Aspect Ratio Effects on the Aerodynamic Performance of a Biomimetic Hummingbird Wing in Flapping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wing Model Design
2.2. Kinematic Model
2.3. Numerical Setup
2.4. Verification and Validation
3. Results and Discussion
3.1. Aerodynamics of Flapping Wing
3.2. Flight Performance of Flapping Wing
3.3. Flow Field Analysis and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dickinson, M.H.; Lehmann, F.-O.; Sane, S.P. Wing Rotation and the Aerodynamic Basis of Insect Flight. Science 1999, 284, 1954–1960. [Google Scholar] [CrossRef] [PubMed]
- Phillips, N.; Knowles, K.; Bomphrey, R.J. The effect of aspect ratio on the leading-edge vortex over an insectlike flapping wing. Bioinspir. Biomim. 2015, 5, 056020. [Google Scholar] [CrossRef] [PubMed]
- Weis-Fogh, T. Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. Exp. Biol. 1973, 59, 169–230. [Google Scholar] [CrossRef]
- Cheng, X.; Sun, M. Wing-kinematics measurement and aerodynamics in a small insect in hovering flight. Sci. Rep. 2016, 6, 25706. [Google Scholar] [CrossRef] [PubMed]
- Phan, H.V.; Au, T.K.L.; Park, H.C. Clap-and-fling mechanism in a hovering insect-like two-winged flapping-wing micro air vehicle. R. Soc. Open Sci. 2016, 3, 160746. [Google Scholar] [CrossRef]
- Ellington, C.P.; Van Den Berg, C.; Willmott, A.P.; Thomas, A.L. Leading-edge vortices in insect flight. Nature 1996, 384, 626–630. [Google Scholar] [CrossRef]
- Birch, J.M.; Dickinson, M.H. Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 2001, 412, 729–733. [Google Scholar] [CrossRef]
- Usherwood, J.R.; Ellington, C.P. The aerodynamics of revolving wings I. Model hawkmoth wings. J. Exp. Biol. 2002, 205, 1547–1564. [Google Scholar] [CrossRef]
- Birch, J.M.; Dickson, W.B.; Dickinson, M.H. Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. J. Exp. Biol. 2004, 207, 1063–1072. [Google Scholar] [CrossRef]
- Birch, J.M.; Dickinson, M.H. The influence of wing–wake interactions on the production of aerodynamic forces in flapping flight. J. Exp. Biol. 2003, 206, 2257–2272. [Google Scholar] [CrossRef]
- Wang, Z.J. Dissecting insect flight. Annu. Rev. Fluid Mech. 2005, 37, 183–210. [Google Scholar] [CrossRef]
- Sun, M.; Tang, J. Lift and power requirements of hovering flight in Drosophila virilis. J. Exp. Biol. 2002, 205, 2413–2427. [Google Scholar] [CrossRef]
- Taylor, G.K.; Thomas, A.L. Dynamic flight stability in the desert locust Schistocerca gregaria. J. Exp. Biol. 2003, 206, 2803–2829. [Google Scholar] [CrossRef]
- Mou, X.L.; Liu, Y.P.; Sun, M. Wing motion measurement and aerodynamics of hovering true hoverflies. J. Exp. Biol. 2011, 214, 2832–2844. [Google Scholar] [CrossRef]
- Wang, Y.; He, X.; He, G.; Wang, Q.; Chen, L.; Liu, X. Aerodynamic performance of the flexibility of corrugated dragonfly wings in flapping flight. Acta Mech. Sin. 2022, 38, 322038. [Google Scholar] [CrossRef]
- Zhu, H.J.; Sun, M. Unsteady aerodynamic force mechanisms of a hoverfly hovering with a short stroke-amplitude. Phys. Fluids 2017, 29, 081901. [Google Scholar] [CrossRef]
- Huang, H.; Sun, M. Dragonfly forewing-hindwing interaction at various flight speeds and wing phasing. AIAA J. 2007, 45, 508–511. [Google Scholar] [CrossRef]
- Tian, L.; Zhao, Z.; Wang, W.; Liu, N. Length and stiffness effects of the attached flexible plate on the flow over a traveling wavy foil. Acta Mech. Sin. 2021, 37, 1404–1415. [Google Scholar] [CrossRef]
- Shahzad, A.; Tian, F.B.; Young, J.; Lai, J.C. Effects of wing shape, aspect ratio and deviation angle on aerodynamic performance of flapping wings in hover. Phys. Fluids 2016, 28, 111901. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, M.; Cheng, T. Effect of cooperative injection and suction jet on power extraction characteristics of a semi-active flapping airfoil. Acta Mech. Sin. 2021, 37, 1433–1445. [Google Scholar] [CrossRef]
- De Croon, G.; De Clercq, K.; Ruijsink, R.; Remes, B.; De Wagter, C. Design, aerodynamics, and vision-based control of the DelFly. Int. J. Micro Air Veh. 2009, 1, 71–97. [Google Scholar] [CrossRef]
- Phan, H.V.; Aurecianus, S.; Au, T.K.L.; Kang, T.; Park, H.C. Towards the long-endurance flight of an insect-inspired, tailless, two-winged, flapping-wing flying robot. IEEE Robot. Autom. Lett. 2020, 5, 5059–5066. [Google Scholar] [CrossRef]
- Wood, R.J. Design, fabrication, and analysis of a 3DOF, 3cm flapping-wing MAV. In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 10 December 2007; pp. 1576–1581. [Google Scholar]
- Keennon, M.; Klingebiel, K.; Won, H. Development of the nano hummingbird: A tailless flapping wing micro air vehicle. In Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, YN, USA, 9–12 January 2012; p. 588. [Google Scholar]
- Altshuler, D.L. Ecophysiology of Hummingbird Flight along Elevational Gradients: An Integrated Approach; The University of Texas at Austin: Austin, TX, USA, 2001. [Google Scholar]
- Kruyt, J.W.; Quicazán-Rubio, E.M.; Van Heijst, G.F.; Altshuler, D.L.; Lentink, D. Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors. J. R. Soc. Interface 2014, 11, 20140585. [Google Scholar] [CrossRef] [PubMed]
- Bomphrey, R.J.; Godoy-Diana, R. Insect and insect-inspired aerodynamics: Unsteadiness, structural mechanics and flight control. Curr. Opin. Insect Sci. 2018, 30, 26–32. [Google Scholar] [CrossRef]
- Dakin, R.; Segre, P.S.; Straw, A.D.; Altshuler, D.L. Morphology, muscle capacity, skill, and maneuvering ability in hummingbirds. Science 2018, 359, 653–657. [Google Scholar] [CrossRef]
- Dudley, R. The Biomechanics of Insect Flight: Form, Function, Evolution; Princeton University Press: Princeton, NJ, USA, 2002. [Google Scholar]
- Altshuler, D.L.; Dudley, R.; Ellington, C.P. Aerodynamic forces of revolving hummingbird wings and wing models. J. Zool. 2004, 264, 327–332. [Google Scholar] [CrossRef]
- Ellington, C. Insects versus birds: The great divide. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006; p. 35. [Google Scholar]
- Haider, N.; Shahzad, A.; Qadri, M.N.M.; Shams, T.A. Aerodynamic analysis of hummingbird-like hovering flight. Bioinspir. Biomim. 2021, 16, 066018. [Google Scholar] [CrossRef]
- Chai, P.; Dudley, R. Limits to vertebrate locomotor energetics suggested by hummingbirds hovering in heliox. Nature 1995, 377, 722–725. [Google Scholar] [CrossRef]
- Pournazeri, S.; Segre, P.S.; Princevac, M.; Altshuler, D.L. Hummingbirds generate bilateral vortex loops during hovering: Evidence from flow visualization. Exp. Fluids 2013, 54, 1439. [Google Scholar] [CrossRef]
- Warrick, D.R.; Tobalske, B.W.; Powers, D.R. Aerodynamics of the hovering hummingbird. Nature 2005, 435, 1094–1097. [Google Scholar] [CrossRef]
- Sane, S.P. The aerodynamics of insect flight. J. Exp. Biol. 2003, 206, 4191–4208. [Google Scholar] [CrossRef]
- Song, J.; Luo, H.; Hedrick, T.L. Three-dimensional flow and lift characteristics of a hovering ruby-throated hummingbird. J. R. Soc. Interface 2014, 11, 20140541. [Google Scholar] [CrossRef]
- Kruyt, J.W.; Van Heijst, G.F.; Altshuler, D.L.; Lentink, D. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio. J. R. Soc. Interface 2015, 12, 20150051. [Google Scholar] [CrossRef]
- Tietjens, O.K.G.; Prandtl, L. Applied Hydro-and Aeromechanics: Based on Lectures of L. Prandtl; Courier Corporation: North Chelmsford, MA, USA, 1957; Volume 2. [Google Scholar]
- Leishman, G.J. Principles of Helicopter Aerodynamics with CD Extra; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Stiles, F.G. Behavioral, ecological and morphological correlates of foraging for arthropods by the hummingbirds of a tropical wet forest. Condor 1995, 97, 853–878. [Google Scholar] [CrossRef]
- Lentink, D.; Dickinson, M.H. Biofluiddynamic scaling of flapping, spinning and translating fins and wings. J. Exp. Biol. 2009, 212, 2691–2704. [Google Scholar] [CrossRef]
- Shao, X.M.; Pan, D.Y.; Deng, J.; Yu, Z.S. Numerical studies on the propulsion and wake structures of finite-span flapping wings with different aspect ratios. J. Hydrodyn. 2010, 22, 147–154. [Google Scholar] [CrossRef]
- Li, Y.; Pan, D.; Ma, Z.; Zhao, Q. Aspect ratio effect of a pair of flapping wings on the propulsion of a bionic autonomous underwater glider. J. Bionic Eng. 2019, 16, 145–153. [Google Scholar] [CrossRef]
- Usherwood, J.R.; Ellington, C.P. The aerodynamics of revolving wings II. Propeller force coefficients from mayfly to quail. J. Exp. Biol. 2002, 205, 1565–1576. [Google Scholar] [CrossRef]
- Liu, J. Development of an Insect-Like Flapping Wing Micro Air Vehicle Based on PD Control. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2020. [Google Scholar]
- Wang, Z.J. Aerodynamic efficiency of flapping flight: Analysis of a two-stroke model. J. Exp. Biol. 2008, 211, 234–238. [Google Scholar] [CrossRef]
Wingspan (mm) | Chord Length (mm) | Flapping Frequency (Hz) | Aspect Ration | Re |
---|---|---|---|---|
76.0 | 38.0 | 22 | 2.0 | 27,000 |
93.1 | 31.0 | 3.0 | ||
107.0 | 27.0 | 4.0 | ||
120.2 | 24.0 | 5.0 | ||
131.7 | 22.0 | 6.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, Y.; Zhao, G.; Pan, D.; Shao, X. Aspect Ratio Effects on the Aerodynamic Performance of a Biomimetic Hummingbird Wing in Flapping. Biomimetics 2023, 8, 216. https://doi.org/10.3390/biomimetics8020216
Min Y, Zhao G, Pan D, Shao X. Aspect Ratio Effects on the Aerodynamic Performance of a Biomimetic Hummingbird Wing in Flapping. Biomimetics. 2023; 8(2):216. https://doi.org/10.3390/biomimetics8020216
Chicago/Turabian StyleMin, Yilong, Gengyao Zhao, Dingyi Pan, and Xueming Shao. 2023. "Aspect Ratio Effects on the Aerodynamic Performance of a Biomimetic Hummingbird Wing in Flapping" Biomimetics 8, no. 2: 216. https://doi.org/10.3390/biomimetics8020216
APA StyleMin, Y., Zhao, G., Pan, D., & Shao, X. (2023). Aspect Ratio Effects on the Aerodynamic Performance of a Biomimetic Hummingbird Wing in Flapping. Biomimetics, 8(2), 216. https://doi.org/10.3390/biomimetics8020216