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Abstract: Recently, swarm intelligence algorithms have received much attention because of their
flexibility for solving complex problems in the real world. Recently, a new algorithm called the colony
predation algorithm (CPA) has been proposed, taking inspiration from the predatory habits of groups
in nature. However, CPA suffers from poor exploratory ability and cannot always escape solutions
known as local optima. Therefore, to improve the global search capability of CPA, an improved
variant (OLCPA) incorporating an orthogonal learning strategy is proposed in this paper. Then,
considering the fact that the swarm intelligence algorithm can go beyond the local optimum and
find the global optimum solution, a novel OLCPA-CNN model is proposed, which uses the OLCPA
algorithm to tune the parameters of the convolutional neural network. To verify the performance of
OLCPA, comparison experiments are designed to compare with other traditional metaheuristics and
advanced algorithms on IEEE CEC 2017 benchmark functions. The experimental results show that
OLCPA ranks first in performance compared to the other algorithms. Additionally, the OLCPA-CNN
model achieves high accuracy rates of 97.7% and 97.8% in classifying the MIT-BIH Arrhythmia and
European ST-T datasets.

Keywords: colony predation algorithm; convolutional neural networks; ECG; hyperparameter
optimization; orthogonal learning strategy; swarm intelligence algorithm

1. Introduction

In recent years, research has shown that deep learning offers numerous benefits
compared to conventional machine learning approaches [1,2]. Deep learning is known
to extract features efficiently compared to traditional machine learning approaches, so
many researchers tend to work with deep learning [3,4]. These methods are robust against
noise, can achieve superior accuracy, and can be scaled straightforwardly to larger datasets,
consequently reducing training time [5–7]. The main methods commonly used for deep
learning are deep neural networks and generative adversarial networks. Among these
networks, convolutional neural networks (CNNs) have made many contributions to the
field of computer vision and are popular among researchers [8]. LeNet-5 [9] is the pioneer
CNN, a convolutional neural network algorithm proposed by Yann LeCun in 1998 to solve
the problem of handwriting recognition. Then, the AlexNet [10] network structure was
introduced, and it won the 2012 ImageNet competition. Since then, CNNs have received
widespread and enthusiastic attention worldwide, and more new network structures have
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been proposed, such as VGG [11], GoogleLeNet [12], ResNet [13], and DenseNet [14]. When
these new network structures were created, the number of layers and parameters increased
accordingly. However, tuning hyperparameters is a highly challenging task. Since the
number of parameters is very large and specialized personnel are required to select the
optimal parameters based on experience, this can result in the loss of a large volume of
labor resources and the waste of material resources. Therefore, it is a tough task to manually
tune parameters using manual labor with limited resources.

Optimization techniques range from multiobjective methods to single objective ap-
proaches to many objective techniques [15–17]. Each of these approaches has its own
unique set of computational difficulties, making the process of optimization both challeng-
ing and rewarding [18,19]. The challenges of the optimization methods presented in the
previous literature include a high computational cost, difficulty in tackling multiple local
optima, lack of robustness, immature convergence, and conditionality of global optima
results [20–22]. As one of the main classes of optimization methods, activity patterns of
various groups of organisms are used to generate swarm intelligence (SI) algorithms [23].
In recent years, SIs have been able solve complex optimization problems in the real world
due to their excellent optimization capabilities [24,25]. Some of the famous algorithms are
the particle swarm algorithm (PSO) [26], Harris hawk optimization algorithm (HHO) [27],
slime mould algorithm (SMA) [28,29], hunger games search (HGS) [30], Runge Kutta opti-
mizer (RUN) [31], the weighted mean of vectors (INFO) [32], colony predation algorithm
(CPA) [33], and rime optimization algorithm (RIME) [34]. They have been applied to solve
many problems, such as bankruptcy prediction [35], economic emission dispatch [36], fea-
ture selection [37,38], constrained multiobjective optimization [39], dynamic multiobjective
optimization [40], global optimization [41], medical image segmentation [42], feed-forward
neural networks [43], scheduling optimization [44], large-scale complex optimization [45],
multiobjective optimization [46], and numerical optimization [47]. Among them, CPA
is a new algorithm proposed in recent years that is based on prey predation by animal
groups in nature. CPA has a more vital optimization ability than PSO, MFO, and other
algorithms [33]. Because swarm intelligence algorithms can solve complex practical prob-
lems, many researchers have proposed optimizing the parameters of deep learning network
structures using SI. Researchers also need to assess the performance of swarm intelligence
algorithms. IEEE CEC2017 serves as a benchmark function for testing the performance of
such algorithms and comprises four categories: unimodal functions, multimodal functions,
hybrid functions, and composition functions.

There are currently two types of researchers studying deep learning network struc-
tures. Some researchers use manually configured deep learning network structures, while
others use hyperparameters that use SIs to optimize deep learning network structures.
Pyakillya et al. [48] proposed a model for automatic classifications using a deep learning
architecture that consists of a one-dimensional convolutional layer and a fully connected
layer. The model achieved an accuracy of 86% on the validation dataset. Mathews et al. [49]
proposed a deep learning model for electrocardiogram (ECG) classification that incorpo-
rates a restricted Boltzmann machine and a deep belief network. The experiments showed
that this model performed better at low sampling rates. Sannino et al. [50] proposed a
deep neural network with seven hidden layers for automatic classification and verified
experimentally that this model outperforms other models in terms of accuracy, achieving
a precision of 99.52%. Strodthoff et al. [51] proposed a deep learning-based time series
classification algorithm that mainly uses the ResNet network model, and the experimental
results proved that the performance of this algorithm is promising. Peimankar et al. [52]
proposed a method for ECG signal detection composed of deep learning-based convolu-
tional neural networks and long- and short-term memory. Different heartbeat waveforms
were detected from the MITDB and QTDB datasets to test the method’s effectiveness. The
F1 scores obtained on the two datasets are 99.56% and 96.78%, respectively, indicating that
this method was very effective for ECG signal detection. Hasan et al. [53] proposed the use
of one-dimensional convolutional neural networks for the recognition of multiple heart
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diseases, and the accuracy of this method on the MIT-BIH, St-Petersberg, and PTB datasets
is 97.7%, 99.71%, and 98.24%, respectively. Acharya et al. [54] investigated a nine-layer
convolutional neural network structure for identifying five different classes of heartbeats
in ECG signals, and the experimental results showed that the accuracy was 94.03%.

Compared with manual search, automatic search using SI can be performed by im-
proving the algorithm to find the values of suitable parameters within the selected range
and finally find the most optimal values.

In the study of Houssein et al. [55], a convolutional neural network model based on
an improved marine predators algorithm (IMPA-CNN) was proposed to exploit the best
classification role of CNNs and to find the best hyperparameters of CNNs. This model
uses the improved marine predators algorithm to select the most suitable CNN parameters
automatically, and the experimental results of testing it on different ECG datasets show
that this model is very effective. Khalifa et al. [56] proposed a method to optimize the
parameters of a seven-layer CNN network; the first six layers of the CNN use gradient
descent and the last layer uses a particle swarm algorithm to find the optimal parameters
of the CNN. This model was compared with a handwritten character recognition dataset
using a standard CNN architecture, and the results show that this model has a higher
accuracy, with a value of 96.67%. Yamasaki et al. [57] proposed a method to improve image
recognition accuracy, in which a particle swarm algorithm is implemented to automatically
find the appropriate hyperparameters of the CNN. The results show higher accuracy when
using this method to optimize the AlexNet structure and compare it with the standard
AlexNet-CNN structure in image recognition experiments. Dey et al. [58] proposed a model
integrating three network structures, VGG19, ResNet50, and DenseNet121, used to screen
tuberculosis or TB images from chest X-rays. To overcome the problem of manual tuning,
the training part of the model uses an optimization algorithm to set the parameters of the
model, and this method was proven effective for TB classification by testing on a TB dataset.

Using convolutional neural networks, Pathan et al. [59] investigated a method to auto-
matically identify chest X-ray images affected by COVID-19. This method achieved 98.8%
and 96% accuracy for dataset 1 and dataset 2, respectively. The results of the experiments on
COVID-19 images show that this method can effectively screen out patients with the disease.
The hyperparameters of the DenseNet121 architecture were optimized using the gravity
search algorithm in the work of Ezzat et al. [60]. This optimized model was compared
with the CNN architecture of Inception-v3 in experiments for the detection of new crown
pneumonia, and the experimental results indicate that this model performs exceptionally
well in terms of accuracy, reaching 98.38%, significantly higher than its competitor. Most
studies used optimization algorithms to tune the parameters of CNNs, while some works
used optimization algorithms to tune the overall architecture of CNNs to select the most
appropriate number of network layers. In Singh et al. [61]′s study, a multi-stage particle
swarm was used to optimize the network structure and hyperparameters of CNNs, which
is divided into two stages. In the first stage, the multi-level particle swarm algorithm is
used to optimize the CNN architecture and determine the number of network layers that
can better exploit the performance of the CNN. In the second stage, the hyperparameters
are tuned based on this network structure. The final model was tested using an image
dataset, and the results show that the performance of this model is excellent. To speed
up finding the layers and parameters of CNN architecture, Fernandes et al. [62] proposed
a new particle swarm velocity operator and used this new particle swarm algorithm to
optimize the architecture and parameters of a CNN. Experimental tests show that this
model can find an optimized CNN model based on any dataset.

Although many researchers have studied this area, there are still many challenges to
be tackled. CPA faces the same challenges as other swarm intelligence algorithms, such as
falling into local optima and slow convergence. To solve these problems, CPA needs to be
improved. Therefore, this motivates us to propose an improved CPA and use it to optimize
the parameters of a CNN.
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This paper proposes an improved CPA based on an orthogonal learning strategy
(OLCPA). To demonstrate the effectiveness of OLCPA in optimizing CNN parameters, it
was applied to the classification of arrhythmia in ECG datasets. The main contributions of
this paper are as follows:

• An OLCPA algorithm based on the orthogonal learning strategy is proposed, and it is
compared with four traditional and seven advanced algorithms on the IEEE CEC 2017
benchmark functions.

• This paper analyzes the scalability of OLCPA and CPA on different dimensions of the
IEEE CEC2017 benchmark functions.

• A CNN-based OLCPA-CNN model for identifying abnormal ECG signals is designed.
• The OLCPA-CNN model is compared with other methods using the MIT-BIH and the

European ST-T datasets.

The rest of this paper is as follows: Section 2 describes CPA and introduces the back-
ground knowledge on CNNs. Section 3 describes the improved CPA algorithm (OLCPA).
The process of the OLCPA-CNN model is described in Section 4. Section 5 describes
the experimental design and results of OLCPA. Section 6 describes the application of
OLCPA-CNN. Section 7 is the discussion. Finally, Section 8 is the conclusion of this paper.

2. Preliminary Work
2.1. Overview of Colony Predation Algorithm

The colony predation algorithm [33] was inspired by the fact that cooperative com-
municative group predation of group-housed animals increases the probability of success-
ful predation.

Group-living animals pursue their prey by communicating with each other, and
Equation (1) simulates this process.

Xi
j(t + 1) = Xi

j(t) + (1− r)·
(

X1(t) + X2(t)
2

)
(1)

where Xi
j(t) is the individual currently searching for prey in the j-th dimension, j ranges

from 1 to dim, and i represents the current individual. X1 and X2 are the positions of the
two individuals closest to the prey, r is a random number between 0 and 1, and Xi

j(t + 1) is
the position of the individual in the next iteration.

Two strategies are used in the pursuit process to increase the probability of successful
predation: scattering prey and surrounding prey. Prey dispersal is to drive the prey in
different directions and weaken the prey group, and Equation (2) simulates this process.

X(t + 1) = Xbest − S·(r1·(ub− lb) + lb) (2)

where S denotes the energy of the prey and its value is changed, lb and ub are the left and
right values of the boundary range, r1 is a random number between 0 and 1, Xbest is the
location of the prey, and X(t + 1) is the current position of the pursuer. The variation of S
is as follows:

S0 = a− t·
( a

N

)
(3)

S = 2·S0·r2 (4)

a = ew−2w(1− t
MaxFes ) (5)

where r2 varies between 0 and 1, t is the current number of evaluations, and N indicates
the number of predators. S0 varies with the number of evaluations, the value of a is related
to the number of evaluations, and the value of w is 9.
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After the prey has been successfully dispersed, the predators use a siege attack on
them, a process shown in Equation (6):

X(t + 1) = Xbest − 2S·D·el ·tan
(π

4
l
)

(6)

D =
∣∣∣Xbest − X(t)

∣∣∣ (7)

where D is the interval indicating the current individual’s distance from the prey. The
probability of the two strategies being executed is shown in Equation (8).

X(t + 1) =
{

Xbest − S·(r1·(ub− lb) + lb) r ≥ 0.5
Xbest − 2S·D·el ·tan

(
π
4 l
)

r < 0.5
(8)

When the predator begins to chase prey, there are two strategies: one is when the preda-
tors find prey nearby, and choose to support the closest predator to the prey; Equation (9)
simulates this process. The second is when the predators do not find prey around them,
they will randomly choose other locations of prey; this process is shown in Equation (11).

X(t + 1) = Pnearest (9)

D1 = |2r4·Xrand − X(t)| (10)

X(t + 1) = Xrand − S·D1 (11)

Xrand = r5·((ub− lb) + lb) (12)

where Pnearest denotes the position of the individual closest to the prey, D1 denotes the
distance moved by the random population, and Xrand denotes the new position randomly
generated by the prey individuals.

The probability of the above two strategies being executed is described in Equation (13).
Algorithm 1 describes the process of implementing CPA.

X(t + 1) =
{

Pnearest |r6|≤ 1
Xrand − S·D1 |r6|> 1

(13)

Algorithm 1 Pseudo-code for CPA

Initialize population size Num, the problem dimension dim, and the maximum number of
evaluations MaxFes
While (t ≤MaxFes)
For i = 1: Num
Calculation of individual fitness values
Update Xbest
End for

For j = 1: dim
Update X1, X2
Calculate Xi

j using Equation (1)
End for
For i = 1: Num
Update S
If |S| < 2

3 a
Calculate the current agent’s position by Equation (8)

End if
If |S| ≥ 2

3 a
Calculate the current agent’s position by Equation (13)

End if
End for
t = t + 1

End while
Return Xbest
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2.2. Convolutional Neural Network

Yann Lecun of New York University proposed the convolutional neural network in
1998. It differs from a multilayer perceptron (MLP) and is used in various fields, such
as image processing. The difference with regard to MLP is that the way of CNN local
connection and weight sharing is changed, where on the one hand, the network can be
better optimized by reducing the number of weights, and on the other hand, the complexity
of the model can be effectively reduced. The convolutional neural network structure is a
deep neural network with a convolutional structure, and its overall architecture of network
structure includes an input layer, convolutional layer, rectified linear units (ReLU) layer,
pooling layer, and fully connected layer. In practical applications, the convolutional layer
contains the convolutional layer and the ReLU layer. Activation functions are usually used
to compute the convolutional layer, and the commonly used activation functions are the
Sigmoid, Tanh, and ReLU functions. The pooling layer is generally arranged after the
convolutional layer to reduce the network’s parameters and computational resources. The
role of the fully connected layer in the entire network is to classify, and it is usually found
in the last few layers of the CNN. The one-dimensional CNN structure of this paper is
shown in Figure 1.
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3. The Improved CPA

CPA is an algorithm with better optimization performance. However, when faced
with complex optimization problems, it tends to fall into local optima or slow down the
convergence rate due to the fact that it lacks some strategies that can flexibly address these
problems. To overcome these problems, we propose an improved CPA that incorporates an
orthogonal learning strategy.

3.1. Orthogonal Learning Design

An orthogonal learning design [63] is a method that uses a small number of exper-
iments to find the best solution. The determination of the small number of experiments
is mainly related to two factors in the orthogonal table LM: the K factor and the number
of Q levels for each factor. LM (QK) indicates that QK sets of experiments need to be
carried out, but when the values of Q and K are large, it is impossible to complete this
many experiments, so it is necessary to use the orthogonal table to design the number of
experiments. For experiments designed using the orthogonal table, only M combinations
need to be chosen to complete the experiments, and the number of experiments M is much
smaller than QK. For example, the following orthogonal table L9(33) explains the process.
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L9(33) =



1 1 1
1 2 2
1 3 3
2 1 2
2 2 3
2 3 1
3 1 3
3 2 1
3 3 2


(14)

In Equation (14), L9 indicates that the experiment with the orthogonal table design
needs to be executed only 9 times, but without the orthogonal design, this experiment
needs to be executed 27 times. Therefore, the orthogonal design can significantly reduce
the number of experiments, and this method is more effective when the values of Q and K
are larger.

3.2. Orthogonal Learning Strategy

This study introduces the orthogonal learning strategy (OL) into CPA, which uses
orthogonal tables to generate a new search mechanism to explore more regions and avoid
becoming trapped in local optima. After using this strategy, the original CPA generates
M + 1 search agents, which can improve the exploration ability of CPA.

3.3. The Proposed OLCPA

This subsection proposes a novel CPA algorithm based on an orthogonal learning
strategy. Equation (15) describes the formation process of OLCPA. This new OLCPA
algorithm exploits the orthogonal strategy’s search mechanism to expand the solution’s
search scope and find high-quality solutions. The pseudo-code for OLCPA is described in
Algorithm 2, and Figure 2 describes the specific process of OLCPA.
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X(t + 1) =
{

Xnew F(Xnew) < F(Xold)
Xold others

(15)

where Xnew represents the new search agent generated using the orthogonal policy and
Xold is the search agent without the orthogonal policy. F represents the fitness function.

Algorithm 2 Pseudo-code for OLCPA

Initialize population size Num, the problem dimension dim, and the maximum number of
evaluations MaxFes
While (t ≤MaxFes)
For i = 1: Num
Calculation of individual fitness values
Update Xbest
End for

For j = 1: dim
Update X1, X2
Calculate Xi

j by Equation (1)
End for
For i = 1: Num
Update S
If |S| < 2

3 a
Calculate the current agent’s position by Equation (8)

End if
If |S| ≥ 2

3 a
Calculate the current agent’s position by Equation (13)

End if
End for
Execute an orthogonal strategy
Update the current search agent
t = t + 1

End while
Return Xbest

4. The Design of the OLCPA-CNN Model

This section describes the OLCPA formation process, and the classification error rate
of CNN is used as the fitness function. Then, the parameters of the CNN are optimized
according to the optimal solution generated by OLCPA to obtain the OLCPA-CNN model
and evaluate this model.

4.1. The Network Structure of CNN

The nine-layer CNN model used in this paper is displayed in Figure 1, and the overall
structure consists of three sets of convolutional pooling layers and two fully connected
layers, where each set of convolutional pooling layers consists of one convolutional layer
and one pooling layer. Data are transmitted to the input layer, which undergoes convolution
and pooling operations to achieve the mapping of different functions and simultaneously
extract useful features, and then achieves the classification purpose in the fully connected
layer. Figure 3 depicts the process of OLCPA-CNN being designed. The search agent of
OLCPA represents the parameters of the CNN, and the optimized parameters of the CNN
are obtained through iterative updates of the position of the search agent of OLCPA.
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4.2. Hyperparameter Optimization

Parameter tuning occupies a crucial place in deep learning classification [64,65]. OL-
CPA optimizes the parameters of the CNN structure by iteratively updating the solution.
In this paper, the parameters to be optimized are concentrated in the following layers: a
three-layer convolutional layer and a two-layer fully connected layer. The optimization of
hyperparameters in the CNN includes the number and size of convolutional kernels for
each convolutional layer, the number of first fully connected layers, the learning rate, the
number of epochs, and L2 regularization. The optimized parameters and their ranges are
described in Table 1. The parameters of OLCPA are as follows: the number of populations
is 5, the maximum number of iterations is 20, and the dimensionality is set to 10. Because
the number of parameters to be optimized is closely related to the parameters of the CNN,
its bounded range is related to the range of parameter variations.

Table 1. Hyperparameter range of CNN structure.

Architecture Hyperparameter Range

CNN

Number of convolution kernels [1, 15]
Size of the convolution kernels [1, 128]
Number of nodes of the first fully connected layer [0, 5000]
Number of epochs [1, 40]
Learning rate [0.0001, 0.01]
L2 regularization [0.001, 0.01]

4.3. Fitness Function

The fitness function is essentially an evaluation function that evaluates the goodness
of an algorithmic solution by measuring the fitness of individuals in the population [66]. In
this article, the fitness function is the classification error rate, closely related to classification
accuracy (ACC). The correct classification rate is calculated based on the confusion matrix.
Table 2 shows the expressions of the confusion matrix, where TP means that both the
actual and predicted values are positive, TN means that both values are negative, FN
means that the predicted value is negative and the real value is positive, and FP means
that the predicted value is positive and the real value is negative. The formula for ACC is
shown in Equation (16), and the corresponding fitness function is calculated as shown in
Equation (17). The relationship between the value of the fitness function and the classifi-
cation error rate is proportional; when the value of the fitness function becomes smaller,
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the classification error rate also becomes smaller, which reflects that the quality of the
individual solution is good and it is beneficial to the optimization of CNN parameters.

ACC =
TP + TN

TP + FP + FN + TN
(16)

Fitness = 1−ACC (17)

Table 2. Confusion matrix.

Actual Positive Actual Negative

Predicted positive TP FP
Predicted negative FN TN

5. Experimental Design and Results of OLCPA

In this section, we compare the OLCPA algorithm with other algorithms on the IEEE
CEC2017 benchmark functions to verify the performance of OLCPA. These algorithms
were tested using MATLAB R2018b with 128GB of RAM and an Intel(R) Xeon(R) Silver
4110 CPU on Windows Server 2016. The assessment of AI-based approaches through
fair procedures can advance replicability, transparency, research standards, and public
confidence [67–69]. Comparing computational methods using the same criteria allows us to
established unbiased assessments [70,71]. We conducted our trials in a manner consistent
with fair comparison principles. The parameters involved in the experiments are as follows:
the number of populations N, dimension D, the maximum number of evaluations MaxFes,
and the number of independent runs of the algorithm Num. Table 3 shows the values of
these parameters.

Table 3. Parameters of an algorithm comparison experiment.

N D MaxFes Num

30 30 300,000 30

5.1. Benchmark Function

In this subsection, the IEEE CEC2017 benchmark functions [72] are used to test the
performance of the OLCPA. These functions are classified into the following categories:
unimodal functions (F1–F3), multimodal functions (F4–F10), hybrid functions (F11–F20),
and complex functions (F21–F30).

5.2. Scalability Test

This section tests OLCPA and CPA in 50 and 100 dimensions under the same ex-
perimental conditions. The dimensionality tests for scalability are mainly to verify the
performance of OLCPA when coping with different dimensions. Table 4 shows the compar-
ison results of these two algorithms in different dimensions. Avg and Std denote the mean
and standard deviation of the experimental results, respectively. The experimental results
reveal that OLCPA can also perform well in high dimensionality. The experimental results
in the table show that the quality of most solutions of OLCPA is significantly stronger than
that of CPA in 50 and 100 dimensions, which indicates that the improved OLCPA algorithm
based on CPA is effective and the performance of OLCPA is stronger.
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Table 4. Comparison of OLCPA and CPA dimensions.

F Algorithm
Dim = 50 Dim = 100

Avg Std Avg Std

F1 CPA 3.918 × 103 5.613 × 103 1.0134 × 104 1.3351 × 104

OLCPA 2.045 × 103 2.522 × 103 7.4512 × 103 6.3808 × 103

F2 CPA 3.212 × 103 9.123 × 103 1.2924 × 1013 6.9606 × 1013

OLCPA 2.804 × 102 1.873 × 102 2.7373 × 1010 1.0467 × 1011

F3 CPA 3.000 × 102 1.723 × 10−6 2.3131 × 103 1.0879 × 103

OLCPA 3.000 × 102 1.425 × 10−9 3.0000 × 102 2.1451 × 10−8

F4 CPA 5.069 × 102 5.491 × 10 6.2239 × 102 3.7274 × 10
OLCPA 4.769 × 102 3.367 × 10 6.3116 × 102 5.2452 × 10

F5 CPA 7.157 × 102 2.635 × 10 1.0656 × 103 7.0536 × 10
OLCPA 7.393 × 102 3.785 × 10 1.1193 × 103 5.8359 × 10

F6 CPA 6.000 × 102 2.072 × 10−4 6.0000 × 102 3.5520 × 10−3

OLCPA 6.000 × 102 1.946 × 10−13 6.0000 × 102 2.6953 × 10−13

F7 CPA 9.926 × 102 4.689 × 10 1.4700 × 103 9.1916 × 10
OLCPA 1.012 × 103 4.161 × 10 1.5541 × 103 1.2035 × 102

F8 CPA 1.017 × 103 3.768 × 10 1.3892 × 103 7.3342 × 10
OLCPA 1.018 × 103 3.874 × 10 1.4321 × 103 6.7090 × 10

F9 CPA 6.632 × 103 1.662 × 103 1.6982 × 104 1.9060 × 103

OLCPA 6.566 × 103 1.940 × 103 1.6940 × 104 1.8023 × 103

F10 CPA 5.857 × 103 6.643 × 102 1.2755 × 104 1.0274 × 103

OLCPA 5.598 × 103 7.011 × 102 1.2856 × 104 1.2503 × 103

F11 CPA 1.226 × 103 3.445 × 10 1.5628 × 103 1.0329 × 102

OLCPA 1.228 × 103 2.865 × 10 1.5100 × 103 1.1924 × 102

F12 CPA 3.216 × 106 2.379 × 106 8.5478 × 106 3.7663 × 106

OLCPA 2.110 × 106 1.443 × 106 4.4447 × 106 2.1365 × 106

F13 CPA 8.034 × 103 8.404 × 103 6.9597 × 103 5.4080 × 103

OLCAP 5.223 × 103 3.526 × 103 4.9575 × 103 3.4951 × 103

F14 CPA 4.017 × 104 2.045 × 104 1.0750 × 105 3.2124 × 104

OLCAP 8.857 × 103 5.974 × 103 3.4510 × 104 6.5897 × 103

F15 CPA 8.161 × 103 5.507 × 103 4.0322 × 103 3.0081 × 103

OLCPA 9.451 × 103 5.953 × 103 2.7858 × 103 1.2726 × 103

F16 CPA 3.647 × 103 4.486 × 102 6.1075 × 103 6.1143 × 102

OLCPA 3.453 × 103 3.315 × 102 5.9226 × 103 5.8144 × 102

F17 CPA 3.034 × 103 3.329 × 102 4.9720 × 103 5.3734 × 102

OLCPA 3.109 × 103 3.106 × 102 4.8910 × 103 6.0655 × 102

F18 CPA 1.320 × 105 2.658 × 104 2.5015 × 105 9.0799 × 104

OLCPA 4.246 × 104 1.368 × 104 1.3636 × 105 2.4613 × 104

F19 CPA 2.097 × 104 9.306 × 103 5.9069 × 103 4.3932 × 103

OLCPA 2.660 × 104 8.118 × 103 3.8745 × 103 1.7514 × 103

F20 CPA 3.055 × 103 3.027 × 102 5.1363 × 103 3.9298 × 102

OLCPA 2.891 × 103 2.578 × 102 5.1443 × 103 4.6463 × 102

F21 CPA 2.515 × 103 3.993 × 10 2.8858 × 103 8.8322 × 10
OLCPA 2.527 × 103 4.671 × 10 2.8781 × 103 7.3269 × 10

F22 CPA 7.882 × 103 1.718 × 103 1.6525 × 104 1.2773 × 103

OLCPA 7.908 × 103 1.320 × 103 1.6529 × 104 9.8827 × 102

F23 CPA 2.979 × 103 4.502 × 10 3.1604 × 103 6.6818 × 10
OLCPA 3.008 × 103 4.940 × 10 3.1599 × 103 7.3210 × 10

F24 CPA 3.498 × 103 1.719 × 102 3.8236 × 103 8.3982 × 10
OLCPA 3.566 × 103 1.472 × 102 3.8711 × 103 8.9281 × 10

F25 CPA 3.048 × 103 4.905 × 10 3.2936 × 103 7.0202 × 10
OLCPA 3.052 × 103 3.882 × 10 3.2933 × 103 7.0629 × 10

F26 CPA 4.078 × 103 2.100 × 103 1.2307 × 104 3.3495 × 103

OLCPA 5.254 × 103 2.960 × 103 1.3663 × 104 2.7772 × 103
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Table 4. Cont.

F Algorithm
Dim = 50 Dim = 100

Avg Std Avg Std

F27 CPA 3.519 × 103 1.029 × 102 3.5698 × 103 8.1696 × 10
OLCPA 3.532 × 103 9.428 × 10 3.6442 × 103 8.7973 × 10

F28 CPA 3.296 × 103 2.671 × 10 3.3820 × 103 3.4844 × 10
OLCPA 3.290 × 103 2.094 × 10 3.3647 × 103 4.4484 × 10

F29 CPA 4.233 × 103 2.991 × 102 6.7623 × 103 4.7534 × 102

OLCPA 4.072 × 103 2.955 × 102 6.9277 × 103 5.1706 × 102

F30 CPA 9.734 × 105 2.383 × 105 1.4286 × 104 4.3046 × 103

OLCPA 8.788 × 105 1.518 × 105 1.3530 × 104 4.6178 × 103

5.3. Comparison with Conventional and Advanced Algorithms

In this section, to test the performance of OLCPA, it is compared with 11 algorithms:
CCMWOA [73], IGWO [74], CCMSCSA [75], BMWOA [76], CMFO [77], CESCA [78],
GCHHO [79], DE [80], MFO [81], HGS [30], and CPA [33]. To ensure the reliability of the
experiment, this experiment was conducted under the same experimental conditions. The
results of comparing OLCPA with the algorithms mentioned above are listed in Table 5.
The last three columns of the table are Rank, the symbol “+/=/−”, and Avg, where Rank
represents the Friedman test, “+/=/−” represents the number of functions in which OLCPA
is stronger than, equal to, or not stronger than the other algorithms for the 30 benchmark
functions, and Avg represents the average of the benchmark function test results.

Table 5. Comparison of OLCPA with other algorithms.

Algorithm F1 F2 F3

Avg Std Avg Std Avg Std

OLCPA 2.6417 × 103 2.6210 × 103 2.0000 × 102 6.1889 × 10−6 3.0000 × 102 3.3039 × 10−10

CCMWOA 2.0529 × 1010 4.7896 × 109 3.9233 × 1038 1.8806 × 1039 7.7098 × 104 6.7169 × 103

IGWO 1.6989 × 106 8.5027 × 105 2.0146 × 1013 8.4520 × 1013 1.4554 × 103 6.7162 × 102

CCMSCSA 3.1354 × 103 3.1637 × 103 7.5324 × 1010 2.3962 × 1011 3.4410 × 102 3.2511 × 101

BMWOA 2.0649 × 108 8.6683 × 107 5.7378 × 1022 2.6681 × 1023 7.0802 × 104 9.5290 × 103

CMFO 2.0503 × 108 4.7086 × 108 3.8481 × 1037 2.0987 × 1038 1.1542 × 105 4.6442 × 104

CESCA 5.7624 × 1010 4.6938 × 109 5.0711 × 1045 1.0293 × 1046 1.0551 × 105 1.4524 × 104

GCHHO 4.6746 × 103 5.9329 × 103 4.0569 × 105 9.1569 × 105 5.5167 × 102 1.6374 × 102

DE 2.2872 × 103 3.7753 × 103 1.3602 × 1021 3.6101 × 1021 1.9826 × 104 4.4953 × 103

MFO 1.3517 × 1010 8.8111 × 109 1.1274 × 1039 6.1676 × 1039 1.1049 × 105 8.7936 × 104

HGS 1.3861 × 107 7.5867 × 107 1.3521 × 1016 5.1457 × 1016 2.6774 × 103 5.6921 × 103

CPA 5.3939 × 103 5.9328 × 103 2.0098 × 102 3.7267 × 100 3.0000 × 102 1.4672 × 10−7

F4 F5 F6

Avg Std Avg Std Avg Std

OLCPA 4.4457 × 102 3.6133 × 101 6.2701 × 102 2.3849 × 101 6.0000 × 102 3.5452 × 10−13

CCMWOA 3.7003 × 103 1.4526 × 103 8.3497 × 102 3.3283 × 101 6.7164 × 102 7.8115 × 100

IGWO 5.0643 × 102 2.3656 × 101 6.1178 × 102 1.6784 × 101 6.2273 × 102 5.5501 × 100

CCMSCSA 4.9943 × 102 2.7486 × 101 5.8212 × 102 2.3957 × 101 6.0043 × 102 2.9648 × 10−1

BMWOA 6.0019 × 102 3.8438 × 101 7.7892 × 102 5.5275 × 101 6.6611 × 102 1.1204 × 101

CMFO 5.6429 × 102 6.6364 × 101 7.2496 × 102 5.0447 × 101 6.5202 × 102 9.3009 × 100

CESCA 1.5015 × 104 2.3052 × 103 9.6832 × 102 2.4033 × 101 7.0496 × 102 5.2640 × 100

GCHHO 4.9548 × 102 2.8019 × 101 7.1025 × 102 4.2271 × 101 6.5178 × 102 6.9046 × 100

DE 4.9088 × 102 9.5252 × 100 6.0806 × 102 9.1168 × 100 6.0000 × 102 0.0000 × 100

MFO 1.3689 × 103 8.5540 × 102 7.0259 × 102 6.0823 × 101 6.4206 × 102 1.1753 × 101

HGS 4.7827 × 102 2.7144 × 101 6.3080 × 102 2.8629 × 101 6.0152 × 102 1.9161 × 100

CPA 4.8346 × 102 2.5598 × 101 6.2974 × 102 2.6272 × 101 6.0000 × 102 1.0003 × 10−7
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Table 5. Cont.

F7 F8 F9

Avg Std Avg Std Avg Std

OLCPA 8.5580 × 102 3.3574 × 101 9.0241 × 102 1.6026 × 101 2.6955 × 103 5.2050 × 102

CCMWOA 1.2785 × 103 7.1917 × 101 1.0445 × 103 2.5360 × 101 7.7640 × 103 1.4347 × 103

IGWO 9.0405 × 102 5.2744 × 101 8.9353 × 102 2.1787 × 101 2.8209 × 103 8.7020 × 102

CCMSCSA 8.0574 × 102 1.7076 × 101 9.0305 × 102 2.9632 × 101 9.8573 × 102 7.2563 × 101

BMWOA 1.1733 × 103 1.0644 × 102 1.0081 × 103 3.0517 × 101 7.2354 × 103 8.8766 × 102

CMFO 1.2808 × 103 1.5349 × 102 9.5931 × 102 3.8407 × 101 4.7987 × 103 1.1702 × 103

CESCA 1.5498 × 103 5.0905 × 101 1.1778 × 103 1.9507 × 101 1.5424 × 104 1.2474 × 103

GCHHO 1.0821 × 103 1.0330 × 102 9.4369 × 102 2.0730 × 101 4.7578 × 103 5.8635 × 102

DE 8.4129 × 102 1.0450 × 101 9.0777 × 102 8.5623 × 100 9.0000 × 102 1.0765 × 10−13

MFO 1.1498 × 103 2.0356 × 102 1.0177 × 103 4.6613 × 101 7.1329 × 103 1.7975 × 103

HGS 8.9314 × 102 5.1096 × 101 9.0545 × 102 2.2953 × 101 3.5491 × 103 8.3458 × 102

CPA 8.4269 × 102 2.7130 × 101 9.0484 × 102 2.1313 × 101 2.3193 × 103 6.1060 × 102

F10 F11 F12

Avg Std Avg Std Avg Std

OLCPA 3.7605 × 103 3.8850 × 102 1.1756 × 103 3.4123 × 101 6.5992 × 105 4.6976 × 105

CCMWOA 7.0372 × 103 6.1016 × 102 3.1558 × 103 5.8702 × 102 2.0126 × 109 1.4565 × 109

IGWO 4.4687 × 103 5.9061 × 102 1.2642 × 103 2.8641 × 101 1.5414 × 107 1.5084 × 107

CCMSCSA 4.6758 × 103 6.1466 × 102 1.1870 × 103 3.1743 × 101 1.1060 × 106 8.7007 × 105

BMWOA 7.4949 × 103 5.9325 × 102 1.6517 × 103 1.6384 × 102 7.8078 × 107 5.9556 × 107

CMFO 7.3777 × 103 1.2921 × 103 4.6678 × 103 3.4534 × 103 4.0157 × 107 1.2585 × 108

CESCA 8.7430 × 103 2.2735 × 10 1.0664 × 104 1.6523 × 103 1.5622 × 100 1.5369 × 109

GCHHO 5.1344 × 103 6.1384 × 102 1.2339 × 103 5.1150 × 101 9.6394 × 105 7.5930 × 105

DE 5.9154 × 103 3.1146 × 102 1.1611 × 103 2.2327 × 101 1.6551 × 106 8.2025 × 105

MFO 5.6084 × 103 8.5316 × 102 4.6351 × 103 4.6023 × 103 1.9357 × 108 3.4217 × 108

HGS 3.9194 × 103 4.7298 × 102 1.2032 × 103 3.5853 × 101 7.1069 × 105 5.9578 × 105

CPA 3.6850 × 103 4.6305 × 102 1.1700 × 103 3.4461 × 101 1.6148 × 106 1.2540 × 106

F13 F14 F15

Avg Std Avg Std Avg Std

OLCPA 4.4219 × 103 2.9844 × 103 2.9128 × 103 1.0472 × 103 3.2767 × 103 2.4501 × 103

CCMWOA 1.5038 × 108 2.1857 × 108 1.2576 × 106 8.9707 × 105 5.8975 × 106 9.3662 × 106

IGWO 2.8168 × 105 3.9417 × 105 5.3978 × 104 3.4567 × 104 5.6870 × 104 2.9361 × 104

CCMSCSA 1.3367 × 104 1.1171 × 104 1.6896 × 104 1.5715 × 104 3.0463 × 103 2.0005 × 103

BMWOA 4.3710 × 105 7.0418 × 105 9.4482 × 105 8.0898 × 105 1.7030 × 105 2.7468 × 105

CMFO 3.7917 × 107 1.9343 × 108 3.5943 × 105 8.2977 × 105 3.0292 × 104 3.2825 × 104

CESCA 1.3433 × 1010 3.9068 × 109 6.5888 × 106 2.8850 × 106 4.5428 × 108 1.8134 × 108

GCHHO 1.2843 × 104 1.5165 × 104 3.4759 × 104 2.5482 × 104 6.3001 × 103 6.5459 × 103

DE 2.9103 × 104 1.6893 × 104 4.9826 × 104 2.5793 × 104 8.6203 × 103 5.3792 × 103

MFO 3.5810 × 106 1.3021 × 107 2.3452 × 105 6.2121 × 105 6.7501 × 104 6.6285 × 104

HGS 2.6168 × 104 2.4091 × 104 5.3803 × 104 4.0736 × 104 1.7192 × 104 1.5459 × 104

CPA 5.8096 × 103 1.1246 × 104 7.0490 × 103 4.9848 × 103 2.2795 × 103 9.4388 × 102
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Table 5. Cont.

F16 F17 F18

Avg Std Avg Std Avg Std

OLCPA 2.5673 × 103 3.5254 × 102 2.0234 × 103 1.5350 × 102 3.3044 × 104 1.4827 × 104

CCMWOA 3.9526 × 103 6.7820 × 102 2.7756 × 103 3.8592 × 102 1.0532 × 107 1.0505 × 107

IGWO 2.5650 × 103 3.5963 × 102 2.0210 × 103 1.4303 × 102 4.9309 × 105 4.1194 × 105

CCMSCSA 2.5013 × 103 2.6859 × 102 2.0794 × 103 1.8933 × 102 1.6964 × 105 1.5010 × 105

BMWOA 3.4890 × 103 5.2235 × 102 2.4671 × 103 2.1627 × 102 3.2300 × 106 3.6494 × 106

CMFO 2.9376 × 103 5.1792 × 102 2.4441 × 103 3.0889 × 102 2.8221 × 106 5.1454 × 106

CESCA 5.9581 × 103 4.8739 × 102 4.4216 × 103 4.3712 × 102 5.7643 × 107 2.6176 × 107

GCHHO 2.7374 × 103 2.7503 × 102 2.3088 × 103 2.6833 × 102 2.5047 × 105 3.0345 × 105

DE 2.0652 × 103 1.4220 × 102 1.8272 × 103 4.6232 × 101 3.2091 × 105 1.8003 × 105

MFO 3.1336 × 103 4.4336 × 102 2.5667 × 103 3.1189 × 102 1.6242 × 106 3.0380 × 106

HGS 2.6782 × 103 3.3225 × 102 2.2166 × 103 2.5020 × 102 2.8938 × 105 2.7168 × 105

CPA 2.7639 × 103 2.9671 × 102 2.1603 × 103 2.6412 × 102 1.0822 × 105 6.6646 × 104

F19 F20 F21

Avg Std Avg Std Avg Std

OLCPA 4.2596 × 103 2.0678 × 103 2.3366 × 103 1.1975 × 102 2.4210 × 103 2.6344 × 101

CCMWOA 5.5422 × 106 9.1972 × 106 2.7663 × 103 1.8365 × 102 2.6152 × 103 6.4209 × 101

IGWO 2.2651 × 105 2.5430 × 105 2.3539 × 103 1.2977 × 102 2.3977 × 103 2.4054 × 101

CCMSCSA 6.5091 × 103 5.1531 × 103 2.3399 × 103 1.2859 × 102 2.3752 × 103 1.8620 × 101

BMWOA 8.1030 × 105 1.1393 × 106 2.7627 × 103 1.8733 × 102 2.5221 × 103 5.0213 × 101

CMFO 4.4672 × 104 7.9129 × 104 2.7796 × 103 1.8148 × 102 2.4958 × 103 3.7613 × 101

CESCA 1.3527 × 109 4.4096 × 108 3.1735 × 103 1.3671 × 102 2.7653 × 103 3.4531 × 101

GCHHO 6.1960 × 103 5.0850 × 103 2.5673 × 103 1.8589 × 102 2.4895 × 103 5.0529 × 101

DE 8.0940 × 103 5.1894 × 103 2.1309 × 103 8.2781 × 101 2.4037 × 103 9.0200 × 100

MFO 1.1628 × 107 3.7701 × 107 2.7001 × 103 2.2561 × 102 2.5056 × 103 4.5377 × 101

HGS 1.2762 × 104 1.5843 × 104 2.4769 × 103 1.7556 × 102 2.4252 × 103 2.8533 × 101

CPA 5.3098 × 103 1.9655 × 103 2.4748 × 103 1.4970 × 102 2.4060 × 103 7.0170 × 101

F22 F23 F24

Avg Std Avg Std Avg Std

OLCPA 3.9509 × 103 1.9526 × 103 2.7595 × 103 3.2074 × 101 3.1311 × 103 9.8525 × 101

CCMWOA 7.3798 × 103 1.3564 × 103 3.1950 × 103 1.1166 × 102 3.3448 × 103 1.1703 × 102

IGWO 2.3179 × 103 3.7459 × 101 2.7712 × 103 3.0804 × 101 2.9433 × 103 3.3180 × 101

CCMSCSA 2.3011 × 103 1.8012 × 100 2.7389 × 103 2.2920 × 101 2.9120 × 103 2.9458 × 101

BMWOA 6.0884 × 103 3.1127 × 103 2.9482 × 103 7.9106 × 101 3.1150 × 103 7.4716 × 101

CMFO 5.4333 × 103 2.9116 × 103 2.9734 × 103 7.2165 × 101 3.1313 × 103 1.1677 × 102

CESCA 9.5457 × 103 5.7616 × 102 3.4764 × 103 4.8311 × 101 3.4817 × 103 3.3877 × 101

GCHHO 4.1361 × 103 2.1478 × 103 2.9327 × 103 6.8914 × 101 3.0983 × 103 7.3773 × 101

DE 3.7200 × 103 1.7703 × 103 2.7561 × 103 8.0338 × 100 2.9580 × 103 1.1083 × 101

MFO 6.4721 × 103 1.7866 × 103 2.8414 × 103 3.5967 × 101 2.9872 × 103 3.6604 × 101

HGS 4.6540 × 103 1.5057 × 103 2.7673 × 103 2.8088 × 101 3.0210 × 103 4.9364 × 101

CPA 3.1890 × 103 1.6475 × 103 2.7663 × 103 3.4140 × 101 3.0664 × 103 6.5262 × 101
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Table 5. Cont.

F25 F26 F27

Avg Std Avg Std Avg Std

OLCPA 2.8894 × 103 7.7206 × 100 4.4389 × 103 1.1528 × 103 3.2423 × 103 1.9934 × 101

CCMWOA 3.3774 × 103 1.1165 × 102 8.7361 × 103 9.8681 × 102 3.5982 × 103 1.5901 × 102

IGWO 2.9064 × 103 1.6945 × 101 4.8594 × 103 2.8776 × 102 3.2367 × 103 1.3129 × 101

CCMSCSA 2.9035 × 103 1.6558 × 101 3.5575 × 103 1.1866 × 103 3.2607 × 103 2.5012 × 101

BMWOA 3.0206 × 103 3.3567 × 101 6.8057 × 103 1.2593 × 103 3.3084 × 103 5.7831 × 101

CMFO 2.9541 × 103 3.6301 × 101 6.8104 × 103 7.5311 × 102 3.4320 × 103 1.5391 × 102

CESCA 5.5207 × 103 4.9939 × 102 1.1158 × 104 5.9604 × 102 3.6926 × 103 7.6258 × 101

GCHHO 2.8956 × 103 1.6050 × 101 6.0549 × 103 1.2718 × 103 3.2638 × 103 2.8447 × 101

DE 2.8874 × 103 3.0941 × 10−1 4.6573 × 103 7.3190 × 101 3.2061 × 103 3.4861 × 100

MFO 3.2124 × 103 3.9290 × 102 5.8620 × 103 4.3155 × 102 3.2565 × 103 2.4574 × 101

HGS 2.8915 × 103 1.3659 × 101 4.9433 × 103 3.3033 × 102 3.2306 × 103 1.5047 × 101

CPA 2.8988 × 103 1.8851 × 101 4.3956 × 103 1.0423 × 103 3.2447 × 103 2.3567 × 101

F28 F29 F30

Avg Std Avg Std Avg Std

OLCPA 3.1166 × 103 3.6219 × 101 3.5490 × 103 1.4289 × 102 7.7032 × 103 2.1026 × 103

CCMWOA 4.5490 × 103 5.1054 × 102 5.3770 × 103 7.8372 × 102 7.2310 × 107 6.3627 × 107

IGWO 3.2621 × 103 3.0754 × 101 3.8055 × 103 1.8503 × 102 3.8641 × 106 3.0498 × 106

CCMSCSA 3.2293 × 103 2.6311 × 101 3.7148 × 103 1.9800 × 102 1.5266 × 104 8.5355 × 103

BMWOA 3.3944 × 103 4.6263 × 101 4.7907 × 103 3.5255 × 102 5.9215 × 106 3.3072 × 106

CMFO 3.3422 × 103 5.8653 × 101 4.5953 × 103 3.6267 × 102 1.8825 × 106 5.1423 × 106

CESCA 7.1979 × 103 3.7582 × 102 6.0902 × 103 2.2499 × 102 2.5420 × 109 8.2166 × 108

GCHHO 3.2262 × 103 2.5508 × 101 4.0266 × 103 2.1016 × 102 1.1463 × 104 4.0577 × 103

DE 3.1752 × 103 4.9966 × 101 3.5037 × 103 6.6936 × 101 1.3382 × 104 3.7353 × 103

MFO 4.5833 × 103 9.6836 × 102 4.2258 × 103 2.8249 × 102 9.2011 × 105 1.1203 × 106

HGS 3.2078 × 103 5.5946 × 101 3.7668 × 103 1.5864 × 102 9.8961 × 104 1.2709 × 105

CPA 3.1488 × 103 5.0178 × 101 3.7367 × 103 1.9795 × 102 1.1526 × 104 4.4883 × 103

Overall rank

Rank Avg +/=/−
OLCPA 1 3.1322 ~

CCMSCSA 2 3.6022 15/8/7
CPA 3 3.6933 15/13/2
DE 4 3.7878 12/9/9

HGS 5 4.6933 19/9/2
IGWO 6 5.4800 18/8/4

GCHHO 7 5.7567 24/0/0
CMFO 8 8.2333 29/1/0
MFO 9 8.2611 29/0/1

BMWOA 10 9.0422 29/1/0
CCMWOA 11 1.0409 30/0/0

CESCA 12 1.1909 30/0/0

From the experimental data in Table 5, we can see that OLCPA ranks first and has
a smaller mean value of 3.1322 compared to the mean value of 3.6933 for CPA, which
reflects the stronger effect of OLCPA than CPA. It can be seen that OLCPA outperformed
CCMWOA and CESCA for all 30 functions on CEC 2017. Although the performance of
CMSCSA is close to that of OLCPA, OLCPA performs better for multimodal and mixed
modes, and OLCPA is the first among these competitors.

From the results of the Wilcoxon signed-rank test in Table 6, the p-values of most
algorithms are less than 0.05, proving the statistically superior performance of OLCPA
compared to other algorithms.
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Table 6. The p-value of OLCPA and other algorithms.

CCMWOA IGWO CCMSCSA BMWOA CMFO CESCA

F1 1.7344 × 10−6 1.7344 × 10−6 7.1889 × 10−1 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6

F2 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6

F3 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6

F4 1.7344 × 10−6 4.2857 × 10−6 4.7292 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6

F5 1.7344 × 10−6 1.1748 × 10−2 1.1265 × 10−5 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6

F6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6

F7 1.7344 × 10−6 3.8811 × 10−4 2.8786 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6

F8 1.7344 × 10−6 3.8723 × 10−2 8.9364 × 10−1 1.7344 × 10−6 2.3534 × 10−6 1.7344 × 10−6

F9 1.7344 × 10−6 4.4052 × 10−1 1.7344 × 10−6 1.7344 × 10−6 2.6033 × 10−6 1.7344 × 10−6

F10 1.7344 × 10−6 3.4053 × 10−5 9.3157 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6

F11 1.7344 × 10−6 1.7344 × 10−6 1.7138 × 10−1 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6

F12 1.7344 × 10−6 1.9209 × 10−6 3.1603 × 10−2 1.7344 × 10−6 4.7292 × 10−6 1.7344 × 10−6

F13 1.7344 × 10−6 1.7344 × 10−6 3.3173 × 10−4 1.7344 × 10−6 6.3391 × 10−6 1.7344 × 10−6

F14 1.7344 × 10−6 1.9209 × 10−6 8.4661 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6

F15 1.7344 × 10−6 1.7344 × 10−6 9.2626 × 10−1 1.7344 × 10−6 2.1630 × 10−5 1.7344 × 10−6

F16 1.7344 × 10−6 5.8571 × 10−1 4.1653 × 10−1 3.5152 × 10−6 5.7924 × 10−5 1.7344 × 10−6

F17 1.7344 × 10−6 8.9364 × 10−1 3.8203 × 10−1 2.1266 × 10−6 9.3157 × 10−6 1.7344 × 10−6

F18 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6

F19 1.7344 × 10−6 1.7344 × 10−6 3.8723 × 10−2 1.7344 × 10−6 5.2872 × 10−4 1.7344 × 10−6

F20 1.7344 × 10−6 6.8836 × 10−1 8.6121 × 10−1 2.6033 × 10−6 1.7344 × 10−6 1.7344 × 10−6

F21 1.7344 × 10−6 2.4147 × 10−3 1.2381 × 10−5 1.7344 × 10−6 2.1266 × 10−6 1.7344 × 10−6

F22 1.2381 × 10−5 1.0201 × 10−1 2.5637 × 10−2 4.9916 × 10−3 2.3038 × 10−2 1.7344 × 10−6

F23 1.7344 × 10−6 1.5286 × 10−1 2.8486 × 10−2 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6

F24 6.9838 × 10−6 2.1266 × 10−6 1.7344 × 10−6 2.9894 × 10−1 6.5833 × 10−1 1.7344 × 10−6

F25 1.7344 × 10−6 1.1499 × 10−4 9.7110 × 10−5 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6

F26 1.7344 × 10−6 2.2102 × 10−1 9.8421 × 10−3 1.9729 × 10−5 1.7344 × 10−6 1.7344 × 10−6

F27 1.7344 × 10−6 5.0383 × 10−1 9.8421 × 10−3 3.5152 × 10−6 2.6033 × 10−6 1.7344 × 10−6

F28 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6

F29 1.7344 × 10−6 1.4936 × 10−5 6.6392 × 10−4 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6

F30 1.7344 × 10−6 1.7344 × 10−6 1.7988 × 10−5 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6

GCHHO DE MFO HGS CPA

F1 4.1653 × 10−1 1.5886 × 10−1 1.7344 × 10−6 8.1878 × 10−5 4.0702 × 10−2

F2 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.9209 × 10−6

F3 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6

F4 3.4053 × 10−5 1.9729 × 10−5 1.7344 × 10−6 1.1499 × 10−4 4.4493 × 10−5

F5 3.8822 × 10−6 8.3071 × 10−4 9.3157 × 10−6 4.7795 × 10−1 4.5281 × 10−1

F6 1.7344 × 10−6 4.3205 × 10−8 1.7344 × 10−6 1.7344 × 10−6 1.0000 × 100

F7 1.7344 × 10−6 7.5213 × 10−2 1.7344 × 10−6 6.6392 × 10−4 1.4704 × 10−1

F8 6.3391 × 10−6 1.3591 × 10−1 1.7344 × 10−6 4.0483 × 10−1 6.2884 × 10−1

F9 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.6046 × 10−4 1.7518 × 10−2

F10 2.8786 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7791 × 10−1 4.2843 × 10−1

F11 1.3595 × 10−4 8.2206 × 10−2 1.7344 × 10−6 8.2167 × 10−3 3.0861 × 10−1

F12 8.2206 × 10−2 3.4053 × 10−5 1.7344 × 10−6 7.1889 × 10−1 1.2866 × 10−3

F13 1.2866 × 10−3 1.7344 × 10−6 1.7344 × 10−6 1.9209 × 10−6 5.3044 × 10−1

F14 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 2.1266 × 10−6 1.2381 × 10−5

F15 1.9646 × 10−3 8.9187 × 10−5 1.7344 × 10−6 1.2506 × 10−4 1.1093 × 10−1

F16 5.7096 × 10−2 1.7344 × 10−6 1.0570 × 10−4 1.2044 × 10−1 2.1827 × 10−2

F17 5.2872 × 10−4 1.3601 × 10−5 2.1266 × 10−6 4.6818 × 10−3 1.1748 × 10−2

F18 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.9209 × 10−6 4.7292 × 10−6

F19 2.4308 × 10−2 1.3820 × 10−3 3.5152 × 10−6 1.1138 × 10−3 2.0671 × 10−2

F20 4.0715 × 10−5 1.9209 × 10−6 1.9209 × 10−6 1.0357 × 10−3 1.8910 × 10−4

F21 4.7292 × 10−6 2.9575 × 10−3 2.1266 × 10−6 4.4052 × 10−1 1.9861 × 10−1

F22 3.8203 × 10−1 9.9179 × 10−1 1.1499 × 10−4 1.5886 × 10−1 3.4908 × 10−1

F23 1.7344 × 10−6 5.5774 × 10−1 2.1266 × 10−6 1.4704 × 10−1 4.5281 × 10−1
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Table 6. Cont.

GCHHO DE MFO HGS CPA

F24 1.7138 × 10−1 1.7344 × 10−6 6.3391 × 10−6 2.5967 × 10−5 9.2710 × 10−3

F25 6.5641 × 10−2 6.1431 × 10−1 2.3534 × 10−6 9.5899 × 10−1 3.5009 × 10−2

F26 7.1570 × 10−4 9.0993 × 10−1 6.9838 × 10−6 4.9498 × 10−2 9.2626 × 10−1

F27 2.4147 × 10−3 1.9209 × 10−6 3.5009 × 10−2 1.7518 × 10−2 7.1889 × 10−1

F28 1.9209 × 10−6 3.7172 × 10−5 1.7344 × 10−6 1.6394 × 10−5 8.1574 × 10−4

F29 1.9209 × 10−6 1.5286 × 10−1 1.7344 × 10−6 8.1878 × 10−5 1.7088 × 10−3

F30 4.5336 × 10−4 3.5152 × 10−6 1.7344 × 10−6 1.7344 × 10−6 2.5967 × 10−5

Figure 4 depicts the convergence curves of OLCPA and the other algorithms, and it
can be seen from these convergence function plots that OLCPA has the best ability to find
the optimal solution compared to the other algorithms. Although the competition between
HGS and OLCPA is fierce in functions F4, F12, and F19, OLCPA converges with increasing
speed and accuracy in the later iterations and finally finds the optimal solution. Based
on the trend of these convergence plots, it can be seen that the convergence speed and
accuracy of OLCPA are better than those of the competitors.
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Figure 4. Convergence curves of OLCPA and other algorithms. In F4, OLCPA competes fiercely
with HGS, but OLCPA finally finds the optimal value. In other benchmark functions, OLCPA’s
convergence speed is relatively fast compared with the other algorithms. Additionally, with the
increase in iterations, its exploration ability is enhanced, which means it can explore more valuable
areas and finally find the optimal value.
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6. Application in ECG Signal Classification
6.1. Test Datasets

This section focuses on the datasets used for training and testing. PhysioNet is a
well-known research resource for studying complex physiological signals, including the
MIT-BIH Arrhythmia Database [82] and the European ST-T Database [83], used for testing
and training experiments.

6.1.1. MIT-BIH Arrhythmia Database

Data in the MIT-BIH database were obtained from the ECG recordings of 47 patients,
60% of whom were inpatients and 40% of whom were outpatients, tested by the Boeheim
Arrhythmia Laboratory from 1975 to 1979. These records consist of 48 half-hour dual-
channel ECG recordings; each record was sampled at a rate of 360 Hz, and the two channels
were modified limb leads (MLII) with V channels from V1 to V5.

6.1.2. European ST-T Database

The European ST-T database contains mainly ST and t-wave variations, and the data
are derived from 90 ECG recordings from 79 test subjects, who were men between 30 and
84 years of age and women between 55 and 71. Each recording spanned 2 h and contained
two signals, each with a sampling rate of 250 Hz.

Due to the need to select an appropriate sample size, the MIT-BIH database was classi-
fied into four categories: N, VEBs, Q, and S, following the AAMI standard classification
approach. The AAMI classification approach is described in Table 7. Due to the uneven
sample distribution, four categories (N, S, Q, VEB) from the AMMI classification were
selected for the MIT-BIH database for testing, and three (N, S, VEB) were selected for the
European ST-T database.

Table 7. Relationship between AMMI and MIT-BIH in terms of categories.

AAMI Classes Supraventricular
Ectopic Beat (S) Normal (N)

Ventricular
Ectopic Beats

(VEBs)

Unknown
Beat (Q) Fusion (F)

MIT-BIH classes Aberrated atrial
premature beat (a) Normal beat (N) Ventricular flutter

wave (!) Paced beat (/)
Fusion of

ventricular and
normal beat (F)

Supraventricular
premature beat (S)

Left bundle branch
block beat (L)

Ventricular escape
beat (E)

Unclassifiable
beat (Q)

Atrial premature
beat (A)

Right bundle
branch block

beat (R)

Premature
ventricular

contraction (V)
Nodal (junctional)
premature beat (J)
Nodal (junctional)

escape beat (j)
Atrial escape

beat (e)

In our experiment, the number of European ST-T datasets used is 3000, of which 2000
were in the training set and 1000 were in the test set, and the number of MIT-BIT datasets
used is 10,000, of which 8000 were in the training set and 2000 were in the test set. Table 8
shows the number of samples per category for the datasets.
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Table 8. Number of samples per category for the datasets.

ST-T MIT-BIH

N 1000 2500
S 1000 2500

VEB 1000 2500
Q - 2500

6.2. Metrics for Performance Evaluation

The evaluation metrics used in this section differ from those used in Section 5. In
Section 5, mean and standard deviation were utilized to evaluate the performance of the
OLCPA algorithm, which is a continuous problem. However, this section mainly focuses
on utilizing the OLCPA-CNN model to solve ECG electrocardiogram signal classification
problems, which are categorical problems and differ from continuous problems. Therefore,
in order to effectively evaluate the performance of the OLCPA-CNN model and compare it
with methods used by other researchers, common metrics in deep learning such as accuracy
(ACC), precision (Pr), specificity (Sp), sensitivity (Se), and F-score (F1) are utilized. They
are calculated as follows:

Se =
TP

TP + FN
(18)

Sp =
TN

FP + TN
(19)

Pr =
TP

TP + FP
(20)

F1 =
2TP

2TP + FP + FN
(21)

where the meanings represented by TP, TN, FP, and FN are described in Section 5.3.
ACC indicates the rate of correct classification. The value of ACC can reflect the

good or bad performance of the model classification; when the value of the former is
large, accordingly, the performance of the latter is also good. The sensitivity indicates the
number of positive samples as a percentage of the number of all true positive samples.
The sensitivity value is proportional to the classification accuracy of positive samples, and
when the value of the former increases, the latter also increases accordingly. Specificity
indicates the number of samples predicted to be negative among all true negative samples.
Precision indicates the proportion of true positive samples among all positive samples. The
F1 integrally evaluates the performance of a classifier, and the larger the F1, the better the
performance of this classifier.

6.3. Performance Analysis of OLCPA-CNN on Datasets

The proposed OLCPA-CNN model was tested and trained using two different datasets.
Since OLCPA can tune the parameters of the CNN through the iterative update of the
population, it allows the CNN to play a better role in classification. The classification
accuracy of this model on the two datasets (MIT-BIH, ST-T) is 97.9% and 97.8%, respectively,
which shows that the performance of this OLCPA-CNN model is excellent.

Figure 5 depicts the average values of the evaluation metrics for OLCPA-CNN, CPA-
CNN, and a randomly generated CNN on the MIT-BIH dataset; the results in the figure
indicate that the evaluation metrics of OLCPA-CNN are higher than those of CNN and
CPA-CNN, which indicates that OLCPA-CNN outperforms CPA-CNN. Figure 6 shows the
average performance of OLCPA-CNN, the randomly generated CNN, and CPA-CNN on
the ST-T dataset. The results in the figure indicate that the performance of OLCPA-CNN is
significantly stronger than that of CPA-CNN and the other CNN, which reflects that the
overall optimization of OLCPA-CNN is good. Figures 7 and 8 show the correct and loss
rates of OLCPA-CNN on the ST-T and MIT-BIH datasets, respectively, and the trend of the
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curves shows that as the number of iterations increases, the correct rate approaches 100%
and the loss rate converges to 0.
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To highlight the effective performance of OLCPA-CNN on the MIT-BIH dataset for clas-
sification performance, OLCPA-CNN was compared with other methods. These methods
include the following: Li et al. [84] proposed a model for optimizing support vector machine
classifiers using a genetic algorithm and used it for the MIT-BIH dataset; Patro et al. [85]
proposed optimizing machine learning using optimization algorithms and applied this
to the MIT-BIH dataset, where the algorithms and classifiers involved include the sup-
port vector machine (SVM) and random forest (RF), genetic algorithm (GA) and particle
swarm algorithm (PSO); Acharya et al. [29] investigated a nine-layer convolutional neural
network structure for identifying five different classes of heartbeats in ECG signals. The
experimental data in Table 9 reflect that OLCPA-CNN is effective compared with these
other methods.
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Table 9. Comparison of OLCPA-CNN with other methods on the MIT-BIH dataset.

Reference Method Acc Se

Acharya et al. [54] CNN 94.03% 96.71%
Li et al. [84] SVM 97.30% 97.40%

Patro et al. [85] PSO, GA, SVM, and RF 95.30% 94.00%
Proposed OLCPA-CNN 97.90% 97.90%

7. Discussion

The classification results demonstrate that OLCPA-CNN can automatically search for
the best hyperparameters suitable for a CNN, and the proposed OLCPA-CNN model can
effectively address ECG classification tasks. Moreover, the ability to automatically extract
features and perform classification is precious, particularly considering the significant
expense associated with manual feature annotation by specialized professionals. However,
when optimizing complex network architectures and handling vast amounts of data, this
technique also has the drawback of high time costs. In addition, there is currently no
universally applicable solution to every problem, and it is necessary to decide on the
optimization algorithm and network architecture—including hyperparameters, number of
neurons, and layers—to use based on the specific problem being addressed. Therefore, to
solve ECG classification problems, this study selected an improved CPA algorithm, namely
the OLCPA optimization algorithm, to optimize the hyperparameters of a CNN. Of course,
in future work, it can also be applied to more cases, such as the optimization of machine
learning models [86], fine-grained alignment [87], computational experiments [88,89],
Alzheimer’s disease identification [90], iris or retinal vessel segmentation [91,92], MRI
reconstruction [93], service ecosystem [94], structured sparsity optimization [95], tensor
recovery [96,97], medical image computing [98], computer-aided medical diagnosis [99],
image denoising [100], renewable energy generation [101], and medical signals [102,103].

8. Conclusions and Future Works

This article presents an OLCPA algorithm based on orthogonal learning strategies and
proposes an OLCPA-CNN model that optimizes the hyperparameters of a CNN using the
OLCPA algorithm. The experimental results show that the OLCPA-CNN model achieves
excellent classification performance, with an accuracy of 97.90% on the MIT-BIH dataset,
outperforming other models proposed by researchers. As the MIT-BIH dataset is a type
of time-series data, the OLCPA-CNN model presented in this paper can be used for ECG
classification and other time-series datasets, such as geomagnetic data. However, the use
of this model is limited and it may not be suitable for different classification problems.
Therefore, specific algorithms should be designed, and appropriate network structures
should be optimized for specific problems.

In future work, reducing the running time will be the focus due to the drawback of
this parameter optimization process being a waste of time. Secondly, this model is also
valuable for other problems, such as regression problems. Third, CPA can be combined
with other network structures.
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