A Spider-Joint-like Bionic Actuator with an Approximately Triangular Prism Shape
Abstract
:1. Introduction
2. Design and Production
2.1. Structural Design
2.2. Structural Analysis
2.2.1. Output Torque Characteristics of the Bionic Actuators
2.2.2. The Relationship between the Volume of the Bionic Actuator and the Angle (α)
2.3. Bionic Actuator Production Program
3. Results
3.1. Large Torque Output
3.2. Bidirectional Drive Performance
3.3. Steady-State Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Rus, D.; Tolley, M.T. Design, fabrication and control of soft robots. Nature 2015, 521, 467–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Laschi, C.; Trimmer, B. Soft robotics: A bioinspired evolution in robotics. Trends Biotechnol. 2013, 31, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Laschi, C.; Cianchetti, M. Soft robotics: New perspectives for robot bodyware and control. Front. Bioeng. Biotechnol. 2014, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Trimmer, B. Soft robots. Curr. Biol. 2013, 23, R639–R641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kellaris, N.; Rothemund, P.; Zeng, Y.; Mitchell, S.K.; Smith, G.M.; Jayaram, K.; Keplinger, C. Spider-inspired electrohydraulic actuators for fast, soft-actuated joints. Adv. Sci. 2021, 8, e2100916. [Google Scholar] [CrossRef]
- Ranzani, T.; Gerboni, G.; Cianchetti, M.; Menciassi, A. A bioinspired soft manipulator for minimally invasive surgery. Bioinspiration Biomim. 2015, 10, 035008. [Google Scholar] [CrossRef]
- Manfredi, L.; Putzu, F.; Guler, S.; Huan, Y.; Cuschieri, A. 4 DOFs hollow soft pneumatic actuator–HOSE. Mater. Res. Express 2019, 6, 045703. [Google Scholar] [CrossRef] [Green Version]
- Cianchetti, M.; Mattoli, V.; Mazzolai, B.; Laschi, C.; Dario, P. A new design methodology of electrostrictive actuators for bio-inspired robotics. Sens. Actuators B Chem. 2009, 142, 288–297. [Google Scholar] [CrossRef]
- Guan, Q.; Sun, J.; Liu, Y.; Wereley, N.M.; Leng, J. Novel bending and helical extensile/contractile pneumatic artificial muscles inspired by elephant trunk. Soft Robot 2020, 7, 597–614. [Google Scholar] [CrossRef]
- Xie, Z.; Domel, A.G.; An, N.; Green, C.; Gong, Z.; Wang, T.; Knubben, E.M.; Weaver, J.C. Octopus arm-inspired tapered soft actuators with suckers for improved grasping. Soft Robot 2020, 7, 639–648. [Google Scholar] [CrossRef]
- Aragaki, D.; Nishimura, T.; Sato, R.; Ming, A. Biomimetic Soft Underwater Robot Inspired by the Red Muscle and Tendon Structure of Fish. Biomimetics 2023, 8, 133. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, F.; Lu, Y. Design of a Bistable Artificial Venus Flytrap Actuated by Low Pressure with Larger Capture Range and Faster Responsiveness. Biomimetics 2023, 8, 181. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wang, G.; Rong, C. Fiber-reinforced flexible joint actuator for soft arthropod robots. Sens. Actuators A Phys. 2022, 340, 113522. [Google Scholar] [CrossRef]
- Gorissen, B.; Reynaerts, D.; Konishi, S.; Yoshida, K.; Kim, J.-W.; De Volder, M. Elastic inflatable actuators for soft robotic applications. Adv. Mater. 2017, 29, 1604977. [Google Scholar] [CrossRef]
- Cappello, L.; Galloway, K.C.; Sanan, S.; Wagner, D.A.; Granberry, R.; Engelhardt, S.; Haufe, F.L.; Peisner, J.D.; Walsh, C.J. Exploiting textile mechanical anisotropy for fabric-based pneumatic actuators. Soft Robot 2018, 5, 662–674. [Google Scholar] [CrossRef]
- Bishop-Moser, J.; Kota, S. Design and modeling of generalized fiber-reinforced pneumatic soft actuators. IEEE Trans. Robot 2015, 31, 536–545. [Google Scholar] [CrossRef]
- Tolley, M.T.; Shepherd, R.F.; Mosadegh, B.; Galloway, K.C.; Wehner, M.; Karpelson, M.; Wood, R.J.; Whitesides, G.M. A resilient, untethered soft robot. Soft Robot 2014, 1, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, R.F.; Ilievski, F.; Choi, W.; Morin, S.A.; Stokes, A.A.; Mazzeo, A.D.; Chen, X.; Wang, M.; Whitesides, G.M. Multigait soft robot. Proc. Natl. Acad. Sci. USA 2011, 108, 20400–20403. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, R.F.; Stokes, A.A.; Nunes, R.M.; Whitesides, G.M. Soft machines that are resistant to puncture and that self seal. Adv. Mater. 2013, 25, 6709–6713. [Google Scholar] [CrossRef] [Green Version]
- Martinez, R.V.; Glavan, A.C.; Keplinger, C.; Oyetibo, A.I.; Whitesides, G.M. Soft actuators and robots that are resistant to mechanical damage. Adv. Funct. Mater. 2014, 24, 3003–3010. [Google Scholar] [CrossRef] [Green Version]
- Paez, L.; Agarwal, G.; Paik, J. Design and analysis of a soft pneumatic actuator with origami shell reinforcement. Soft Robot 2016, 3, 109–119. [Google Scholar] [CrossRef]
- Martinez, R.V.; Fish, C.R.; Chen, X.; Whitesides, G.M. Elastomeric origami: Programmable paper-elastomer composites as pneumatic actuators. Adv. Funct. Mater. 2012, 22, 1376–1384. [Google Scholar] [CrossRef]
- Li, S.; Vogt, D.M.; Rus, D.; Wood, R.J. Fluid-driven origami-inspired artificial muscles. Proc. Natl. Acad. Sci. USA 2017, 114, 13132–13137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eberhard, W.G. Miniaturized orb-weaving spiders: Behavioural precision is not limited by small size. Proc. Biol. Sci. 2007, 274, 2203–2209. [Google Scholar] [CrossRef] [PubMed]
- Eggs, B.; Wolff, J.O.; Kuhn-Nentwig, L.; Gorb, S.N.; Nentwig, W. Hunting without a web: How lycosoid spiders subdue their prey. Ethology 2015, 121, 1166–1177. [Google Scholar] [CrossRef]
- Nabawy, M.R.A.; Sivalingam, G.; Garwood, R.J.; Crowther, W.J.; Sellers, W.I. Energy and time optimal trajectories in exploratory jumps of the spider Phidippus regius. Sci. Rep. 2018, 8, 7142. [Google Scholar] [CrossRef] [Green Version]
- Göttler, C.; Amador, G.; van de Kamp, T.; Zuber, M.; Böhler, L.; Siegwart, R.; Sitti, M. Fluid mechanics and rheology of the jumping spider body fluid. Soft Matter 2021, 17, 5532–5539. [Google Scholar] [CrossRef]
- Göttler, C.; Elflein, K.; Siegwart, R.; Sitti, M. Spider origami: Folding principle of jumping spider leg joints for bioinspired fluidic actuators. Adv. Sci. 2021, 8, 2003890. [Google Scholar] [CrossRef]
- Yap, T.F.; Liu, Z.; Rajappan, A.; Shimokusu, T.J.; Preston, D.J. Necrobotics: Biotic materials as ready-to-use actuators. Adv. Sci. 2022, 9, e2201174. [Google Scholar] [CrossRef]
- Melancon, D.; Gorissen, B.; García-Mora, C.J.; Hoberman, C.; Bertoldi, K. Multistable inflatable origami structures at the metre scale. Nature 2021, 592, 545–550. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Yang, J.; Zeng, L.; Huang, C. A Spider-Joint-like Bionic Actuator with an Approximately Triangular Prism Shape. Biomimetics 2023, 8, 299. https://doi.org/10.3390/biomimetics8030299
Jiang X, Yang J, Zeng L, Huang C. A Spider-Joint-like Bionic Actuator with an Approximately Triangular Prism Shape. Biomimetics. 2023; 8(3):299. https://doi.org/10.3390/biomimetics8030299
Chicago/Turabian StyleJiang, Xiaomao, Jun Yang, Le Zeng, and Changyang Huang. 2023. "A Spider-Joint-like Bionic Actuator with an Approximately Triangular Prism Shape" Biomimetics 8, no. 3: 299. https://doi.org/10.3390/biomimetics8030299
APA StyleJiang, X., Yang, J., Zeng, L., & Huang, C. (2023). A Spider-Joint-like Bionic Actuator with an Approximately Triangular Prism Shape. Biomimetics, 8(3), 299. https://doi.org/10.3390/biomimetics8030299