.

(2) Population initialization. Initialize the two populations according to the method
described in Section 3.3.

(3) Chicken swarm optimization. Calculate the fitness function values of chickens and
record the optimal value of the current population.

(4) Conditional judgment. If t = 1, go to step (c); otherwise, execute step (a).

(a) Judgment of the information interaction condition in the chicken swarm. If
t%G = 1, execute step (b); otherwise, go to step (d).

(b) Chicks’ foraging behavior near the optimal value. Chicks search for food
according to Equations (13)–(15) in Section 3.2.2.

(c) Information interaction. In light of the current fitness function values of the
entire chicken swarm, the dominance relationship and hierarchical relationship
of the whole population are updated to achieve information interaction.

(d) Foraging behavior. The chickens with different roles search for food according
to Equations (10)–(12).

(e) Modification of the optimal value in the chicken swarm: after each iteration,
the optimal value of the whole chicken swarm is updated.

(5) Artificial fish swarm optimization. Calculate the fitness function values of the artificial
fish swarm and record the optimal value of the current population.

(i) In the artificial fish swarm, behaviors of swarming, following, preying, and
random movement are executed to find the optimal food.

(ii) Update the optimal value of the whole artificial fish swarm.

(6) Exchange. This includes the exchange of the optimal individuals and the exchange of
several other individuals in the two populations.
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(7) Judgment of ending condition for the algorithm. If the specified maximum number
of iterations is reached, the optimal value will be output, and the program will be
terminated. Otherwise, go to step (3).

3.5. The Time Complexity Analysis of the ADPCCSO Algorithm

In the standard CSO algorithm, if the population size of the chicken swarm is assumed
to be N, then the dimension of the solution space is d, the iteration number of the entire
algorithm is M, and the hierarchical relationship of the chicken swarm is updated every G
iterations. The numbers of roosters, hens, and chickens in the chicken swarm e Nr, Nh, and
Nc, respectively; that is, Nr + Nh + Nc = N. The calculation time of the fitness function value
of each chicken is tf. Therefore, the time complexity of the CSO algorithm consists of two
stages, namely, the initialization stage and the iteration stage [30,32].

In the initialization stage (including parameter initialization and population initializa-
tion), assume that the setting time of parameters is t1, the actual time required to generate
a random number is t2, and the sorting time of the fitness function values is t3. Then, the
time complexity of the initial stage is T1 = t1 + N × d × t2+ t3 + N × tf = O(N × d + N × tf).

In the iteration stage, let the time for each rooster, hen, and chick to update its position
on each dimension be tr, th, and tc, respectively. The time it takes to compare the fitness
function values between two individuals is t4, and the time it takes for the chickens to
interact with information is t5. Therefore, the time complexity of this stage is as follows.

T2 = M× d× Nr × tr + M× d× Nh × th + M× d× Nc × tc + N × M× t f + M× N × t4 + M
G

×t5 = M× d× (Nr × tr + Nh × th + Nc × tc) + N × M× (t f + t4) +
M
G × t5 = O(N × M× d + N × M× t f ).

Therefore, the time complexity of the standard CSO algorithm is as follows.

T′ = T1 + T2 = O(N × d + N × tf) + O(N ×M × d + N ×M × tf) = O(N ×M × d + N ×M × tf).

On the basis of the standard CSO algorithm, the ADPCCSO algorithm adds the
improvement factor in the position update formula of the chicken swarm, the foraging
behavior of chicks near the optimal value, and the optimization strategy of the artificial
fish swarm. It is assumed that the population size of the artificial fish swarm is N, and
the tentative number when performing foraging behavior is try_number. In the swarming
and following behaviors, it is necessary to count friend_number times when calculating
the values of nf and Xmax. The time to calculate the improvement factor is t6, and the
time it takes to perform the foraging, swarming, and following behaviors are t7, t8, and
t9, respectively.

Therefore, the time complexity of adding the improvement factor in the position
updating formula is T3 = M × N × t6 = O(M × N). The time complexity of the chicks’
foraging behavior near the optimal value is T4 = M

G × d × Nc × tc = O( M
G × d × Nc).

The time complexity of the artificial fish swarm optimization strategy is mainly com-
posed of three parts: foraging behavior, swarming behavior, and following behavior. Its
time complexity is as follows [33].

T5 = M × N × try_number × t7 × d + M × N × t8 × Friend_number × d + M × N × Friend_number × t9 × d =
O(M × N × try_number × d) + O(M × N × Friend_number × d) + O(M × N × Friend_number × d) = O(M × N × d).

Therefore, the time complexity of the ADPCCSO algorithm is as follows.

T = T′ + T3 + T4 + T5 = O(N × M× d + N × M× t f ) + O(M × N) + O(M
G × d × Nc)

= O(N × M× d + N × M× t f )

It can be seen that the time complexity of the ADPCCSO and standard CSO algorithms
is still in the same order of magnitude.
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4. Simulation Experiment and Analysis
4.1. The Experimental Setup

In this study, our experiments were conducted on a desktop computer with an Intel®

Pentium® CPU G4500 @ 3.5 GHz processor, 12 GB RAM, a Windows 7 operating system,
and the programming environment of MATLABR2016a.

To verify the performance of he ADPCCSO algorithm in solving high-dimensional
complex optimization problems, we selected 17 standard high-dimensional test functions
in Reference [28] for experimental comparison, which are listed in Table 1. (Because the
functions f 18~f 21 in Reference [28] are fixed low-dimensional functions, we only selected
the functions f 1~f 17 for experimental comparison.) Here, the functions f 1~f 12 are unimodal
functions. Because it is difficult to obtain the global optimal solution, they are often used to
test the solution accuracy of the algorithms. The functions f 13~f 17 are multimodal functions,
which are often used to verify the global optimization ability of the algorithms.

Table 1. The description of the test functions.

Type Functions Names Search Ranges

Unimodal Functions

f1 =
n
∑

i=1
χ2

i
Sphere [−100,100]

f2 =
n
∑

i=1
|χi|i+1 Sum of different powers [−1,1]

f3 =
n
∑

i=1
iχ2

i
Sum squares [−10,10]

f4 =
n−1
∑

i=1

[
100
(
χi+1 − χ2

i
)2

+ (χi − 1)2
]

Rosenbrock [−5,10]

f5 = (χ1 − 1)2 +
n
∑

i=2
i
(
2χ2

i − χi−1
)2

Dixon-price [−10,10]

f6 =
n
∑

i=1

i
∑

j=1
χ2

j
Rotated hyper-ellipsoid [−65.536,65.536]

f7 = max|χi| Schwefels P 2.21 [−100,100]

f8 =
n
∑

i=1
|χi|+

n
∏
i=1
|χi| Schwefels P 2.22 [−10,10]

f9 =
n
∑

i=1
iχ4

i + rand[0, 1) Quartic [−1.28,1.28]

f10 =
n
∑

i=1
([χi + 0.5])

2
Step [−100,100]

f11 = 106χ2
1

n
∑

i=1
χ2

i
Discus [−100,100]

f12 =
n
∑

i=1
χ2

i +

(
n
∑

i=1
0.5iχi

)2
+

(
n
∑

i=1
0.5iχi

)4
Zakharov [−5,10]

Multimodal Functions

f13 = 1
4000

n
∑

i=1
χ2

i −
n
∏
i=1

cos
(

χi√
i

)
+ 1 Griewank [−600,600]

f14 =
n
∑

i=1

[
χ2

i − 10 cos(2πχi) + 10
] Rastrigin [−5.12,5.12]

f15 =

−20 exp

−0.2

√
n
∑

i=1
χ2

i

n

− exp
(

1
n

n
∑

i=1
cos(2πχi)

)
+

20 + e

Ackley [−32,32]

f16 =
n/4
∑

i=1
[(χ4i−3 + 10χ4i−2)

2 + 5(χ4i−1 − χ4i)
2+

(χ4i−2−2χ4i−1)
4 + 10(χ4i−3 + χ4i)

4]

Powell [−4,5]

f17 =
n
∑

i=1
|χi sin(χi) + 0.1χi| Alpine [−10,10]

Global minimum: 0
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To fairly compare the performance of various algorithms, we need to make all al-
gorithms have the same number of function evaluations (FEs). In our paper, FEs = the
population size × the maximum number of iterations, and considering that the population
size and the maximum number of iterations of GCSO [27] and DMCSO [29] are both 100
and 1000, in the experiment, we also set these two parameters for the remaining algorithms
to 100 and 1000, respectively. The experimental data in this paper are obtained by indepen-
dently running all algorithms on each function for 30 times. Other parameter settings are
shown in Table 2.

Table 2. The parameter settings of all algorithms.

Algorithms Parameter Settings

PSO c1 = c2 = 2, ωmin = 0.4, ωmax = 0.9
CSO rPercent = 0.2, hPercent = 0.6, G = 10

AFSA Visual = 2.5, Step = 0.3, try_number = 5
ABC Limit = 100,

GCSO [27] rPercent = 0.2, hPercent = 0.6, G = 10, Pc = 0.8, Pm = 0.2
ASCSO-S [28] rPercent = 0.4, hPercent = 0.6, G = 100,
DMCSO [29] rPercent = 0.2, hPercent = 0.6, G = 10
ADPCCSO rPercent = 0.2, hPercent = 0.6

In Table 2, c1 and c2 are two learning factors and ωmin and ωmax are the upper and
lower bounds of the inertial weight. hPercent and rPercent are the proportion of hens and
roosters in the entire chickens, respectively. Nc, Nre, and Ned represent the numbers of
chemotactic, reproduction, and elimination-dispersal operations, respectively. Visual, Step,
and try_number represent the vision field, step length, and maximum tentative number of
the artificial fish swarm, respectively. Limit is a control parameter for bees to abandon their
food sources. Pc and Pm are crossovers and variation operators.

In Table 2, the parameters of AFSA are set after trial and error on the basis of the
literature [31]. The parameter of ABC is set according to the study [34] where ABC has been
proposed. The parameters of PSO, CSO, ASCSO-S [28], GCSO [27], and DMCSO [29] are
set according to their corresponding references (namely the studies [27–29]), respectively.

4.2. The Effectiveness Test of Two Improvement Strategies

To verify the effectiveness of the two improved strategies proposed in Sections 3.1 and 3.3,
we have compared the ACSO, DCCSO, and CSO algorithms on 17 test functions in terms
of the solution accuracy and convergence performance. Here, the ACSO algorithm is an
adaptive CSO algorithm, that is, we only use Equation (7) to make adaptive dynamic
adjustment to the parameter G in the CSO algorithm. The DCCSO algorithm refers to
the fact that only the dual-population collaborative optimization strategy mentioned in
Section 3.3 is used in CSO algorithm.

The experimental results of the above three algorithms on 17 test functions are listed
in Table 3, where the optimal results are marked in bold. In Table 3, “Dim” is the dimension
of the problem to be solved, “Mean” is the mean value, and “Std” is the standard deviation.
“↑”, “↓”, and “=”, respectively, signify that the operation results obtained by the ACSO and
DCCSO algorithms are superior to, inferior to, and equal to those obtained by the basic
CSO algorithm.

It can be seen from Table 3 that the optimization results of the ACSO and DCCSO
algorithms on almost all benchmark test functions are far superior to those of the CSO
algorithm (on only function f 2, the optimization results of DCCSO algorithm are slightly
inferior to those of CSO algorithm); in particular, the experimental data on functions f 10
and f 11 reached the theoretical optimal values. This shows the effectiveness of the two
improvement strategies proposed in Sections 3.1 and 3.3 in terms of solution accuracy.
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Table 3. The experimental comparison of two improvement strategies with Dim = 100.

Functions Results ACSO DCCSO CSO

f 1
Mean 1.2641 × 10−7↑ 6.1971× 10−8↑ 0.0231

Std 5.0764 × 10−7 3.3534× 10−7 0.0724

f 2
Mean 2.0509× 10−33↑ 4.9656 × 10−12↓ 3.6821 × 10−17

Std 1.1232× 10−32 1.2131 × 10−11 2.0117 × 10−16

f 3
Mean 1.5007× 10−8↑ 4.9472 × 10−8↑ 0.5679

Std 3.5575× 10−8 1.7774 × 10−7 3.0256

f 4
Mean 97.9332↑ 97.7092↑ 9.3677 × 104

Std 0.6317 0.3845 4.9125 × 104

f 5
Mean 0.6671↑ 0.2500↑ 2.6486 × 104

Std 4.4377× 10−4 0.1451 1.5023 × 104

f 6
Mean 1.3338 × 10−9↑ 2.2178× 10−10↑ 0.0374

Std 6.4294 × 10−9 5.8728× 10−10 0.1085

f 7
Mean 26.3562↑ 22.9327↑ 27.6541

Std 2.8717 4.3603 3.0137

f 8
Mean 8.3801× 10−28↑ 6.1715 × 10−27↑ 1.8973 × 10−16

Std 2.3832× 10−27 1.3900 × 10−26 2.8673 × 10−16

f 9
Mean 5.6485× 10−4↑ 0.0213↑ 2.7873

Std 0.0016 0.0209 1.4489

f 10
Mean 0↑ 0↑ 208.3000

Std 0 0 608.1095

f 11
Mean 0= 0= 0

Std 0 0 0

f 12
Mean 27.6333↑ 0.0036↑ 121.6425

Std 8.7731 0.0196 31.6731

f 13
Mean 1.7590 × 10−6↑ 5.1184× 10−9↑ 0.0971

Std 5.6806 × 10−6 1.6819× 10−8 0.2474

f 14
Mean 2.3473× 10−11↑ 1.6175 × 10−10↑ 3.5819 × 10−7

Std 7.0250× 10−11 6.0763 × 10−10 1.3432 × 10−6

f 15
Mean 1.3016× 10−5↑ 1.4443 × 10−4↑ 4.2376

Std 3.1445× 10−5 6.7327 × 10−4 3.0389

f 16
Mean 4.5474× 10−5↑ 1.8637 × 10−4↑ 124.7637

Std 1.0932× 10−4 7.2074 × 10−4 80.3793

f 17
Mean 1.2160× 10−25↑ 8.6956 × 10−24↑ 0.1021

Std 4.4244× 10−25 3.9926 × 10−23 0.0795

↑ — 16 15 —

= — 1 1 —

↓ — 0 1 —

To verify the effectiveness of ACSO and DCCSO algorithms compared with the CSO
algorithm in terms of the aspect of convergence performance, the convergence curves of
the above three algorithms on some functions are shown in Figure 2. For simplicity, we
only list the convergence curves of the aforementioned algorithms on functions f 1, f 9, f 13,
and f 16, where functions f 1 and f 9 are unimodal functions and functions f 13 and f 16 are
multimodal functions. In addition, in order to make the convergence curves clearer, we
take the logarithmic processing for the average fitness values.
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As can be seen from Figure 2, the convergence performance of both ACSO and
DCCSO algorithms is significantly superior to that of the CSO algorithm, which proves
the effectiveness of the two improvement strategies proposed in this paper in terms of
convergence performance.

4.3. The Effectiveness Test of Improvement Strategy for Foraging Behaviors

To test the effectiveness of the improvement strategy proposed in Section 3.2, the
learning-factor-based foraging behavior improvement strategy in the literature [32] is
used for experimental comparison. At the same time, with the purpose of conducting
experimental comparison more objectively and fairly, we let the ADPCCSO algorithm use
the above-mentioned improvement strategies on 17 test functions to verify the performance
of the improvement strategy in Section 3.3. The experimental results are listed in Table 4,
where the ADPCCSO [32] indicates that the improvement strategy for foraging behavior
in the literature [32] is used in the ADPCCSO. In addition, the number of optimal results
calculated by each algorithm based on the mean value is also shown in Table 4.

As can be seen from Table 4, the ADPCCSO [32] only obtained optimal values on
5 functions, while the ADPCCSO algorithm obtained optimal values on 16 functions and
the theoretical optimal values were obtained on 13 functions. Only on function f 5 were
the results of ADPCCSO algorithm slightly inferior to those of the ADPCCSO [32]. This
shows the effectiveness of the improvement strategy proposed in Section 3.2 in terms of
solution accuracy.

To test the effectiveness of the improvement strategy proposed in Section 3.3 in terms
of convergence performance, the convergence curves of the above two algorithms are also
listed in this section. For simplicity, only their convergence curves on functions f 9 and
f 15 are given, which are shown in Figure 3. It is worth noting that in order to make the
convergence curves look more intuitive and clearer, we also logarithm the average fitness
values in this section.
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Table 4. The experimental results of improvement strategy for foraging behaviors.

Functions Dim Results ADPCCSO [32] ADPCCSO

f 1 100
Mean 4.5239 × 10−29 0

Std 1.5994 × 10−28 0

f 2 100
Mean 1.9065 × 10−120 0

Std 1.0442 × 10−119 0

f 3 100
Mean 1.4728 × 10−29 0

Std 5.7490 × 10−29 0

f 4 100
Mean 97.4457 97.3542

Std 0.4394 0.1748

f 5 100
Mean 0.2080 0.2483

Std 0.0360 0.1220

f 6 100
Mean 4.6786 × 10−27 0

Std 2.4167 × 10−26 0

f 7 100
Mean 4.5660 × 10−9 0

Std 2.2296 × 10−8 0

f 8 100
Mean 2.5173 × 10−18 0

Std 1.2607 × 10−17 0

f 9 100
Mean 2.8945 × 10−4 5.0547× 10−5

Std 2.2222 × 10−4 4.0937× 10−5

f 10 100
Mean 0 0

Std 0 0

f 11 100
Mean 0 0

Std 0 0

f 12 100
Mean 9.1771 × 10−8 0

Std 4.5102 × 10−7 0

f 13 100
Mean 0 0

Std 0 0

f 14 100
Mean 0 0

Std 0 0

f 15 100
Mean 8.3743 × 10−13 8.8818× 10−16

Std 2.1757 × 10−12 0

f 16 100
Mean 2.1177 × 10−13 0

Std 1.1599 × 10−12 0

f 17 100
Mean 6.1813 × 10−19 0

Std 2.9778 × 10−18 0

The number of
optimal values — — 5 16
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It is obvious from Figure 3 that the convergence performance of the ADPCCSO al-
gorithm is better than that of ADPCCSO [32] as a whole. Especially on function f 15, the
ADPCCSO algorithm has more obvious advantages in convergence performance, and it
began to converge stably around the 18th generation.

4.4. Performance Comparison of Several Swarm Intelligence Algorithms

To test the advantages of the ADPCCSO algorithm proposed in this paper over other al-
gorithms in solving high-dimensional optimization problems, in this section, it is compared
with five other algorithms, namely ASCSO-S [28], ABC, AFSA, CSO, and PSO. Their best
values, worst values, mean values, and standard deviations obtained on the 17 benchmark
standard test functions are shown in Tables 5–7, where the best values are shown in bold.
In addition, we also count the number of optimal values obtained by each algorithm based
on the mean value, which are shown in Tables 5–7.

Table 5. The experimental results of several algorithms on the 17 test functions with Dim = 30.

Functions Results PSO CSO ABC AFSA ASCSO-S [28] ADPCCSO

f 1

Best 3.7892 × 10−7 1.9607 × 10−57 1.6335 × 10−10 5.6533 × 103 0 0

Worst 3.3136 × 10−5 3.5835 × 10−51 6.1183 × 10−9 1.1818 × 104 0 0

Mean 8.1646 × 10−6 2.0326 × 10−52 1.1637 × 10−9 8.6369 × 103 0 0

Std 7.3589 × 10−6 6.6738 × 10−52 1.2091 × 10−9 1.7458 × 103 0 0

f 2

Best 2.8786 × 10−25 3.4757 × 10−229 1.0079 × 10−16 1.7090 × 10−14 0 0

Worst 1.1064 × 10−19 1.3980 × 10−175 3.4341 × 10−12 1.0720 × 10−6 0 0

Mean 7.0544 × 10−21 4.6607 × 10−177 2.3088 × 10−13 8.7408 × 10−8 0 0

Std 2.1066 × 10−20 0 6.5800 × 10−13 2.2756 × 10−7 0 0

f 3

Best 2.2371 × 10−8 5.1238 × 10−59 5.6509 × 10−12 9.4436 × 10−10 0 0

Worst 2.9967 × 10−6 6.0429 × 10−50 1.5907 × 10−10 2.5102 × 10−5 0 0

Mean 6.2016 × 10−7 2.2297 × 10−51 4.7148 × 10−11 1.9605 × 10−6 0 0

Std 6.9470 × 10−7 1.1016 × 10−50 3.8334 × 10−11 5.5333 × 10−6 0 0

f 4

Best 16.2996 28.1179 0.0172 28.6682 28.0946 26.0670

Worst 116.2702 28.8012 2.0188 28.6958 28.8361 26.4449

Mean 40.4342 28.6045 0.4208 28.6815 28.5759 26.2860

Std 28.1404 0.1780 0.4832 0.0064 0.1895 0.1059

f 5

Best 0.1584 0.6667 0.0020 0.2365 0.6675 0.1264

Worst 3.8248 0.6680 0.0413 0.8863 0.6945 0.6667

Mean 1.0539 0.6668 0.0134 0.6239 0.6771 0.6152

Std 0.8150 2.5860× 10−4 0.0104 0.2949 0.0060 0.1572

f 6

Best 2.6902 × 10−6 1.3140 × 10−57 1.9353 × 10−9 1.6776 × 10−6 0 0

Worst 4.2475 × 10−4 5.2576 × 10−50 4.0498 × 10−8 2.1169 × 103 0 0

Mean 4.6277 × 10−5 1.9182 × 10−51 1.2558 × 10−8 470.0765 0 0

Std 7.5722 × 10−5 9.5710 × 10−51 8.6975 × 10−9 554.1585 0 0

f 7

Best 2.8302 4.8744 × 10−4 35.6262 23.8437 0 0

Worst 11.6978 11.8819 69.5916 37.7208 0 0

Mean 7.1201 1.7212 53.5446 32.1146 0 0

Std 1.9084 2.5014 8.4248 2.8659 0 0

f 8

Best 2.3485 × 10−5 1.2698 × 10−47 8.4305 × 10−7 2.6316 × 10−5 0 0

Worst 5.9154 × 10−4 3.8306 × 10−39 3.6912 × 10−6 0.0019 0 0

Mean 1.3335 × 10−4 1.4723 × 10−40 2.1448 × 10−6 4.9365 × 10−4 0 0

Std 1.1816 × 10−4 6.9630 × 10−40 6.7603 × 10−7 4.5878 × 10−4 0 0
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Table 5. Cont.

Functions Results PSO CSO ABC AFSA ASCSO-S [28] ADPCCSO

f 9

Best 0.0214 5.0059 × 10−4 0.1207 0.0633 3.8672 × 10−6 6.7322× 10−8

Worst 0.0662 0.0063 0.2208 0.9340 1.2345 × 10−4 1.3725× 10−5

Mean 0.0388 0.0022 0.1618 0.4880 4.4905 × 10−5 5.4986× 10−6

Std 0.0107 0.0014 0.0249 0.2360 2.8655 × 10−5 3.7638× 10−6

f 10

Best 25,242 0 0 14,420 0 0

Worst 56,647 0 0 19,647 0 0

Mean 4.1697 × 104 0 0 1.7400 × 104 0 0

Std 8.7103 × 103 0 0 1.4435 × 103 0 0

f 11

Best 6.5543 × 10−110 0 2.4514 × 10−17 0.2369 0 0

Worst 1.5207 × 10−92 0 5.3306 × 10−10 3.4087 × 105 0 0

Mean 7.7255 × 10−94 0 5.5002 × 10−11 2.9144 × 104 0 0

Std 2.9853 × 10−93 0 1.2907 × 10−10 7.8180 × 104 0 0

f 12

Best 7.4366 4.0903 × 10−10 178.9370 2.9405 × 10−10 0 0

Worst 25.2881 0.0026 297.2858 1.3546 × 10−6 0 0

Mean 14.4849 1.6588 × 10−4 258.7280 1.5486 × 10−7 0 0

Std 5.1486 5.2388 × 10−4 26.6593 2.7336 × 10−7 0 0

f 13

Best 6.8986 × 10−7 0 9.5128 × 10−11 341.9474 0 0

Worst 0.0418 0.0317 2.7115 × 10−6 548.6863 0 0

Mean 0.0073 0.0011 1.1044 × 10−7 453.6446 0 0

Std 0.0110 0.0058 4.9356 × 10−7 50.0682 0 0

f 14

Best 24.9001 0 2.6751 × 10−10 3.8881 × 10−11 0 0

Worst 72.6456 0 0.9950 1.6855 × 10−4 0 0

Mean 42.2098 0 0.0334 1.2826 × 10−5 0 0

Std 9.7365 0 0.1816 3.4642 × 10−5 0 0

f 15

Best 2.7359 × 10−4 4.4409 × 10−15 4.6745 × 10−6 2.3668 × 10−7 8.8818× 10−16 8.8818× 10−16

Worst 0.0087 7.9936 × 10−15 2.0602 × 10−5 4.5716 × 10−5 8.8818× 10−16 8.8818× 10−16

Mean 0.0012 5.1514 × 10−15 1.1813 × 10−5 9.9561 × 10−6 8.8818× 10−16 8.8818× 10−16

Std 0.0019 1.4454 × 10−15 4.5981 × 10−6 1.0266 × 10−5 0 0

f 16

Best 0.0036 2.2516 × 10−10 0.0197 1.9804 × 10−9 0 0

Worst 0.0501 0.0344 0.0662 0.0513 0 0

Mean 0.0158 0.0029 0.0398 0.0024 0 0

Std 0.0094 0.0064 0.0116 0.0099 0 0

f 17

Best 4.4072 × 10−5 3.6124 × 10−43 3.1203 × 10−5 9.5533 × 10−7 0 0

Worst 0.0026 0.0135 0.0016 1.1938 × 10−4 0 0

Mean 5.4095 × 10−4 4.4862 × 10−4 2.7629 × 10−4 1.8260 × 10−5 0 0

Std 6.0504 × 10−4 0.0025 3.6245 × 10−4 2.4140 × 10−5 0 0

The
number

of optimal
values

— 0 3 3 0 14 15
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Table 6. The experimental results of several algorithms on the 17 test functions with Dim = 100.

Functions Results PSO CSO ABC AFSA ASCSO-S [28] ADPCCSO

f 1

Best 331.6384 3.8575 × 10−10 4.6681 × 10−4 1.0976 × 105 0 0

Worst 1.5637 × 103 0.3189 0.0115 1.3888 × 105 0 0

Mean 820.8795 0.0231 0.0037 1.2477 × 105 0 0

Std 306.5691 0.0724 0.0030 7.3483 × 103 0 0

f 2

Best 1.3001 × 10−9 5.4401 × 10−118 8.9306 × 10−11 8.8725 × 10−15 0 0

Worst 2.9796 × 10−7 1.1019 × 10−15 1.7231 × 10−6 1.3526 × 10−7 0 0

Mean 3.9194 × 10−8 3.6821 × 10−17 1.5964 × 10−7 6.9148 × 10−9 0 0

Std 5.6393 × 10−8 2.0117 × 10−16 3.2834 × 10−7 2.5352 × 10−8 0 0

f 3

Best 193.9070 2.8194 × 10−8 5.0620 × 10−4 1.3041 × 10−12 0 0

Worst 607.9061 16.5860 0.0080 4.3909 × 10−7 0 0

Mean 359.4745 0.5679 0.0020 6.8692 × 10−8 0 0

Std 119.4655 3.0256 0.0019 1.1022 × 10−7 0 0

f 4

Best 1.7150 × 103 1.7196 × 103 10.3203 97.9925 98.4232 96.9640

Worst 5.2518 × 103 1.6970 × 105 163.3205 97.9974 98.6505 97.7413

Mean 3.1415 × 103 9.3677 × 104 64.7252 97.9948 98.5347 97.3542

Std 969.8680 4.9125 × 104 48.8932 0.0013 0.0542 0.1748

f 5

Best 8.8700 × 103 5.8244 × 103 2.5520 0.2588 0.6697 0.1650

Worst 4.6263 × 104 5.8722 × 104 32.2056 0.9957 0.7130 0.6670

Mean 1.7986 × 104 2.6486 × 104 19.4081 0.6788 0.6824 0.2483

Std 9.9693 × 103 1.5023 × 104 6.8118 0.3652 0.0100 0.1220

f 6

Best 7.1656 × 103 1.0137 × 10−8 0.0158 1.4010 × 106 0 0

Worst 2.7522 × 104 0.4670 0.5992 1.7946 × 106 0 0

Mean 1.4753 × 104 0.0374 0.1189 1.5276 × 106 0 0

Std 5.2502 × 103 0.1085 0.1147 7.8348 × 104 0 0

f 7

Best 60.4254 20.0019 89.5451 64.4002 0 0

Worst 74.0098 33.0724 94.9584 67.8016 0 0

Mean 69.0845 27.6541 92.6977 66.4129 0 0

Std 2.7611 3.0137 1.5126 0.8293 0 0

f 8

Best 7.9422 2.4244 × 10−25 0.0434 1.8359 × 10−5 0 0

Worst 31.8309 1.3145 × 10−15 1.8336 7.7035 × 10−4 0 0

Mean 15.9717 1.8973 × 10−16 0.4174 2.4555 × 10−4 0 0

Std 5.2235 2.8673 × 10−16 0.4529 2.1085 × 10−4 0 0

f 9

Best 0.0132 0.8490 0.8410 0.0556 2.9430× 10−6 5.9305 × 10−6

Worst 0.0596 6.9853 1.9323 1.0584 1.8325 × 10−4 1.6123× 10−4

Mean 0.0389 2.7873 1.5058 0.3994 5.9754 × 10−5 5.0547× 10−5

Std 0.0121 1.4489 0.2431 0.2476 4.0570× 10−5 4.0937 × 10−5

f 10

Best 178,077 0 0 131,449 0 0

Worst 245,665 3259 11 150,603 0 0

Mean 2.0967 × 105 208.3000 3.9000 1.4119 × 105 0 0

Std 1.6501 × 104 608.1096 2.7959 5.5073 × 103 0 0

f 11

Best 1.5426 × 10−104 0 0.0022 3.2837 × 10−4 0 0

Worst 2.4719 × 10−91 0 203.0441 2.0208 × 105 0 0

Mean 8.3044 × 10−93 0 20.6829 1.0851 × 104 0 0

Std 4.5118 × 10−92 0 43.5221 3.8186 × 104 0 0
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Table 6. Cont.

Functions Results PSO CSO ABC AFSA ASCSO-S [28] ADPCCSO

f 12

Best 667.4600 57.7245 1.2511 × 103 1.3428 × 10−9 0 0

Worst 945.0711 201.4214 1.5822 × 103 4.1973 × 10−6 0 0

Mean 795.7159 121.6425 1.4465 × 103 3.3379 × 10−7 0 0

Std 71.2566 31.6731 74.6356 8.8407 × 10−7 0 0

f 13

Best 5.3691 4.6892 × 10−8 6.4557 × 10−4 1.9224 × 103 0 0

Worst 15.8932 0.8468 0.1507 2.2859 × 103 0 0

Mean 8.3992 0.0971 0.0393 2.1567 × 103 0 0

Std 2.3010 0.2474 0.0401 72.4208 0 0

f 14

Best 360.5859 5.4570 × 10−12 44.0741 6.6412 × 10−9 0 0

Worst 554.4953 7.1574 × 10−6 94.4551 6.2310 × 10−6 0 0

Mean 457.6672 3.5819 × 10−7 76.2198 9.6717 × 10−7 0 0

Std 53.2555 1.3432 × 10−6 11.8763 1.5725 × 10−6 0 0

f 15

Best 5.1581 2.6698 × 10−4 2.7054 8.8592 8.8818× 10−16 8.8818× 10−16

Worst 7.3260 8.0990 4.3356 11.3301 8.8818× 10−16 8.8818× 10−16

Mean 6.1988 4.2376 3.3019 10.4007 8.8818× 10−16 8.8818× 10−16

Std 0.6392 3.0389 0.3805 0.6789 0 0

f 16

Best 222.6462 11.7000 0.4054 5.5729 × 10−10 0 0

Worst 430.1541 356.0054 5.2618 3.7702 × 10−6 0 0

Mean 300.4803 124.7637 1.0924 3.6632 × 10−7 0 0

Std 57.0504 80.3793 0.8972 7.3156 × 10−7 0 0

f 17

Best 4.1014 5.5199 × 10−16 0.3310 1.5395 × 10−6 0 0

Worst 15.7794 0.3483 2.8968 1.4224 × 10−4 0 0

Mean 9.9203 0.1021 1.7783 3.1874 × 10−5 0 0

Std 3.0857 0.0795 0.6698 3.4611 × 10−5 0 0

The
number

of optimal
values

— 0 1 1 0 14 16

Table 7. The experimental results of several algorithms on the 17 test functions with Dim = 500.

Functions Results PSO CSO ABC AFSA ASCSO-S [28] ADPCCSO

f 1

Best 3.4417 × 105 2.5543 × 103 3.6768 × 105 1.0969 × 106 0 0

Worst 4.6704 × 105 6.8327 × 104 4.4583 × 105 1.1766 × 106 0 0

Mean 3.8680 × 105 2.5851 × 104 4.1182 × 105 1.1455 × 106 0 0

Std 2.8825 × 104 2.1362 × 104 2.1084 × 104 1.7879 × 104 0 0

f 2

Best 2.9636 × 10−5 2.0082 × 10−20 0.0013 3.8515 × 10−24 0 0

Worst 5.8766 × 10−4 1.0013 × 10−8 0.0954 6.4414 × 10−21 0 0

Mean 2.4724 × 10−4 3.4055 × 10−10 0.0283 1.1455 × 10−21 0 0

Std 1.5991 × 10−4 1.8271 × 10−9 0.0222 1.7334 × 10−21 0 0

f 3

Best 6.8732 × 105 1.5062 × 103 8.3936 × 105 7.8388 × 10−11 0 0

Worst 9.1084 × 105 1.5161 × 105 1.1140 × 106 8.8722 × 10−7 0 0

Mean 7.9392 × 105 4.7686 × 104 9.8574 × 105 1.3798 × 10−7 0 0

Std 5.4605 × 104 3.9801 × 104 6.4256 × 104 2.4515 × 10−7 0 0
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Table 7. Cont.

Functions Results PSO CSO ABC AFSA ASCSO-S [28] ADPCCSO

f 4

Best 1.7194 × 106 1.3918 × 106 6.3634 × 106 493.9575 496.7487 493.9299

Worst 3.5606 × 106 1.9726 × 106 1.2479 × 107 493.9587 497.2473 493.9573

Mean 2.3993 × 106 1.6391 × 106 9.3641 × 106 493.9579 496.9662 493.9538

Std 3.9854 × 105 1.3493 × 105 1.4413 × 106 2.6809× 10−4 0.1279 0.0061

f 5

Best 1.0013 × 108 1.8404 × 106 7.8591 × 107 0.3184 0.6689 0.2500

Worst 1.3784 × 108 7.8611 × 106 1.5676 × 108 0.9999 0.7017 1.000

Mean 1.1896 × 108 2.8855 × 106 1.2822 × 108 0.9772 0.6793 0.4515

Std 1.0854 × 107 1.0721 × 106 1.7802 × 107 0.1244 0.0080 0.3363

f 6

Best 2.9002 × 107 2.2390 × 105 3.5757 × 107 9.9591 × 107 0 0

Worst 3.5667 × 107 6.8730 × 106 4.6993 × 107 1.0592 × 108 0 0

Mean 3.3281 × 107 2.7459 × 106 4.1792 × 107 1.0295 × 108 0 0

Std 1.7553 × 106 1.9846 × 106 2.6048 × 106 1.5075 × 106 0 0

f 7

Best 86.9503 28.1422 98.3712 85.7017 0 0

Worst 92.0266 37.3954 99.4773 86.6041 0 0

Mean 90.0683 32.4090 99.0033 86.0787 0 0

Std 1.0962 2.6020 0.3065 0.1978 0 0

f 8

Best — 7.2696 × 10−5 14.8251 2.5230 × 10−6 0 0

Worst — 0.0272 35.1057 6.2084 × 10−4 0 0

Mean — 0.0038 23.2632 1.6534 × 10−4 0 0

Std — 0.0052 5.8171 1.4938 × 10−4 0 0

f 9

Best 6.8570 × 103 109.6845 6.4870 × 103 0.0405 4.3034× 10−6 4.3945 × 10−6

Worst 9.8138 × 103 248.1032 1.1307 × 104 1.0915 2.5897 × 10−4 2.3338× 10−4

Mean 8.0498 × 103 165.4784 8.7373 × 103 0.4747 8.6590 × 10−5 7.8670× 10−5

Std 713.7037 35.6537 1.3277 × 103 0.3269 6.7364 × 10−5 6.1413× 10−5

f 10

Best 1,184,738 696 338,407 1,090,299 0 0

Worst 1,420,609 78,661 438,699 1,178,878 0 0

Mean 1.3025 × 106 3.2412 × 104 4.0323 × 105 1.1436 × 106 0 0

Std 5.1289 × 104 2.1558 × 104 2.1198 × 104 2.1114 × 104 0 0

f 11

Best 2.2971 × 10−108 0 238.1984 2.5935 0 0

Worst 2.3336 × 10−90 0 3.2393 × 108 6.8893 × 1012 0 0

Mean 8.4855 × 10−92 0 2.4048 × 107 3.5147 × 1011 0 0

Std 4.2637 × 10−91 0 6.8332 × 107 1.3599 × 1012 0 0

f 12

Best 7.4466 × 103 423.5607 8.0224 × 103 7.4597 × 10−10 0 0

Worst 9.0534 × 103 957.8956 9.0259 × 103 7.0508 × 10−5 0 0

Mean 8.3756 × 103 605.4779 8.5640 × 103 4.8219 × 10−6 0 0

Std 411.8127 134.3923 225.0238 1.5936 × 10−5 0 0

f 13

Best 3.1602 × 103 4.1279 3.3720 × 103 1.2415 × 104 0 0

Worst 4.0106 × 103 619.8709 4.1088 × 103 1.3397 × 104 0 0

Mean 3.5174 × 103 257.6846 3.7513 × 103 1.2997 × 104 0 0

Std 207.0651 196.7478 178.7140 245.8616 0 0
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Table 7. Cont.

Functions Results PSO CSO ABC AFSA ASCSO-S [28] ADPCCSO

f 14

Best 4.4677 × 103 0.0554 3.4416 × 103 0 0 0

Worst 5.3152 × 103 28.4260 3.9138 × 103 9.2223 × 10−6 0 0

Mean 4.9007 × 103 1.9175 3.7437 × 103 5.3898 × 10−7 0 0

Std 223.7973 5.1479 122.1901 1.6800 × 10−6 0 0

f 15

Best 19.9067 9.3629 18.7378 19.4867 8.8818× 10−16 8.8818× 10−16

Worst 20.3297 10.8053 19.1688 19.6899 8.8818× 10−16 8.8818× 10−16

Mean 20.0874 10.1880 18.9621 19.6119 8.8818× 10−16 8.8818× 10−16

Std 0.0956 0.2990 0.1058 0.0535 0 0

f 16

Best 3.6786 × 104 5.9190 × 103 5.8397 × 103 2.4219 × 10−13 0 0

Worst 5.9557 × 104 1.1086 × 104 6.9910 × 104 2.3802 × 10−7 0 0

Mean 4.8675 × 104 7.6308 × 103 4.6904 × 104 2.7949 × 10−8 0 0

Std 6.0856 × 103 1.0778 × 103 1.4820 × 104 5.2233 × 10−8 0 0

f 17

Best 579.0176 0.3822 347.2300 6.4884 × 10−7 0 0

Worst 846.7066 11.2094 455.8400 1.1283 × 10−4 0 0

Mean 651.8188 2.8344 425.6886 3.0884 × 10−5 0 0

Std 53.6387 2.4758 22.2323 2.7903 × 10−5 0 0

The
number

of optimal
values

— 0 1 0 0 14 17

It is not difficult to see from Tables 5–7 that the ADPCCSO and ASCSO-S algorithms are
far superior to the other four swarm intelligence algorithms in terms of solution accuracy
and stability. Among them, the ADPCCSO algorithm has the best performance: in particu-
lar, when Dim = 500, it obtained the optimal values in all 17 functions, and the number of
optimal results calculated by the ASCSO-S algorithm is 14. Additionally, on function f 5,
the operation results of the ADPCCSO algorithm at Dim = 100 and Dim = 500 are far better
than those at Dim = 30, which also shows to a certain extent that the ADPCCSO algorithm
is more suitable for handling higher-dimensional complex optimization problems.

As can be seen from Table 5, although the ABC algorithm obtained the optimal
values in three functions, its optimization ability worsens as the dimension of the problem
increases. On the contrary, AFSA shows a higher optimization ability (when Dim = 500, its
optimization ability on 11 functions is much better than that of the ABC algorithm), which
is one of the reasons why we constructed a dual-population collaborative optimization
strategy based on a chicken swarm and an artificial fish swarm to solve high-dimensional
optimization problems. It is noteworthy that the operation results of the PSO algorithm
on function f 8 are not given in Table 7. This is because when Dim = 500, its fitness
function values often exceed the maximum positive value that the computer can represent,
resulting in the algorithm being unable to obtain suitable operation results. This also
shows that the PSO algorithm is not suitable for handling higher-dimensional complex
optimization problems.

Below, we summarize why the solution accuracy of ADPCCSO and ASCSO-S algo-
rithms is better than that of the other four algorithms. This may be due to the fact that both
algorithms introduce an improvement factor (which is called an inertial weight) into the
position update formula of the chicken swarm. The reason why the performance of the
former in terms of solution accuracy is better than that of the latter may be because the
former uses an improvement strategy for foraging behaviors, which not only improves the
depth optimization ability of the algorithm but also improves its solution accuracy.
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To verify the superiority of the ADPCCSO algorithm over other algorithms in terms
of convergence performance, this paper presents the convergence curves of the above six
algorithms on all 17 test functions with Dim = 100, which are shown in Figure 4. In Figure 4,
the average fitness values of all ordinates are also logarithmic. In addition, in order to
further present a clearer convergence effect, we have locally enlarged some convergence
curves, which is why there are subgraphs in some convergence curves.
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As can be seen from Figure 4, the ADPCCSO algorithm has the best convergence
performance on 16 functions, but on only function f 4, its convergence is slightly inferior to
that of the ABC algorithm. ASCSO-S ranks second in terms of convergence performance,
and AFSA and CSO are tied for third place. (This is another reason why we construct
a dual-population collaborative optimization strategy based on the chicken swarm and
artificial fish swarm).

Below, we summarize why the convergence performance of the ADPCCSO and
ASCSO-S algorithms is better than that of the other four algorithms as a whole. This
may be because both algorithms use adaptive dynamic adjustment strategies. The con-
vergence performance of the former is superior to that of the latter, which may be due
to the use of the dual-population collaborative optimization strategy in the ADPCCSO
algorithm, which improves the convergence performance of the algorithm. In addition, by
carefully observing Figure 4, it is not difficult to find that on functions f 1–f 3, f 6–f 8, f 10–f 14,
and f 16–f 17, it seems that the convergence curves of ADPCCSO and ASCSO-S algorithms in
the late iteration stage are not fully presented. This is because both algorithms have found
the theoretical optimal value of 0 in these functions, and 0 has no logarithm.

4.5. Friedman Test of Algorithms

The Friedman test, or Friedman’s method for randomized blocks, is a non-parametric
test method that does not require the sample to obey a normal distribution, and it only uses
rank to judge whether there are significant differences in multiple population distributions.
This method was proposed by Friedman in 1973. Because of its simple operation and no
strict requirements for data, it is often used to test the performance of algorithms [28,35].

To further test the performance of the ADPCCSO algorithm proposed in this paper,
in this section, the Friedman test is utilized to compare the performance of the above six
algorithms from a statistical perspective. For the minimum optimization problem, the
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smaller the average ranking of the algorithm is, the better the performance of the algorithm
is. In this section, the SPSS software is used to calculate the average ranking values of
all algorithms. The statistical results are shown in Table 8. It is obvious from Table 8
that the ADPCCSO algorithm has the lowest average ranking of 1.5 and therefore has the
best performance.

Table 8. Friedman test results of algorithms.

Algorithms Average Ranking Ranking

ADPCCSO 1.50 1
ASCSO-S 1.79 2

CSO 4.06 3
AFSA 4.24 4
ABC 4.24 4
PSO 5.18 5

4.6. Performance Comparison of Several Improved CSO Algorithms

To further verify the performance of ADPCCSO algorithm proposed in this paper,
two improved CSO algorithms mentioned in the literature [27,29], namely GCSO [27]
and DMCSO [29], have also been used to compare with the ADPCCSO algorithm. The
experimental results are shown in Table 9. The experimental data of both algorithms
are from the corresponding references. It is worth noting that the population size of the
above three algorithms is 100, and the maximum number of iterations is 1000, which also
facilitates a more fair and reasonable experimental comparison. Other parameter settings
are shown in Table 2.

Table 9. The experimental results of three improved CSO algorithms with Dim = 100.

Functions Results GCSO [27] DMCSO [29] ADPCCSO

f 1

Best 1.85 × 10−22 5.2267 × 10−14 0

Worst 8.95 × 10−22 1.0984 × 10−2 0

Mean 3.44 × 10−22 5.8629 × 10−4 0

Std 1.49 × 10−22 2.0933 × 10−3 0

f 2

Best — 2.0470 × 10−52 0

Worst — 3.6166 × 10−16 0

Mean — 1.5245 × 10−17 0

Std — 6.7682 × 10−17 0

f 3

Best — — 0

Worst — — 0

Mean — — 0

Std — — 0

f 4

Best 98.4 2.1671× 10 −5 96.9640

Worst 99.1 15.966 97.7413

Mean 98.4 1.1912 97.3542

Std 0.1685 3.2648 0.1748

f 5

Best — 0.23433 0.1650

Worst — 0.95006 0.6670

Mean — 0.39495 0.2483

Std — 0.19341 0.1220
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Table 9. Cont.

Functions Results GCSO [27] DMCSO [29] ADPCCSO

f 6

Best — — 0

Worst — — 0

Mean — — 0

Std — — 0

f 7

Best — — 0

Worst — — 0

Mean — — 0

Std — — 0

f 8

Best — 1.4932 × 10−29 0

Worst — 1.3772 × 10−25 0

Mean — 1.1269 × 10−26 0

Std — 2.7019 × 10−26 0

f 9

Best — — 5.9305 × 10−6

Worst — — 1.6123 × 10−4

Mean — — 5.0547 × 10−5

Std — — 4.0937 × 10−5

f 10

Best — — 0

Worst — — 0

Mean — — 0

Std — — 0

f 11

Best 2.71 × 10−90 5.0821 × 10−16 0

Worst 4.94 × 10−75 7.8047 × 10−4 0

Mean 1.23 × 10−75 1.1682 × 10−4 0

Std 1.89 × 10−75 2.0372 × 10−4 0

f 12

Best — 2.4456 × 10−6 0

Worst — 3.1745 × 102 0

Mean — 1.2118 × 102 0

Std — 1.1470 × 102 0

f 13

Best 0 1.0436 × 10−13 0

Worst 3.33 × 10−16 1.5270 × 10−4 0

Mean 2.78 × 10−17 1.5162 × 10−5 0

Std 6.16 × 10−17 3.8028 × 10−5 0

f 14

Best 0 2.2612 × 10−13 0

Worst 1.95 × 10−14 8.8588 × 10−6 0

Mean 2.72 × 10−15 6.6629 × 10−7 0

Std 5.04 × 10−15 2.0084 × 10−6 0

f 15

Best 5.21 × 10−24 1.3195 × 10−7 8.8818× 10−16

Worst 1.69 × 10−21 9.2963 × 10−2 8.8818× 10−16

Mean 9.08 × 10−24 9.5407 × 10−3 8.8818× 10−16

Std 2.44 × 10−24 2.2479 × 10−2 0
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Table 9. Cont.

Functions Results GCSO [27] DMCSO [29] ADPCCSO

f 16

Best — 4.5274 × 10−5 0

Worst — 7.6947 × 10−2 0

Mean — 1.1517 × 10−2 0

Std — 1.9620 × 10−2 0

f 17

Best — 9.5471 × 10−30 0

Worst — 9.2151 × 10−2 0

Mean — 9.2379 × 10−3 0

Std — 1.9493 × 10−2 0

In Table 9, GCSO [27] counts the operation results of 6 functions out of 17 test functions
but only obtained the optimal values on the standard deviation of function f 4 and the best
values of functions f 13 and f 14. DMCSO [29] counted the operation results of 12 functions
out of 17 test functions and only obtained the optimal values on function f 4. However, the
operation results of the ADPCCSO algorithm are better than those of the above two algo-
rithms overall. On only function f 4, the operation results of the ADPCCSO algorithm are
worse than those of DMCSO [29]. This shows the advantages of the ADPCCSO algorithm.

4.7. Performance Test of ADPCCSO Algorithm for Solving Higher-Dimensional Problems

To further verify the performance of the ADPCCSO algorithm in solving higher-
dimensional optimization problems, the relevant experiments for the proposed algorithm
on 17 benchmark test functions with Dim = 1000 are also presented in this section. The
corresponding experimental results are shown in Table 10.

Table 10. The experimental results of the ADPCCSO algorithms with Dim = 1000.

Functions Mean std Best Worst

f 1 0 0 0 0
f 2 0 0 0 0
f 3 0 0 0 0
f 4 988.9073 4.2390 × 10−4 988.9067 988.9089
f 5 0.8900 0.2525 0.2505 1.0000
f 6 0 0 0 0
f 7 0 0 0 0
f 8 0 0 0 0
f 9 7.4907 × 10−5 7.1055 × 10−5 3.3858 × 10−7 2.8846 × 10−4

f 10 0 0 0 0
f 11 0 0 0 0
f 12 0 0 0 0
f 13 0 0 0 0
f 14 0 0 0 0
f 15 8.8818 × 10−16 0 8.8818 × 10−16 8.8818 × 10−16

f16 0 0 0 0
f 17 0 0 0 0

As can be seen from Table 10, even when the dimension of the optimization problem
is adjusted to 1000, the proposed algorithm can still achieve satisfactory optimization
accuracy on most test functions; only on functions f 4, f 5, and f 9 do the experimental data
fluctuate slightly. This indicates that when the dimension increases, the proposed algorithm
will not be greatly affected, which fully demonstrates that the ADPCCSO algorithm still
has a competitive advantage in dealing with higher-dimensional optimization problems.
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4.8. Parameter Estimation Problem of Richards Model

To verify the performance of ADPCCSO algorithm in solving practical problems,
it is applied to the parameter estimation problem of the Richards model in this section.
The Richards model is a growth curve model with four unknown parameters, which can
adequately simulate the whole process of biological growth. Its mathematical formula is as
follows [28,36,37]:

y(t) = α(1− eβ−γt)
− 1

δ (21)

where y(t) stands for the growth amount at time t, and α, β, γ, δ are four unknown parameters.
The core problem of the ADPCCSO algorithm for parameter estimation of the Richards

model is the design of the fitness function. In this paper, the fitness function design method
mentioned in the sties [28,36] is adopted; that is, the sum of squares of the difference
between the observed and predicted values is used as the fitness function. The mathematical
formula is as follows:

f it(α, β, γ, δ) =
n

∑
i=1

(yi − α(1 + eβ−γti )
− 1

δ )
2

(22)

where yi is the actual growth amount observed at time i. In this section, the actual growth
concentrations of glutamate listed in the studies [28,36] are used as the observation val-
ues, which are shown in Table 11. The optimal solutions obtained by different algo-
rithms through 30 independent runs are listed in Table 12, where the experimental data
of ASCSO-S [28] and VS-FOA [36] come from the corresponding references. The data in
Table 13 are the growth concentration of glutamate calculated by using the data in Table 12
in Equation (21). In Table 13, “fit” represents the fitness function value.

Table 11. The observed growth concentration of glutamate.

Time (h) Concentration (g/L) Time (h) Concentration (g/L)

2 0.321 12 0.869
3 0.353 13 0.878
4 0.369 14 0.879
5 0.408 15 0.893
6 0.581 16 0.894
7 0.640 17 0.900
8 0.742 18 0.901
9 0.781 19 0.902
10 0.824 20 0.903
11 0.855 21 0.903

Table 12. The experimental results of optimal solutions obtained by various algorithms.

Algorithms
Parameters

α β γ δ

VS-FOA [36] 0.8965 4.8369 0.6079 3.0260
ASCSO-S [28] 0.8973 5.5 0.6556 3.6327

ADPCCSO 0.8949 6.5522 0.7533 4.4263

To evaluate the effect of VS-FOA [36], ASCSO-S [28], and ADPCCSO in the parameter
estimation of Richards model, we select the root mean square error, mean absolute error,
and coefficient of determination as evaluation indexes to evaluate the performance of the
above three algorithms. The formulas are as follows:

(1) The root mean square error:

RMSE =

√√√√√ n
∑

i=1
(yi − ŷi)

2

n
(23)
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where yi is the actual value observed and ŷi is the predicted value at time i. n is the number
of actual values observed. The root mean square error is used to measure the deviation
between the predicted values and the observed values. The smaller its value is, the better
the predicted value is.

(2) The mean absolute error:

MAE =
1
n

n

∑
i=1
|(yi − ŷi)| (24)

The mean absolute error is the mean value of the absolute error. It reflects the actual
situation of the error of the predicted value better. The smaller its value is, the more precise
the predicted value is.

(3) The coefficient of determination:

R2 = 1−

n
∑

i=1
(ŷi − yi)

2

n
∑

i=1
(yi − y)2

(25)

where y is the mean value of the actual values observed. The coefficient of determination is
generally used to evaluate the conformity between the predicted and actual values. The
closer its value is to 1, the better the prediction effect.

Table 13. The growth concentration of glutamate predicted by each algorithm.

Time (h) VS-FOA [36] ASCSO-S [28] ADPCCSO

2 0.2686 0.2821 0.2858
3 0.3260 0.3366 0.3383
4 0.3935 0.4003 0.3997
5 0.4705 0.4731 0.4705
6 0.5542 0.5534 0.5499
7 0.6388 0.6363 0.6341
8 0.7161 0.7142 0.7155
9 0.7789 0.7792 0.7840
10 0.8244 0.8265 0.8328
11 0.8543 0.8572 0.8626
12 0.8725 0.8754 0.8789
13 0.8831 0.8856 0.8872
14 0.8891 0.8912 0.8912
15 0.8924 0.8941 0.8932
16 0.8943 0.8956 0.8941
17 0.8953 0.8964 0.8945
18 0.8958 0.8968 0.8947
19 0.8961 0.8971 0.8948
20 0.8963 0.8972 0.8949
21 0.8964 0.8972 0.8949
fit 0.0097 0.0089 0.0087

The comparison results of the above three algorithms in the three evaluation indexes
are shown in Table 14, where the optimal values are marked in bold.

Table 14. The comparison results of three algorithms.

Indexes
Algorithms

VS-FOA ASCSO-S ADPCCSO

RMSE 0.0220 0.0211 0.0209
MAE 0.0136 0.0135 0.0146

R2 0.9888 0.9896 0.9899
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As can be seen from Table 14, the ADPCCSO algorithm has optimal values in both
indexes. Although the ADPCCSO algorithm is slightly inferior to the other two algorithms
in terms of the mean absolute error, its fitness function value is indeed the best of the three
algorithms, which can be seen from Table 13. This preliminarily shows that the ADPCCSO
algorithm can solve the parameter estimation problem of the Richards model.

5. Conclusions

In view of the precocious convergence problem that the basic CSO algorithm is prone to
when solving high-dimensional complex optimization problems, an ADPCCSO algorithm
is proposed in this paper. The algorithm first uses an adaptive dynamic adjustment
method to give the value of parameter G, so as to balance the algorithm’s depth and
breadth search ability. Additionally, then, the solution accuracy and depth optimization
ability of the algorithm are improved by using a foraging-behavior-improvement strategy.
Finally, a dual-population collaborative optimization strategy is constructed to improve
the algorithm’s global search ability. The experimental results preliminarily show that the
proposed algorithm has obvious advantages over other comparison algorithms in terms of
solution accuracy and convergence performance. This provides new ideas for the study of
high-dimensional optimization problems.

However, although the experimental results of the proposed algorithm on most given
benchmark test functions have achieved obvious advantages over the comparison al-
gorithms, there is still a gap between the actual optimal solutions obtained on several
functions and their theoretical optimal solutions. Therefore, understanding how to improve
the performance of the algorithm to better solve more complex large-scale optimization
problems still needs further research. Moreover, in future research work, it is also a good
choice to apply this algorithm to other fields, such as the constrained optimization problem,
the multi-objective optimization problem, and the vehicle-routing problem.
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