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Abstract: Oxide and chalcogenide nanoparticles have great potential for use in biomedicine, engi-
neering, agriculture, environmental protection, and other research fields. The myco-synthesis of
nanoparticles with fungal cultures, their metabolites, culture liquids, and mycelial and fruit body
extracts is simple, cheap and environmentally friendly. The characteristics of nanoparticles, in-
cluding their size, shape, homogeneity, stability, physical properties and biological activity, can be
tuned by changing the myco-synthesis conditions. This review summarizes the data on the diver-
sity of oxide and chalcogenide nanoparticles produced by various fungal species under different
experimental conditions.
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1. Introduction

Nanotechnology and nanomaterials science are rapidly developing fields, which con-
tribute greatly to the development of modern technology and biomedicine. An important
challenge is the development of simple, effective, and cheap methods of producing highly
monodispersed, stable, and biocompatible nanoparticles (NPs) with the required chemical
composition, shape, size, biological activity, and other properties. The recent increase in
attention to environmental safety, natural resource exhaustibility, and human health safety
has led to the increasing development of green NP-producing technologies by biosynthesis
methods [1–4]. Owing to its being environmentally benign and less resource-intensive than
other methods, the synthesis of nontoxic and biocompatible NPs by using living organ-
isms and a variety of biological materials derived from them is a promising alternative to
physical and chemical fabrication methods.

The ability to biosynthesize NPs has been found in many organisms, including animals,
plants, bacteria, fungi, actinomycetes, algae, lichens, and viruses [5]. Among this diversity
of biological objects used for green NP synthesis, a special place is occupied by fungi [6–8].
Fungal cultures produce a wide range of proteins with high enzymatic activity, and due
to that they can convert metals and other elements into less toxic forms. This includes the
formation of NPs, which then accumulate in large quantities within the mycelium and/or
extracellularly. As a result, micro- and macro-mycetes from different taxonomic groups
can be successfully used to produce NPs and nanomaterials on an industrial scale. The
applications of fungi in myco-nano-synthesis are also highly versatile. NPs with different
characteristics can be obtained either by growing fungal cultures on media with precursors
or by incubating these precursors with mycelial bio-mass, culture liquid filtrates, extracts
from vegetative mycelium, fruiting bodies and other morpho-structures, and purified
proteins and other metabolites isolated from fungi [5]. In addition, the properties of
biogenic NPs depend on medium composition, chemical composition and concentration
of the precursor, incubation time, stirring rate, temperature, pH and other conditions. By
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varying these, the chemical composition, shape, size, homogeneity, stability, and biological
activity of formed particles can be controlled [9–12].

Fungal cultures can form NPs of various chemical compositions. The myco-synthesis
of elementary gold and silver NPs is the most commonly studied so far, whereas a number
of other metals and metalloids have been studied to a lesser extent. In addition, fungi
can form NPs of a more complex chemical composition, such as oxides and salts. Among
the inorganic NPs, metal oxide and chalcogenide (sulfide, selenide, and telluride) NPs
are of great interest for multidisciplinary nanotechnology. They can find a wide range of
applications owing to their special physical, chemical, and biological properties, which
distinguish them from bulk materials of the same chemical composition [13,14].

Oxide NPs are promising for use in nano-catalysis, biosensing, biomedicine, wastewa-
ter purification, and removal of heavy metals, dyes, and microbial contaminants [14–19].
Applications for chalcogenide NPs include cell imaging, cancer research and therapy, an-
timicrobials, and energy and optoelectronics applications [13,20–22]. An important group of
NPs are quantum dots (QDs), a type of small (less than 10 nm) colloidal fluorescent semicon-
ducting nanocrystalline particles composed of group II–VI, III–V, or IV elements [13,23,24].
Owing to their unique structural, optical, electrochemical, and photochemical properties,
QDs can be used in numerous technological applications, such as biosensing, bioimaging,
photovoltaics, nanomedicine, and drug delivery.

Because of this widespread demand for nanoparticles and nanomaterials of oxides and
chalcogenides, the study of their synthesis by fungi has started to develop rapidly in recent
years. However, until now, little attention has been paid to the comparison of the properties
of nanoparticles of the same compound obtained with different species of fungi and
under different conditions, and, consequently, to the optimization of the process to obtain
nanoparticles with the desired properties. This review summarizes the current information
on the myco-synthesis of nanoparticles of oxides, sulfides, selenides, and tellurides by
fungi belonging to different taxonomic groups, the variety of their characteristics under
different synthetic conditions, and the potential for their further application.

2. Myco-Synthesis of Oxide Nanoparticles

To date, the ability to form elementary metal and metalloid NPs has been found in
many fungal species. However, the number of elements that can be sources of mycogenic
NPs is rather small and includes gold, silver, platinum, palladium, iron, copper, selenium,
and tellurium [5]. For oxides and salts, the range of chemical composition for mycogenic
NPs is much wider, yet most of them remain very poorly studied. Among fungi-mediated
oxide NPs, titanium, zinc, iron, and copper oxides have been studied to the greatest extent.

2.1. Myco-Synthesis of Copper Oxide Nanoparticles

Copper oxide NPs have attracted high attention because copper is one of the most
important elements in modern technologies and is readily accessible [25]. Copper oxide is
widely used in catalysis, superconductors, thermoelectric and sensing materials, ceramics,
gas sensors, and many other fields. Biomedical applications of these NPs include biosensors,
cancer medicine, and antimicrobials [26]. In recent years, the fungi-mediated synthesis of
copper oxide NPs has become of interest (Table 1).

Table 1. Myco-synthesis of copper oxide nanoparticles.

NP Species Source Precursors Shape and Size Reference

CuO Aspergillus flavus Culture liquid CuSO4 Spherical (average size of 32.4 nm) [27]
CuO Aspergillus terreus Culture liquid CuSO4 – [28,29]
CuO Aspergillus terreus Culture liquid CuSO4 Below 100 nm [30]
CuO Penicillium chrysogenum Culture liquid CuSO4 Spherical (average size of 9.7 nm) [31]
CuO Trichoderma asperellum Mycelial extract Cu(NO3)2 Spherical (10–190 nm) [32]

CuO Trichoderma harzianum Mycelial extract CuSO4
Nano-fibers (38–77 nm in width,

135–320 nm in length) [33]
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Table 1. Cont.

NP Species Source Precursors Shape and Size Reference

Cu2O,
CuO Stereum hirsutum Mycelial extract CuCl2 Spherical (5–20 nm) [34]

CuxOy Penicillium aurantiogriseum Culture liquid CuSO4 Spherical (89–250 nm) [35]
CuxOy Penicillium citrinum Culture liquid CuSO4 Spherical (85–295 nm) [35]
CuxOy Penicillium waksmanii Culture liquid CuSO4 Spherical (79–179 nm) [35]

CuxOy Pleurotus florida Bio-mass
CuCl2

Spherical, partially spherical, oval
(22.55–60.09 nm)

[36]
CuSO4

Hexagonal, partially spherical
(12.82–48.86 nm)

CuO nanospheres (average size 32.4 nm) with high antimicrobial and antitumor activi-
ties were obtained with Aspergillus flavus culture liquid [27]. CuO NPs synthesized with
Aspergillus terreus culture liquid showed anticancer activity in a concentration-dependent
manner [30]. Other works showed that CuO nanospheres synthesized with A. terreus
culture liquid had potent antioxidant and antimicrobial activities [28,29].

Honary et al. studied copper oxide NP synthesis by three Penicillium species [35].
Penicillium aurantiogriseum, Penicillium citrinum, and Penicillium waksmanii culture liquids
mediated the fabrication of copper oxide nanospheres of various diameters. The effect
of several parameters on the particle size and the polydispersity index for the synthesis
of NPs under ambient conditions was also investigated. It was concluded that there is
a direct correlation among pH value, precursor concentration, polydispersity index, and
particle size. Spherical CuO NPs were also obtained with a Penicillium chrysogenum culture
liquid filtrate with the aid of gamma rays at various doses [31]. The NPs were an active
antibacterial agent against fungal and bacterial crop pathogens.

Copper oxide NPs of various sizes and shapes were synthesized with Pleurotus florida
bio-mass and two different precursor salts [36]. Spherical, partially spherical, and oval
particles (22.55–60.09 nm) were formed after the incubation with CuCl2, whereas the use of
CuSO4 resulted in hexagonal and partially spherical NPs (12.82–48.86 nm).

Spherical copper oxide NPs with a size of 10 to 190 nm and an average diameter of
110 nm were synthesized with a cell-free extract of Trichoderma asperellum [32]. These NPs
induced photo-thermolysis of human lung cancer cells. CuO NPs with a rare morphology
were obtained by Consolo and colleagues with a Trichoderma harzianum extract [33]. These
particles were in the shape of elongated fibers 38–77 nm in width and 135–320 nm in length,
and were inhibitory to fungal phytopathogens.

A Stereum hirsutum mycelial extract was found to be effective at synthesizing copper
NPs [34]. Copper/copper oxide NP fabrication was studied under different pH conditions
and in the presence of three copper salts (CuCl2, CuSO4, and Cu(NO3)2). Greater NP
formation was shown with 5 mM CuCl2 under alkaline conditions. The resulting NPs were
mainly spherical and had sizes of 5 to 20 nm.

2.2. Myco-Synthesis of Iron Oxide Nanoparticles

Iron oxide is a mineral compound that exists in various polymorphic forms, the
main of which are hematite (α-Fe2O3), maghemite (γ-Fe2O3), and magnetite (Fe3O4) [15].
Mycogenic NPs of iron oxides (III) and (IV) obtained by different researchers with different
biological objects and precursors differ greatly in both size and shape (Table 2). Spherical,
cubic, irregular, octahedral, and flakelike iron oxide nanoparticles were obtained with
mushroom cultures.
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Table 2. Myco-synthesis of iron oxide nanoparticles.

NP Species Source Precursors Shape and Size Reference

α-Fe2O3
Trichoderma
harzianum Mycelial extract FeCl3

Spherical
(average size of 207 nm) [37]

γ-Fe2O3 Penicillium expansum Mycelial extract FeCl3 Spherical (15.0–66.0 nm) [38]
γ-Fe2O3/α-Fe2O3 Alternaria alternata Mycelial extract Fe(NO3)3 Cubic (average size of 9 nm) [39]

Fe2O3 Aspergillus niger Bio-mass FeCl3 – [40]

Fe2O3 Fusarium incarnatum Culture liquid FeCl2 + FeCl3
Spherical (average size of

30.56 nm) [41]

Fe2O3
Phialemoniopsis

ocularis Culture liquid FeCl2 + FeCl3
Spherical (average size of

13.13 nm) [41]

Fe2O3
Penicillium

pimiteouiense Culture liquid FeCl2 + FeCl3 Spherical (2–16 nm) [42]

Fe2O3
Trichoderma
asperellum Culture liquid FeCl2 + FeCl3

Spherical
(average size of 25 nm) [41]

Fe3O4 Aspergillus niger Mycelial extract FeCl3 Nanoflakes (20–40 nm) [43]
Fe3O4 Aspergillus terreus Culture liquid Fe(NO3)3 Spherical [28,29]
Fe3O4 Aspergillus tamarii Culture liquid FeSO4 + FeCl3 Spherical (5–22 nm) [44]

Fe3O4 Fusarium oxysporum Bio-mass K3[Fe(CN)6] +
K4[Fe(CN)6] Quasi-spherical (20–50 nm) [45]

Fe3O4 Fusarium solani Bio-mass Fe2O3
Cubic, spherical, irregular

(55.3–84.2 nm) [46]

Fe3O4 Verticillium sp. Bio-mass K3[Fe(CN)6] +
K4[Fe(CN)6]

Cubo-octahedral
(100–400 nm) [45]

FexOy Amanita muscaria Fruit body
extract FeCl2 + FeCl3 2.2–2.5 nm [47]

FexOy Aspergillus japonicus Bio-mass K3[Fe(CN)6] +
K4[Fe(CN)6] Cubic (60–70 nm) [48]

FexOy Pleurotus florida Bio-mass
FeCl2 Cubic (11.90–167.63 nm)

[36]
FeSO4

Spherical (11.16–98.81 nm),
highly agglomerated

Maghemite (γ-Fe2O3) nanospheres (15–66 nm) were synthesized with a Penicillium
expansum mycelial extract filtrate [38]. These NPs were effective biocatalysts for the de-
colorization and degradation of textile and tanning wastewater effluents in a dose- and
time-dependent manner. Spherical hematite (α-Fe2O3) NPs with a mean size of 207 nm,
fabricated with a T. harzianum extract, enhanced T. harzianum biocontrol activity against the
phytopathogen Sclerotinia sclerotiorum [37]. Small cubic Fe2O3 NPs with an average size
of 9 nm, active against Gram-positive and Gram-negative bacteria, were obtained with an
Alternaria alternata mycelial extract [39]. Synthesis of Fe2O3 nanospheres was also achieved
with culture liquids of the manglicolous fungi T. asperellum, Phialemoniopsis ocularis, Fusar-
ium incarnatum, and Penicillium pimiteouiense [41,42]. Their size varied depending on the
species of fungus used for myco-synthesis. Manglicolous fungi–derived Fe2O3 NPs were
effective in removing Cr (VI) from synthetic wastewater [42].

The fungi Fusarium oxysporum and Verticillium sp. formed iron oxide NPs predom-
inantly in the magnetite (Fe3O4) phase [45]. Incubation of F. oxysporum bio-mass with
precursors yielded quasi-spherical NPs, whereas Verticillium sp. produced cubo-octahedral
particles. Superparamagnetic Fe3O4 nanoflakes 20–40 nm in width were fabricated with
an Aspergillus niger mycelial extract [43]. The NPs were successfully used for Cr (VI) re-
moval from an aqueous solution, which provides an eco-friendly, sustainable, and effective
route to heavy metal remediation and wastewater treatment. Fe3O4 NPs obtained with
lyophilized bio-mass of Fusarium solani were mostly cubic and spherical, with a mean size
of 55.3–84.2 nm [46]. They had bactericidal activity against various bacteria, although it
was weaker in comparison with that of silver NPs synthesized by F. solani in the same
study. Mousa et al. fabricated Fe3O4 nanospheres with A. terreus culture liquid and deter-
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mined optimal conditions for the maximal NP yield [28,29]. These NPs showed promising
antioxidant activity and a potent effect against several plant and human pathogens.

Cubic iron oxide NPs (60–70 nm) were obtained with Aspergillus japonicus bio-mass,
with K3[Fe(CN)6] and K4[Fe(CN)6] as precursors [48]. Incubation of P. florida mycelium
with FeCl2 yielded cubic NPs with an average size of 11.90 to 167.63 nm, whereas the FeSO4
precursor produced highly agglomerated nanospheres with an average size of 11.16 to
98.81 nm [36].

Abdeen et al. used a combined method to produce magnetic Fe3O4 NPs [40]. A. niger
bio-mass was used for the decomposition of FeSO4 and FeCl3 to FeS and Fe2O3, respectively.
Then, the FeS and Fe2O3 NPs were used to produce pure iron and Fe3O4 nanospheres by a
physical method.

Several researchers have used fungal cultures to obtain iron oxide nanocomposite ma-
terials with enhanced properties. Fe3O4 NPs with spherical morphology and size varying
from 5 to 22 nm were myco-synthesized with an Aspergillus tamarii culture filtrate [44]. The
conditions for NP production were optimized, including incubation period, stirring speed
and time, temperature, and pH. The resulting Fe3O4 NPs were impregnated into chitosan
beads to produce magnetic nanocomposite for textile wastewater treatment. The modified
beads showed a good removal capability with improved stability and regeneration, as
compared with the control chitosan beads. Another iron oxide NP–based biomaterial
was obtained with a spent substrate for Agrocybe cylindracea [49]. The Fe3O4 NP–coated
biomaterial described in that study was effective at Cr (VI) removal from wastewater. Ince
et al. developed fungal bio-nanocomposite Fe3O4 materials effective at metal removal from
drinks and wastewater. They synthesized chitosan-coated magnetic Fe3O4 NPs with an
Agaricus campestris fruit body extract [50] and alginate-coated superparamagnetic Fe3O4
NPs with an Amanita vaginata fruit body extract [51]. Ultrasmall iron oxide NPs were
fabricated with an Amanita muscaria fruit body extract [47]. Using these NPs, Ivashchenko
and colleagues developed a gel formulation for local anticancer therapy, containing A. mus-
caria–derived iron oxide and silver NPs.

2.3. Titanium Oxide NPs

Titanium oxide (TiO2) NPs are yet another important NPs with outstanding properties.
Three mineral forms of TiO2 that are known to occur naturally are anatase, rutile, and
brookite. TiO2 NPs have a wide range of applications owing to their chemical stability,
low toxicity, biocompatibility, and good corrosion resistance [52]. Thanks to their high
antibacterial, antifungal, antiviral, and anticancer activity, they are important tools in
diagnostics, therapeutics, and drug delivery [53]. Various micro- and macro-mycetes can
produce TiO2 NPs with their living cultures, extracts, bio-mass, and even spores (Table 3).

Table 3. Myco-synthesis of titanium oxide nanoparticles.

NP Species Source Precursors Shape and Size Reference

TiO2 Agaricus bisporus Spores Ti(OC3H7)4 – [54]
TiO2 Aspergillus flavus Bio-mass TiO2 Spherical, oval (62–74 nm) [55]
TiO2 Aspergillus flavus Mycelial extract TiO2 12–15 nm [56]
TiO2 Aspergillus niger Mycelial extract TiO2 salt Spherical (73.58–106.9 nm) [57]
TiO2 Aspergillus tubingensis Mycelial extract TiO2 salt Cubic, pentangular (1.5–30 nm) [58]
TiO2 Fomes fomentarius Fruit body extract Ti{OCH(CH3)2}4 Irregular (80–120 nm) [59]
TiO2 Fomitopsis pinicola Fruit body extract Ti{OCH(CH3)2}4 Irregular (80–120 nm) [60]
TiO Fusarium oxysporum Bio-mass K2TiF6 Spherical (6–13 nm) [61]
TiO2 Humicola sp. Bio-mass Bulk TiO2 Spherical (5–28 nm) [62]
TiO2 Hypsizygus ulmarius Fruit body extract TiCl4 Spherical (average size of 80 nm) [63]
TiO2 Pleurotus djamor Fruit body extract TiCl4 Spherical (average size of 31 nm) [64]
TiO2 Pleurotus sajor caju Fruit body extract TiCl4 Spherical (average size of 85 nm) [65]
TiO2 Sachharomyces cerevisae Living culture TiO(OH)2 Spherical (average size of 12.57 nm) [66]
TiO2 Sachharomyces cerevisae Living culture TiCl4 Oval (10–12 nm), mesoporous [67]
TiO2 Sachharomyces cerevisae Living culture TiCl3 Spherical (average size of 6.7 nm) [68]

TiO2 Tricoderma citrinoviride Mycelial extract Ti{OCH(CH3)2}4
Irregular, triangular, pentagonal,

spherical, rod-shaped (10–400 nm) [69]

TiO2 Trichoderma viride Culture liquid TiO(OH)2 Spherical (60–86.67 nm) [70]
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The ability to synthesize TiO2 NPs was found in various Aspergillus species. Spherical
and oval 62–74-nm TiO2 NPs with antibacterial properties were fabricated with A. flavus
bio-mass [55]. TiO2 NPs of 12–15 nm synthesized with an A. flavus mycelial extract demon-
strated a strong growth-enhancing effect on mung beans and thus can be used as a plant
nutrient fertilizer [56]. TiO2 nanospheres (73.58–106.9 nm) generated with an A. niger extract
were found a potent mosquito larvicidal agent [57]. TiO2 NPs produced with an Aspergillus
tubingensis mycelial extract were cubic and pentameric, with a size of 1.5–30 nm [58].

Bansal et al. showed that spherical titania particles (6–13 nm) can be produced with
F. oxysporum bio-mass and K2TiF6 as a precursor [61]. Al-Timini and Sermon showed that
NPs can be synthesized on the surfaces of Portobello mushroom spores [54]. Using this
approach, they prepared TiOx, Ag–TiOx, and Au–TiOx NPs. Nanohybrids of these NPs
with mushroom spores showed antibacterial and/or antifungal activity.

Rehman et al. fabricated irregularly shaped TiO2 NPs (80–120 nm) with Fomes fomen-
tarius [59] and Fomitopsis pinicola [60] fruit body extracts. Both F. pinicola and F. fomentarius–
mediated NPs were active against Gram-positive and Gram-negative bacteria and had an
anticancer effect. Protein-capped NPs of TiO2 (5–28 nm) were formed directly from micron-
sized TiO2 powder (150–250 nm) by incubation with Humicola sp. mycelium at 50◦C [62].
Fungal processing of these large-sized particles bioleached them and transformed them
into NPs of a different phase and shape (brookite (circular-shaped)), as compared with the
parent material (anatase (disc-shaped powder)).

Manimaran et al. synthesized TiO2 NPs with Hypsizygus ulmarius, Pleurotus djamor,
and Pleurotus sajor caju fruit body extracts [63–65]. The NPs fabricated with H. ulmarius
expressed a broad-spectrum antimicrobial effect against pathogenic bacteria and anticancer
activity [63]. Pleurotus-derived TiO2 NPs possessed mosquito larvicidal, antibacterial, and
anticancer activities [64,65].

Small mesoporous TiO2 NPs (10–12 nm) with outstanding photocatalytic performance
were formed when Sachharomyces cerevisae yeast cells were cultivated with TiCl4 [67]. By
incubating an S. cerevisae culture with TiO(OH)2, nanospheres with an average size of
12.57 nm were fabricated [66]. In another study, baker’s yeast was incubated with TiCl3
to produce anatase TiO2 nanospheres (average size 6.7 nm) [68]. These mycogenic NPs
had prominent antibacterial and antifungal properties and were highly photocatalytic in
comparison to commercially available 21-nm TiO2 NPs.

TiO2 NPs obtained with Trichoderma viride culture liquid were spherical, with a size of
60–86.67 nm [70]. Their larvicidal, antifeedant and pupicidal activities against the cultivated
crop pest Helicoverpa armigera can help in eco-friendly pest management. With a Tricoderma
citrinoviride mycelial extract, irregular, triangular, pentagonal, spherical, and rod-shaped
TiO2 NPs were synthesized, whose sizes ranged between 10 and 400 nm [69]. They showed
excellent antioxidant potential and antibacterial activity against extremely drug-resistant
Pseudomonas aeruginosa clinical isolates.

2.4. Myco-Synthesis of Zinc Oxide Nanoparticles

Zinc oxide (ZnO) NPs have caught the attention of researchers owing to their extensive
biological properties, including antibacterial, antifungal, anticancer, anti-inflammatory,
antidiabetic, antioxidant, antiviral, wound healing, and cardioprotective activity [71,72].
Their exceptional optical, electrical, and physiochemical properties make ZnO NPs an
excellent option for electronics, optoelectronics, bioimaging, biosensors, drug and gene
delivery [72,73]. To date, these NPs have been the most commonly studied of all mycogenic
oxide NPs (Table 4). Mycogenic ZnO NPs are mostly spherical or hexagonal.
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Table 4. Myco-synthesis of zinc oxide nanoparticles.

NP Species Source Precursors Shape and Size Reference

ZnO Acremonium potronii Mycelial extract Zn(CH3CO2)2 Spherical (13–15 nm) [74]
ZnO Agarius bisporus Fruit body extract Zn(CH3CO2)2 Spherical (average size of 14.48 nm) [75]
ZnO Aspergillus aeneus Mycelial extract Zn(CH3CO2)2 Spherical (100–140 nm) [76]
ZnO Aspergillus fumigatus Culture liquid ZnSO4 Spherical (60–80 nm) [77]

ZnO Aspergillus fumigatus Mycelial extract Zn(NO3)2
Oblate spherical and hexagonal

(1.2–6.8 nm) [78]

ZnO Aspergillus niger Mycelial extract Zn(CH3CO2)2 Nanorods (8–38 nm) [79]

ZnO Aspergillus niger Crushed fungal
powder ZnCl2 Hexagonal (average size of 66 nm) [80]

ZnO Aspergillus terreus Culture liquid ZnSO4 Spherical (28–63 nm) [81]
ZnO Aspergillus terreus Mycelial extract Zn(CH3CO2)2 Spherical (10–45 nm) [82]
ZnO Aspergillus terreus Culture liquid ZnC4H6O4 Almost spherical [28,29]
ZnO Cochliobolus geniculatus Mycelial extract Zn(CH3CO2)2 Quasi-spherical (2–6 nm) [83]

ZnO Cordyceps militaris Fruit body extract Zn(CH3CO2)2
Spherical, irregular

(average size of 1.83 nm) [84]

ZnO Daedalea sp. Fruit body extract Zn(CH3CO2)2 Irregular (average size of 14.58 nm) [85]

ZnO Fusarium
keratoplasticum Mycelial extract Zn(CH3CO2)2 Hexagonal (10–42 nm) [79]

ZnO Lentinula edodes Fruit body extract Zn(NO3)2 Cubic, hexagonal (average size of 50 nm) [86]
ZnO Periconium sp. Mycelial extract Zn(NO3)2 Quasi-spherical (16–78 nm) [87]
ZnO Pichia kudriavzevii Fungal extract Zn(CH3CO2)2 Hexagonal (average size of 32 nm) [88]

ZnO Pleurotus djamor Fruit body extract Zn(NO3)2
Nanorods, clusters

(average size of 70–80 nm) [64]

ZnO Pleurotus florida Bio-mass
ZnCl2 Semi-spherical (21.27–118.36 nm)

[36]ZnSO4 Semi-spherical (9.36–58.13 nm)
ZnO Pleurotus floridanus Culture liquid Zn(NO3)2 Spherical (average size of 34.98 nm) [89]
ZnO Pleurotus ostreatus Fruit body extract Zn(NO3)2 Spherical (average size of 7.50 nm) [90]

ZnO Trichoderma harzianum Mycelial extract ZnSO4
Fan- and bouquet-like structures

(27–40 nm in width, 134–200 nm in length) [33]

ZnO Trichoderma harzianum Mycelial extract Zn(CH3CO2)2 Spherical (average size of 30.34 nm) [91]
ZnO Trichoderma viride Culture liquid Zn(CH3CO2)2 Hexagonal (average size of 63.3 nm) [92]

The formation of ZnO nanospheres with sizes ranging between 13 and 15 nm was
studied by using an Acremonium potronii mycelial extract [74]. The obtained ZnO NPs
showed high photocatalytic activity for the degradation of methylene blue dye. ZnO
nanospheres with an average size of 14.48 nm were fabricated with an aqueous extract of
Agarius bisporus as a reducing agent [75]. These NPs were effective inhibitors of microbially
influenced corrosion.

The correlation between the zinc tolerance of soil fungi and their potential for the
synthesis of ZnO NPs was examined with 19 fungal isolates from the rhizo-spheric soil of
plants naturally growing at a zinc mine area [76]. The Aspergillus aeneus isolate had a high
zinc tolerance and potential for the extracellular synthesis of ZnO NPs. The result was the
synthesis of spherical NPs (100–140 nm) coated with proteins, which served as stabilizers.

Spherical 60–80-nm ZnO NPs synthesized with Aspergillus fumigatus culture liquid
were an effective antimicrobial agent against Gram-negative and Gram-positive bacte-
ria [77]. An A. fumigatus mycelial extract induced the formation of oblate spherical and
hexagonal ZnO NPs (1.2–6.8 nm) with plant-growth-promoting properties [78]. Hexagonal
ZnO NPs with an average size of 66 nm were synthesized by using crushed powder of
A. niger [80]. Protein-capped ZnO nanospheres with a particle size of about 10–45 nm,
possessing antibacterial activity, were obtained with an A. terreus mycelial extract [82]. In-
cubation of A. terreus culture liquid with ZnSO4 yielded spherical ZnO NPs (28–63 nm) [81].
ZnO NPs with antioxidant and antimicrobial activities were also synthesized with the
culture liquid of A. terreus and with ZnC4H6O4 as a precursor [28,29].

Aqueous mycelial extracts of two fungi, A. niger and Fusarium keratoplasticum, were
used to prepare ZnO NPs of different shapes [79]. A. niger synthesized ZnO nanorods
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(8–38 nm), and F. keratoplasticum synthesized hexagonal NPs (10–42 nm). The shape of
the NPs greatly affected their multifunctional properties. Nanorods showed an enhanced
antibacterial activity against pathogenic bacteria and a greater UV-protection index, as
compared with hexagonal ZnO NPs. Treatment of textile fabrics with a safe dose of green
ZnO NPs was potentially active against pathogenic bacteria and improved UV protection,
as compared with untreated fabrics.

ZnO NPs obtained with an extract from the zinc-tolerant endophytic fungus Cochliobo-
lus geniculatus were polydisperse, non-agglomerated quasi-spherical particles with a narrow
range distribution (2–6 nm) [83]. Extracellular proteins involved in the synthesis of ZnO
NPs and their capping were also characterized.

A fruit body extract from the medicinal mushroom Cordyceps militaris mediated the
fabrication of ZnO NPs with an average size of 1.83 nm and with high antimicrobial,
antidiabetic, and antioxidant potential [84]. ZnO NPs were also synthesized with a Daedalea
sp. extract [85]. The NPs were irregularly shaped, had an average size of 14.58 nm, and
showed a strong antibacterial and antifungal effect. A Lentinula edodes extract was used as
a reducing agent involved in the myco-synthesis of ZnO NPs, coated with chitosan, which
functions as a stabilizer [86]. The NPs were cubic and hexagonal and had dye-degrading
and antibacterial properties.

Quasi-spherical ZnO NPs (16–78 nm) synthesized with a Periconium sp. mycelial
extract showed good antioxidant properties, as well as excellent antimicrobial effect against
fungi, Gram-positive and Gram-negative bacteria [87]. The ability of the yeast Pichia
kudriavzevii to synthesize ZnO NPs was explored with a fungal extract [88]. The resulting
NPs were found to have a hexagonal wurtzite structure with an average crystallite size of
~10–61 nm, and displayed antioxidant and antibacterial properties. The time of the reaction
was found to play a critical part in the size, shape, and distribution of NPs. The ability to
produce ZnO NPs was also reported for Pichia fermentans culture liquid [93].

ZnO NPs synthesized with a P. djamor fruit body extract were rod- and cluster-shaped
with an average size of 70–80 nm and showed a wide range of biological activities, including
larvicidal, antibacterial, antioxidant, and anticancer properties [64]. Semispherical ZnO
NPs fabricated with P. florida bio-mass varied in size, depending on the precursors [36].
With ZnCl2, their size was 21.27–118.36 nm, and with ZnSO4, it was 9.36–58.13 nm. In
another work, the culture liquid of Pleurotus floridanus was used for the synthesis of ZnO
nanospheres, and the process parameters were optimized [89]. A Pleurotus ostreatus fruit
body extract was used to synthesize small (average size of 7.50 nm), spherical, highly stable,
agglomerated ZnO NPs with antibacterial and anticancer properties [90].

ZnO NPs with an unusual morphology (fan- and bouquetlike structures 27–40 nm in
width and 134–200 nm in length) were fabricated with a T. harzianum mycelial extract [33].
In another study, ZnO nanospheres (average size of 30.34 nm) with antioxidant and antibac-
terial properties were produced with an extract from T. harzianum mycelium [91]. T. viride
culture liquid was also used to synthesize ZnO NPs [92]. These NPs were hexagonal,
had an average particle size of about 63.3 nm, and possessed dose-dependent antioxidant
activity and appreciable antimicrobial effect against multidrug-resistant microorganisms.

2.5. Myco-Synthesis of Nanoparticles of Other Elements

Fungal cultures can form oxides of many elements other than copper, iron, titanium,
and zinc. These include magnesium, manganese, cobalt, nickel, zirconium, selenium, tel-
lurium, silicon, cerium, silver, aluminium, bismuth, antimony, gadolinium, and ruthenium
(Table 5). Many of these elements remain barely explored in terms of NP myco-synthesis,
and their formation by fungal cultures has so far been described only in a few reports.
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Table 5. Myco-synthesis of nanoparticles of other elements.

NP Species Source Precursors Shape and Size Reference

Al2O3 Colletotrichum sp. Mycelial extract AlCl3 Spherical (average size of 30 nm) [94]
AgO Aspergillus terreus Culture liquid AgNO3 Irregular spherical (60–100 nm) [95]
Bi2O3 Fusarium oxysporum Bio-mass Bi(NO3)3 Quasi-spherical (5–8 nm) [96]
CeO2 Aspergillus niger Culture liquid CeCl3 Spherical (5–20 nm) [97]
CeO2 Aspergillus terreus Mycelial extract Ce(NO3)3 Spherical (average size of 28.5 nm) [98]
CeO2 Fusarium solani Culture liquid CeCl3 Spherical (20–30 nm) [99]
CeO2 Humicola sp. Bio-mass Ce(NO3)3 Spherical (12–20 nm) [100]

CeO2
Talaromyces

prupureogenus Mycelial extract Ce(NO3)3 Nano-sponges (average size of 21.4 nm) [98]

Co3O4
Aspergillus
brasiliensis Mycelial extract CoSO4 Quasi-spherical (20–27 nm) [101]

Co3O4 Aspergillus nidulans Bio-mass Co(C5H7O2)2 Spherical (average size of 20.29 nm) [102]
Co3O4 Aspergillus terreus Culture liquid CoSO4 Spherical [28,29]
Gd2O3 Humicola sp. Bio-mass GdCl3 Quasi-spherical (3–8 nm) [103]
MgO Agaricus bisporus Fruit body extract Mg(CH3COO)2 29.6–38.6 nm [104]
MgO Aspergillus niger Culture liquid MgCl2 Spherical (40–95 nm) [105]

MgO Aspergillus
tubingensis Mycelial extract Mg(NO3)2 Spherical (average size of 5.8 nm) [106]

MgO Trichoderma viride Culture liquid MgCl2 45.12–95.37 nm [107]

MnxOy
Cladosporium
halotolerans Living culture MnCl2

Needle-like (2–6 nm in diameter,
0.1–1 µm in length) [108]

Mn5O8 Fusarium oxysporum Bio-mass (CH3CO2)2Mn· Quasi-spherical (8–13 nm) [109]
NiO Aspergillus aculeatus Dead bio-mass NiCl2 Spherical (average size of 5.89 nm) [110]
NiO Aspergillus terreus Culture liquid NiSO4 Spherical [28,29]

NiO Hypocrea lixii Dead bio-mass NiCl2
Average size of 3.8 nm for extracellular

and 1.25 nm for intracellular NPs [111]

RuO2 Fusarium oxysporum Bio-mass RuCl3 Spherical (2–5 nm) [112]

Sb2O3
Saccharomyces

cerevisiae Fungal culture SbCl3 Spherical (2–10 nm) [113]

SeO2
Trichoderma
harzianum Living culture Na2SeO3 – [114]

SiO2 Fusarium oxysporum Bio-mass K2SiF6 Quasi-spherical (5–15 nm) [61]

SiO2 Fusarium oxysporum Bio-mass
Amorphous

silica present in
rice husk

Quasi-spherical (2–6 nm) [115]

SiO2
Saccharomyces

cervisiae Living culture Sodium silicate Spherical (40–70 nm) [116]

TeO2 Mortierella humilis Living culture Na2TeO3 – [114]

TeO2
Trichoderma
harzianum Living culture Na2TeO3 – [114]

ZrO2 Fusarium oxysporum Bio-mass K2ZrF6 Quasi-spherical (3–11 nm) [117]
ZrO2 Fusarium solani Culture liquid zirconyl nitrate Spherical (40–50 nm) [118]
ZrO2 Penicillium aculeatum Culture liquid ZrCl4 Spherical (average size of 39.32 nm) [119]
ZrO2 Penicillium notatum Culture liquid ZrCl4 Spherical (average size of 62.27 nm) [119]

ZrO2
Penicillium

purpurogenome Culture liquid ZrCl4 Spherical (average size of 53.60 nm) [119]

Several research groups were able to prepare mycogenic NPs of cerium oxide. CeO2
nanospheres (5–20 nm) have been successfully obtained with an A. niger culture liquid
filtrate [97]. The NPs showed a high antibacterial activity against pathogenic bacteria and
larvicidal and pupicidal activity against mosquito vectors. Spherical 20–30-nm CeO2 NPs
obtained with F. solani culture liquid showed a good antibacterial and antibiofilm activity against
Psedomonas aeriginosa, Klebsiella pneumoniae, Escherichia coli, and Staphylococcus aureus [99].

Electrochemical analysis shows that mycogenic NPs can be used in applications such as
sensors, batteries, and supercapacitors. The bio-mass of the fungus Humicola sp. was able to
extracellularly form highly stable, water-dispersible, and highly fluorescent CeO2 NPs [100].
These NPs were spherical, were 12–20 nm in diameter, and were naturally capped by
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proteins secreted by the fungus. Komal et al. synthesized morphologically different CeO2
NPs with mycelial extracts from two fungi, A. terreus and Talaromyces prupureogenus [98].
Pure CeO2 NPs synthesized with A. terreus were spherical, with an average size of 28.5 nm.
CeO2 NPs formed by T. pupureogenus had a unique nano-sponge morphology and an
average size of 21.4 nm. The nano-sponges were more active against Candida albicans than
were spherical CeO2 NPs.

Cobalt oxide NPs have so far been synthesized with several Aspergillus species. A cell-
free mycelial extract of Aspergillus brasiliensis was used to make quasi-spherical monodis-
persed Co3O4 NPs of 20–27-nm [101]. The NPs have excellent magnetic properties and
show good antimicrobial activity against pathogenic microorganisms. Four fungi were
tested by Vijayanandan and colleagues to find a fungus suitable for the synthesis of cobalt
oxide NPs [102]. Fluorescent Co3O4 nanospheres capped with sulfur-bearing proteins were
successfully synthesized with Aspergillus nidulans bio-mass. Optimization of the fermenta-
tion conditions for the enhanced production of Co3O4 and other NPs with A. terreus culture
liquid was studied by El-Sayed et al. [29].

Al2O3 nano-speres with an average size of 30 nm were synthesized with a Col-
letotrichum sp. mycelial extract [94]. Al2O3 NPs showed a strong antimicrobial activity
against food-borne pathogens. Nano-functionalized oil was formulated by combining
essential oils from the leaves of Eucalyptus globulus and Citrus medica with NPs. The
combination showed higher antimicrobial activity than did NPs and the essential oils
tested separately. Moreover, the activity of commercially available antibiotics increased in
combination with mycogenic Al2O3 NPs.

Irregular silver oxide (AgO) nanospheres of 60–100 nm were synthesized with A. ter-
reus culture liquid [95]. The nanospheres had antimicrobial, antioxidant, and antiangiogenic
properties. Quasi-spherical bismuth oxide (Bi2O3) NPs of 5–8 nm were fabricated with F.
oxysporum bio-mass [96]. Protein-capped, highly stable, and well-dispersed quasi-spherical
gadolinium oxide (Gd2O3) NPs of 3–8 nm were synthesized extracellularly with Humicola
sp. mycelial bio-mass [103]. These NPs were bio-conjugated with the chemically modified
anticancer drug taxol, which may make it more efficient in killing tumor/cancer cells.

Recently, an effective method was described for the fungi-mediated production of
fluorescent ruthenium oxide (RuO2) QDs by F. oxysporum bio-mass [112]. The biosynthesis
was conducted under ambient pressure at room temperature, which offers advantages over
the previously used chemical and physical methods for RuO2 synthesis, requiring highly
elevated temperature and pressure. The QDs were monodisperse, non-flocculating, protein
capped, and highly stable even months after synthesis. Biosynthesis of antimony trioxide
(Sb2O3) NPs mediated by S. cerevisiae was reported by Jha et al. [113].

MgO NPs synthesized with A. niger culture liquid were nanospheres of 40–95 nm [105].
Their antibacterial activity was stronger against Gram-positive bacteria then it was against
Gram-negative ones. Small MgO nanospheres with an average size of 5.8 nm were pre-
pared with an A. tubingensis mycelial extract [106]. Larger NPs, of 45.12–95.37 nm, were
synthesized with T. viride culture liquid and were found to be an effective antibacterial
agent [107]. A white button mushroom extract was used to make MgO NPs with an average
size of 29.6–38.6 nm [104]. The researchers showed that 16.5- and 15-nm MgO NPs may
promote root development in peanut plants.

Quasi-spherical Mn5O8 NPs of 8–13 nm were obtained with F. oxysporum bio-mass [109].
These particles were highly stable, water dispersible, and naturally capped by the fungus-
secreted proteins. The Mn-oxidizing fungus Cladosporium halotolerans with a strong ability
to remove and oxidize Mn (II) was studied by Wang et al. [108]. The C. halotolerans culture
formed particles with a needlelike or wrinkle-like morphology in the cross section, 2–6 nm
in diameter, and 0.1–1 µm in length. The obtained nanowires showed excellent Cd (II)
adsorption and had potential anti-pollutant application prospects.

NiO NP synthesis with A. terreus culture liquid was optimized for higher NP yield by
El-Sayed et al. [29]. The dead bio-mass of the fungus Hypocrea lixii was also successfully
used to convert nickel ions into NiO NPs in aqueous solution [111]. H. lixii–mediated NPs
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were predominantly spherical and were formed extra- and intracellularly. The NPs formed
inside the fungal cells were smaller than those produced extracellularly. The average
particle sizes were 3.8 nm for extracellular NPs and 1.25 nm for intracellular NPs. The dead
bio-mass of Aspergillus aculeatus synthesized spherical NiO NPs in film form [110]. The
NPs had a size of about 5.89 nm and were involved in a protein matrix, which probably
permitted their organization in film form.

Bansal et al. obtained small quasi-spherical silica NPs with F. oxysporum bio-mass. NPs
of 5–15 nm were synthesized with K2TiF6 as a precursor [61]. Moreover, F. oxysporum was
able to bio-transform naturally occurring amorphous plant bio-silica into crystalline silica
and leach out silica extracellularly as 2–6 nm NPs [115]. Spherical silica NPs (40–70 nm)
were fabricated extracellularly by an S. cervisiae culture [116].

Liang et al. studied the formation of Se- and Te-containing NPs by several fungal
species during growth on Se- and Te-containing media [114]. Besides the formation of
elementary selenium, selenium oxide was also found after T. harzianum had been grown
with selenite. Tellurium oxide was detected in the particles generated by T. harzianum and
Mortierella humilis grown with tellurite.

Zirconium oxide (ZrO2) nanospheres (40–50 nm in diameter) were fabricated with
F. solani culture liquid as a reducing and stabilization agent [118]. F. oxysporum bio-mass
formed quasi-spherical ZrO2 NPs (3–11 nm) [117]. Ghomi et al. studied culture liquids
of three Penicillium species (Penicillium aculeatum, Penicillium notatum, Penicillium pur-
purogenome) and reported their ability to form ZrO2 NPs [119]. All the species studied
formed spherical NPs with a size below 100 nm. Penicillium-mediated ZrO2 NPs showed
considerable antibacterial potential against Gram-negative bacteria.

3. Myco-Synthesis of Chalcogenide Nanoparticles

Chalcogens are chemical elements from group 16 of the periodic table: oxygen, sulfur,
selenium, tellurium, polonium, and livemorioum. Oxygen is often treated separately from
the other group 16 elements, or even excluded from the scope of the term “chalcogen”,
owing to its very different chemical behavior from the other chalcogens [120]. Chemical
compounds consisting of at least one chalcogen anion and at least one more electropositive
element are called chalcogenides. The three most important groups of chalcogenides are
sulfides, selenides, and tellurides. In recent years, fungi-assisted synthesis of chalcogenide
NPs and nanomaterials has become of interest.

3.1. Myco-Synthesis of Sulfide Nanoparticles

Fungi-mediated synthesized sulfide NPs are the most commonly studied of all chalco-
genides. One of the most important types of semiconductor nanomaterials with a wide
band gap and with stability than that of the other chalcogenide NPs, sulfide NPs are
more suitable for industrial applications, including high temperature operations, high
voltage optoelectronic devices, and as high efficiency electric energy transformers and
generators [13].

According to the data so far, fungal cultures can synthesize cadmium, zinc, and lead
sulfide NPs. Several researchers have also found that some fungi can produce gold, silver,
and copper sulfide NPs (Table 6).

Table 6. Myco-synthesis of sulfide nanoparticles.

NP Species Source Precursors Shape and Size Reference

α-
Ag2S Humicola sp. Mycelial bio-mass AgNO3, Na2SO3 Spherical (15–40 nm) [121]

Au2S Humicola sp. Mycelial bio-mass HAuCl4, Na2SO3 Spherical (20–30 nm) [122]
CdS Aspergillus niger Mycelial bio-mass CdCl2, Na2S Spherical (2.7–7.5 nm) [123]
CdS Candida glabrata Living culture Cd(NO3)2 – [124]
CdS Fusarium oxysporum Living culture CdSO4 5–20 nm [125]
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Table 6. Cont.

NP Species Source Precursors Shape and Size Reference

CdS Fusarium oxysporum Mycelial bio-mass Cd(NO3)2, sulfur
waste Spherical (average size of 6 nm) [126]

CdS Fusarium sp. Mycelial bio-mass CdSO4 Spherical (80–120 nm) [127]

CdS Phanerochaete
chrysosporium Living culture Cd(NO3)2 Average size of 2.56 nm [128]

CdS Pleurotus ostreatus Mycelial bio-mass CdSO4, Na2S Spherical (4–5 nm) [129]
CdS Rhizopus stolonifer Mycelial bio-mass CdCl2, ZnS Average size of 8.8 nm [130]

CdS Saccharomyces
cerevisiae Living culture CdS solution Spherical (average size of 3.57 nm) [131]

CdS Saccharomyces
cerevisiae Bio-mass CdCl2, Na2S Spherical (average size of 2 nm) [132]

CdS Schizosaccharo-myces
pombe Living culture CdSO4 Average size of 1.8 nm [133]

CdS Schizosaccharo-myces
pombe Living culture CdSO4 1–1.5 nm [134]

CdS Schizosaccharo-myces
pombe Living culture Cd(NO3)2 – [124]

CdS Termitomyces heimii Fruit body extract Cd(NO3)2, Na2S Spherical (3–5 nm) [135]
CdS Trametes versicolor Living culture Cd(NO3)2 Spherical (average size of 6 nm) [136]

CdS Trichoderma
harzianum Mycelial bio-mass CdCl2, Na2S Spherical (3–8 nm) [137]

CdS Trichosporon jirovecii Living culture CdCl2 Spherical (6–15 nm) [138]
CuS Fusarium oxysporum Mycelial bio-mass CuSO4 Spherical (2–5 nm) [139]

CuS Fusarium oxysporum Mycelial bio-mass Copper mine
wastewaters 10–40 nm [140]

PbS Aspergillus flavus Living culture Pb(C2H3O2)2, Na2S 35–100 nm [141]

PbS Rhodosporidium
diobovatum Bio-mass Pb(NO3)2 Spherical (2–5 nm) [142]

PbS Saccharomyces
cerevisiae Living culture Pb(C2H3O2)2, Na2S Spherical (0.667–6.95 nm) [143]

PbS Torulopsis sp. Living culture Pb(NO3)2 2–5 nm [144]
ZnS Agaricus bisporus Fruit body extract ZnCl2, Na2S Almost spherical (2.1–3.5 nm) [145]
ZnS Aspergillus flavus Mycelial bio-mass ZnSO4 Spherical (average size of 18 nm) [146,147]

ZnS:Gd Aspergillus flavus Mycelial bio-mass ZnSO4, Gd(NO3)2 Spherical (10–18 nm) [148]
ZnS Aspergillus sp. Mycelial bio-mass ZnSO4 Spherical (average size of 11.08 nm) [149]
ZnS Fusarium oxysporum Mycelial bio-mass ZnSO4 Spherical (average size of 42 nm) [150]
ZnS Penicillium sp. Mycelial bio-mass ZnSO4 Spherical (average size of 6.3 nm) [151]
ZnS Pleurotus ostreatu Fruit body extract ZnCl2, Na2S Almost spherical (2.1–3.5 nm) [152]

ZnS Saccharomyces
cerevisiae Bio-mass ZnSO4 Spherical (30–40 nm) [153]

Among mycogenic sulfide NPs, the best studied are cadmium sulfide (CdS) NPs.
These were first obtained with the use of fungal cultures in the 1980s, when Dameron and
colleagues synthesized quantum CdS nano-crystallites with the yeasts Candida glabrata
and Schizosaccharomyces pombe [154]. Short chelating peptides of general structure (γ-
Glu-Cys)n-Gly control the nucleation and growth of CdS crystallites to peptide-capped
intracellular particles of diameter 20 Å (2 nm). Both yeasts also produce larger, extracellular
CdS NPs with an uncharacterized coating, 29 Å (2.9 nm) in diameter. Later, the S. pombe–
mediated synthesis of CdS NPs was studied by Williams et al. [133]. It was found that
intracellular CdS quantum semiconductor crystallites approximately 1.8 nm in diameter
can be selectively released from S. pombe cells by freezing–thawing. S. pombe and C. glabrata
also formed CdS NPs in their cytoplasm when yeasts were grown in a fed-batch process at
high Cd concentrations [124].

A. niger bio-mass challenged with precursors produced highly stable poly-dispersed
CdS nanospheres with a size ranging from 2.7 to 7.5 nm; these particles were found to
have antimicrobial and anticancer abilities [123]. The bio-mass of F. oxysporum produced
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extracellular biocompatible CdS QDs from sulfur waste and Cd(NO3)2 [126]. These QDs
were circular with a diameter of about 6 nm and had a wurtzite crystalline structure.
F. oxysporum incubated with CdSO4 formed CdS NPs in the size range 5–20 nm [125].
Fusarium sp. bio-mass, after being exposed to a CdSO4 solution, formed spherical CdS
NPs with an average particle size of 80 to 120 nm and agglomerates with a size of 350
to 390 nm [127]. CdS QDs synthesized by the fungus Phanerochaete chrysosporium had an
average size of 2.56 nm [128]. The synthesis of cysteine and proteins was found to play an
important part in the formation and stabilization of CdS QDs. CdS QDs with an average
size of 8.8 nm formed by Rhizopus stolonifer mycelial bio-mass [130]. Luminescent CdS QDs
synthesized with P. ostreatus mycelium were spherical, were predominantly 4 to 5 nm in
size [129], and had anticancer properties [155].

S. cerevisiae–mediated synthesis of CdS NPs was reported by Prasad and Jha [131].
The NPs were almost spherical, with an average size of 3.57 nm. Another study described
the production of CdS nanospheres (average size of 2 nm) with S. cerevisiae bio-mass [132].
Cds NPs were formed intracellularly by an S. pombe strain [134]. The NPs had a wurtzite
(Cd16S20)-type structure and were mostly in the size range 1–1.5 nm. By using S. pombe–
mediated CdS NPs, a polymer/nanoparticle diode with a low operating voltage and a high
forward current was fabricated. Wurtzite CdS NPs of 3–5 nm were synthesized with a
Termitomyces heimii mushroom extract [135]. The volume of extract used for the synthesis
affected the particle size. A Trametes versicolor culture synthesized spherical extracellular
CdS QDs with an average size of 6 nm [136]. T. harzianum bio-mass formed spherical CdS
NPs (3–8 nm) with photocatalytic activity, which was determined upon degradation of
methylene blue dye [137]. CdS nanospheres with a size range of about 6–15 nm were
formed with the yeast Trichosporon jirovecii [138].

Silver sulfide (α-Ag2S) NPs were produced with Humicola sp. mycelium [121]. These
NPs were nanospheres of 15–40 nm and had strong antimicrobial, anticancer, and anti-
leishmania activities.

Gold sulfide (Au2S) nanospheres with a size of 20–30 nm were synthesized with
Humicola sp mycelium [122]. The prepared particles were shown to be nontoxic to humans
and, therefore, can be proposed for use in leishmania treatment, nano-diagnostics, and
drug carrier applications.

Copper sulfide (CuS) NPs were synthesized with F. oxysporum mycelium and with
CuSO4 as a precursor [139]. The formed spherical particles with a size of 2–5 nm were
enclosed in spherical peptide shells about 20 nm in diameter. Later, the same authors
obtained CuS NPs by incubating F. oxysporum mycelium with copper mine wastewater [140].
The results showed that the produced NPs had a covelite composition and that their size
was about 10–40 nm.

Lead sulfide (PbS) NPs with quantum semiconductor properties were first synthesized
with Torulopsis sp. [144]. Seshadri et al. reported the intracellular synthesis of stable PbS
NPs by the marine yeast Rhodosporidium diobovatum [142]. The NPs, of 2–5 nm, were
spherical and well dispersed. S. cerevisiae produced PbS nanospheres 0.667–6.95 nm in
size [143]. Synthesis of PbS NPs with A. flavus yielded 35–100-nm particles that had the
potential for the detection of arsenic in aqueous solution [141].

ZnS NPs was synthesized with an extract of the edible mushroom A. bisporus [145].
The agglomeration and size of the NPs decreased along with increasing the A. bisporus
extract volume used for the myco-synthesis. With a high extract volume, the NPs were
almost spherical and the average particle size varied from 2.1 to 3.5 nm. The same authors
also synthesized ZnS NPs with a P. ostreatus fruit body extract [152]. In that case, the
agglomeration of the particles and their size also decreased as the amount of the mushroom
extract was increased. With the use of a P. ostreatus extract, a large quantity of spherical
NPs of 4.04 to 2.30 nm was formed. The authors attribute the smaller size of the ZnS NPs
obtained with A. bisporus to the higher protein content of this mushroom’s fruit bodies [145].

Spherical ZnS QDs (average size of 18 nm) were obtained with A. flavus bio-mass [146,147].
Later, the same researchers utilized A. flavus bio-mass to synthesize gadolinium-doped
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ZnS (ZnS:Gd) [148]. The fluorescence intensity of the biogenic ZnS:Gd NPs increased in
comparison to ZnS NPs, which makes them a reliable fluorescent sensing tool. Jacob and
colleagues studied ZnS QD production with bio-mass of two micro-mycetes, Aspergillus sp.
and Penicillium sp. In both cases, the mycogenic NPs were spherical and their average size
was 11.08 nm for Aspergillus [149] and 6.3 nm for Penicillium [151]. Aspergillus-mediated
ZnS QDs showed excellent antibacterial and dye-degrading activities. The QDs synthe-
sized by Penicillium sp. were effective in the photodegradation of methylene blue dye.
F. oxysporum mycelial bio-mass was used to synthesize spherical ZnS NPs with an mean
size of 42 nm [150]. S. cerevisiae bio-mass formed 30–40-nm ZnS nanospheres [153].

3.2. Myco-Synthesis of Selenide Nanoparticles

Selenides are another important class of chalcogenide semiconductors. Their potential
applications include photocatalysis, bioimaging and biolabeling, and nanomedicine [156].
Mycogenic selenide NPs obtained by bio-nanotechnologists so far include cadmium, lead,
silver, gold, indium, and neodymium selenides. To date, they have been obtained mostly
with fungal bio-mass or living cultures (Table 7).

Table 7. Myco-synthesis of selenide nanoparticles.

NP Species Source Precursors Shape and Size Reference

Ag2Se Saccharomyces cerevisiae Living culture AgNO3, Na2SeO3 Average size of 3.9 nm [157]
AuSe Fusarium oxysporum Mycelial bio-mass HAuCl4, SeCl4 Spherical (average size of 52 nm) [158]
CdSe Candida utilis Living culture CdCl2, Na2SeO3 Average size of 4.38 nm [159]
CdSe Fusarium oxysporum Mycelial bio-mass CdCl2, SeCl4 Average size of 11 nm [160]

CdSe Helminthosporum solani Mycelial bio-mass CdCl2, SeCl4
Spherical, cubic

(average size of 5.5 nm) [161]

CdSe Rhodotorula mucilaginosa Bio-mass CdCl2,
Na2SeO3

Average size of 3.2 nm [162]

CdSe Saccharomyces cerevisiae Living culture CdCl2, Na2SeO3 15–20 nm [163]
CdSe Saccharomyces cerevisiae Living culture CdCl2, Na2SeO3 Average size of 2.8 nm [164]
CdSe Saccharomyces cerevisiae Bio-mass CdCl2, Na2SeO3 – [165]
InSe Aspergillus niger Living culture InCl3, Na2SeO3 <10 nm [166]

Nd2Se3 Fusarium oxysporum
Fungal

nitrate-dependent
reductase

NdCl2, SeCl4 Spherical (average size of 18 nm) [167]

PbSe Aspergillus terreus – – Nanorods (average size of 59 nm) [168]
PbSe Trichoderma sp. Mycelial bio-mass Pb(NO3)2, SeO2 Cubic (10–30 nm) [169]

The most widely studied mycogenic selenide NPs are cadmium selenide (CdSe) NPs,
and their synthesis with yeasts is the best studied so far [159,162–165,170]. Various condi-
tions for CdSe QD synthesis with S. cerevisiae were investigated and optimized to obtain
particles with a controllable size and with tunable fluorescence emission [163]. Brooks and
Lefebvre examined the ability of S. cerevisiae sequentially treated with sodium selenite and
cadmium chloride to synthesize CdSe QDs in the cytoplasm [164]. They optimized biosyn-
thesis conditions for the highest yield of QDs, and through the optimized method they
obtained fluorescent QDs with an average particle diameter of 2.8 nm. Shao et al. studied Se
precursors and Se metabolic flux in the synthesis of CdSe QDs in S. cerevisiae and improved
their ability to synthesize CdSe QDs through gene modification [165]. They identified
selenocysteine as the primary Se precursor in the intracellular biosynthesis of CdSe QDs.
Further studies showed that the seleno-methionine-to-selenocysteine pathway regulates
CdSe QD biosynthesis. Seleno-methionine synthesis was enhanced by overexpression of
the MET6 gene, and the yield of CdSe QDs in the engineered cells was increased.

CdSe QDs (average size of 4.38 nm) were also fabricated in vivo with Candida utilis [159].
Higher Cd and lower Se contents favored the formation of QDs with a higher fluorescence
intensity and better stability, implying a possibility of tuning the fluorescence properties of
these QDs. Candida-mediated CdSe QDs were directly used in live-cell imaging without



Biomimetics 2023, 8, 224 15 of 25

further surface modification. Cao et al. synthesized CdSe QDs with bio-mass of the yeast
Rhodotorula mucilaginosa [162]. The synthesis was regulated by changing the concentra-
tion of precursors and the pH of the medium, and it was found that the concentration
of cadmium ions, rather than that of selenium ions, determined the synthesis of CdSe
QDs. The synthesized CdSe QDs had a narrow size distribution (3.2 ± 0.4 nm) and great
photocatalytic activity toward malachite green dye under ultraviolet and visible light.

Besides various yeasts, other micro-mycetes are also able to form CdSe QDs. F. oxys-
porum bio-mass was used for the synthesis of highly stable semiconductor CdSe QDs
(average size of about 11 nm) with a broad fluorescent spectrum [160]. Helminthosporum
solani mycelial bio-mass induced the synthesis of small monodisperse luminescent CdSe
QDs with a mean size of 5.5 nm [161]. Most of these NPs were spherical, and a few cubelike
particles were present.

Ag2Se QDs with a uniform size of 3.9 nm were obtained with living S. cerevisiae
yeast [157]. The authors showed that selenocysteine was the primary Se precursor, and
the ability to synthesize Ag2Se QDs was improved by the construction of engineering
strains. Ag2Se synthesized with S. cerevisiae were weakly toxic and could be used for
in vivo imaging.

AuSe nanospheres with an average particle size of 52 nm were synthesized by incubat-
ing F. oxysporum mycelium with SeCl4 and HAuCl4 [158]. First, SeCl4 was reduced into Se
NPs, and then these NPs were reacted with HAuCl4 and formed AuSe NPs. In the absence
of an Se intermediate, HAuCl4 was reduced to Au NPs by fungal biomolecules. AuSe NPs
effectively inhibited conidiophores, conidiation, and sporulation in the fungus A. niger.

Sinharoy and Lens studied the simultaneous removal of indium, selenium, and tel-
lurium by A. niger from media by using different precursor concentrations [166]. Char-
acterization of the fungal bio-mass showed accumulation mostly of elementary Se NPs
within mycelial pellets, and, in addition, the formation of indium selenide (InSe) during
their simultaneous removal. The NPs were <10 nm in size. Biomimetic fabrication of
neodymium selenide (Nd2Se3) NPs was conducted with a nitrate-dependent reductase
from the fungus F. oxysporum as a reducing agent and with a synthetic peptide as a capping
molecule [167]. Nd2Se3 NPs were spherical, with an average size of 18 nm.

Fluorescent, semiconductor lead selenide (PbSe) quantum rods were synthesized with
the Pb- and Se-tolerant marine fungus A. terreus [168]. Semiconductor PbSe NPs were also
obtained with Trichoderma sp. bio-mass [169]. The optimal ratio between precursors was
1:1 mM SeO2:Pb(NO3)2. The NPs were 10–30-nm cubic face-centered protein-capped parti-
cles, which showed a strong antioxidant activity and photocatalytic activity in degrading
rhodamine B dye.

3.3. Myco-Synthesis of Telluride Nanoparticles

Yet another group of chalcogenides consists of the tellurides, which also show out-
standing properties and potential applications in optical, electronic, thermoelectrical, en-
ergy storing, catalytic, magnetic, and biological fields [171,172]. Their antimicrobial and
anticancer properties allow them to be used in nanomedicine [173]. The fungal synthesis of
NPs of these compounds has been poorly studied and has been described by only a few
researchers (Table 8).

Table 8. Myco-synthesis of telluride nanoparticles.

NP Species Source Precursors Shape and Size Reference

CdTe Fusarium oxysporum Mycelial bio-mass CdCl2, TeCl4 Spherical (15–20 nm) [174]
CdTe Rhizopus stolonifer Mycelial bio-mass CdCl2, TeCl4 QDs (average size of 7.6 nm) [133]
CdTe Saccharomyces cerevisiae Living culture CdCl2, Na2TeO3 QDs (2.0–3.6 nm) [175]
InTe Aspergillus niger Living culture InCl3, K2TeO3 <10 nm [166]



Biomimetics 2023, 8, 224 16 of 25

The ability to fabricate CdTe NPs has been found in several species of micro-mycetes.
Highly fluorescent biocompatible CdTe QDs capped with proteins were synthesized with
S. cerevisiae cells [175]. The synthesized QDs, obtained after 8 days of incubation, were
well-dispersed particles with a uniform diameter of about 3.6 nm. When the incubation
time was shortened to 2 days, the resulting CdTe QDs were smaller (about 2.2 nm). The
CdTe QDs obtained with F. oxysporum mycelial bio-mass were also highly fluorescent
and were stable and biocompatible [174]. These NPs were spherical, were 15–20 nm in
diameter, and showed antibacterial activity against Gram-positive and Gram-negative
bacteria. Biocompatible CdTe QDs with an average size of 7.6 nm were also obtained
with R. stolonifer [133]. The study of the simultaneous removal of indium, selenium, and
tellurium by A. niger from media showed accumulation of elementary Te NPs and indium
telluride NPs within mycelial pellets [166].

4. Prospects of Mycogenic Oxide and Chalcogenide Nanoparticles Practical
Application

Many researchers have identified a variety of activities in mycogenic oxide and chalco-
genide NPs, determining their great potential for further practical employment in biomedicine,
optics, agriculture, pollution control, and other fields of application (Figure 1).
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Figure 1. Fungi-mediated oxide and chalcogenide NPs applications.

One of the most important fields for use of these NPs is biomedicine. As described
above, various biomedical activities were found in many oxide and chalcogenide NPs
produced with fungi. Antibacterial, antifungal, antioxidant, anticancer, antidiabetic, and
antileishmanial properties offer great prospects for their use in the treatment and prevention
of various diseases. The larvicidal and pupicidal activities against human disease vectors,
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found in mycogenic TiO2 [57], ZnO [64] and CeO2 [97] NPs allow them to be used as agents
of infection control. The prospects for fungi-derived NP use in agriculture are opened by
CuO [33], ZnO [33] and Fe2O3 [37] NPs’ activity against bacterial and fungal crop pathogens
and by TiO2 NPs effect against insect pests [70]. Plant growth-promoting properties of
TiO2 [56] and MgO [104] myco-synthesized NPs enable their use as nano-fertilizers.

Another important characteristic of NPs is their photocatalytic properties, which
determine their ability to degrade toxic dyes [176]. Dye-degrading ability was found
in ZnO [74,86], ZnS [149,151], CdS [137], CdSe [162] and PbSe [169] mycogenic NPs. In
addition, some fungi-derived NPs, such as Fe2O3 [42] and Fe3O4 [43], were found to
be effective for metal ions removal. These properties allow the use of mycogenic oxide
and chalcogenide NPs in the bioremediation of polluted areas and in the treatment of
industrial and municipal wastewaters. Thanks to their unique physical and photochemical
properties, chalcogenide NPs are actively used in various optical and data storage devices,
sensors, batteries and solar cells [120]. Fungi-assisted biosynthesis of these NPs opens up
opportunities for environmentally safe NP production for these applications.

5. Conclusions

As compared with the NPs of elementary metals and metalloids, the myco-synthesis
of oxide and chalcogenide NPs is less widely studied, but in recent years, it has attracted
increasing research attention. To date, the ability to form oxide and/or chalcogenide
NPs has been found in about 70 species of fungi of different taxa, mainly in asco- and
basidiomycetes. Fungal cultures can synthesize oxide, sulfide, selenide, and telluride NPs
of many elements, which have diverse shapes and sizes (Figure 2).
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Figure 2. Oxide and chalcogenide NPs biosynthesized by fungi.

The characteristics of NPs of the same chemical compound may vary greatly depend-
ing on the conditions of their production and are determined not only by the physical and
chemical parameters of the reaction (precursors and their concentration, growth medium
composition, pH, temperature, stirring rate, lighting, reaction time, and so on) but also by
the characteristics of the fungal bio-object used (culture species, strain and age) and by the
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method of use of the fungus (as a living culture, filtered mycelial bio-mass, spores, extracts
from the vegetative mycelium or fruit bodies, cell-free culture liquids, purified metabolites).
The study of the influence of all these conditions on NP shape and size, their surface topog-
raphy, dispersity, stability, aggregation resistance, formation rate, bioavailability, photolu-
minescent and magnetic properties, and biological activity is very important for selection
of the most effective NP producers and optimization of the bio-nano-synthesis methods.

Micro-nano-synthesis of some oxides and chalcogenides, such as TiO2, ZnO, and
CdS, has been well studied, but most of the NPs of these compounds remain virtually
unexplored in terms of their fungi-mediated production. Fungal cultures are capable
of forming NPs of highly diverse chemical compositions, including compounds that are
not widely distributed and difficult to obtain, which have great potential for practical
applications in various fields of science and technology. Therefore, important challenges
facing nano-biotechnologists include:

• screening fungal cultures to identify NP producers of new, previously unexplored compounds;
• further enhancing the knowledge of already known mycogenic oxide and chalco-

genide NPs;
• optimization of production methods and scaling up of processes for the biosynthesis

of NPs with the required properties on an industrial scale;
• studying the possibilities of practical application of NPs and their introduction into practice.

The enormous potential of fungal cultures as NP producers of various oxides and
chalcogenides, together with the extremely poor state of knowledge of the myco-nano-
synthesis of the majority of these NPs, makes their further detailed and in-depth study, as
objects for the biosynthesis of the oxide and chalcogenide NPs and nanomaterials based on
them, a highly important task.
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