Detection and Dispersion Analysis of Water Globules in Oil Samples Using Artificial Intelligence Algorithms
Abstract
:1. Introduction
- −
- The application of an integrated method for detecting water globules in crude oil based on a microscopic method and computer vision, which allows for the effective automation and digitalization of the process of oil dehydration;
- −
- The creation of an empirical base of WOE microphotographs at characteristic points of the technological scheme, including the use of in situ microscopy technologies;
- −
- The expansion of the training sample using the authors’ augmentation algorithm;
- −
- The development of a computer vision algorithm to detect water globules in crude oil;
- −
- The optimization of the characteristics of the intellectual model based on the CNN YOLOv4;
- −
- An analysis of variance with respect to the size of detected particles;
- −
- A comparison of two empirical distributions obtained via manual detection method and the neural network method by calculating the Kolmogorov–Smirnov criterion.
- −
- Collecting an empirical base of WOE microphotographs;
- −
- Substantiating and describing the chosen convolutional neural network, YOLOv4;
- −
- Expanding of the data set using the augmentation algorithm;
- −
- Implementing, debugging, and optimizing the developed detector;
- −
- Testing the detector and determining quality metrics for the detection of water globules in the WOE;
- −
- Identifying the nature of the WOE at key points of the technological scheme of the electric desalination plant (ELDP) by conducting a dispersion analysis of the size of the detected particles;
- −
- Comparing two empirical distributions using the Kolmogorov–Smirnov criterion.
2. Materials and Methods
2.1. Materials and Stages of the Study
2.2. Preparing Data for an Intelligent Algorithm
2.3. Augmentation and Labeling of Crude Oil Micrographs
- Operations with color: changing the contrast, brightness, and saturation (Figure 4).
2.4. The Implementation of an Intelligent Algorithm
3. Results and Discussion
- Calculate the accumulated empirical relative frequencies N1emp for the first distribution.
- Calculate the accumulated empirical relative frequencies N2emp for the second distribution.
- Calculate the empirical value of the criterion (5):
- Define the critical points:
- The conclusion is that ; the differences between the distributions are significant.
4. Conclusions
- (1)
- The developed intellectual algorithm based on the CNN YOLOv4 makes it possible to detect particles in a fluid medium with the level of accuracy required by the researcher, which can be controlled at the stage of training the convolutional neural network.
- (2)
- An evaluation of the quality of the results of the work of the intelligent algorithm in comparison with the manual method on the verification microphotographs and comparison of two empirical distributions allows us to conclude that the model based on the SNA can be verified and accepted for use in the search for particles in a fluid medium since the empirical distributions for the manual detection method and for the neural network method do not differ.
- (3)
- The manual marking of one microphoto by a technologist o can take up to 8 h, while the computer vision algorithm developed in this study allows for the localization of water globules in oil with an accuracy of AP@50 = 89% and AP@75 = 78% in 3–5 min.
- (4)
- The YOLOv4 architecture allows for the problem of object detection using low-performance devices to be solved while processing incoming data in real time at high speed. Thus, the developed intelligent model can be used to solve computer vision problems directly on a smartphone or when using an autonomous robot. In addition, the developed model is suitable for various types of water–oil liquids if the liquid has similar features at the visual structure level. If there are significant differences, then the result is not known in advance and requires additional research.
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Margolis, S.A.; Hagwood, C. The determination of water in crude oil and transformer oil reference materials. Anal. Bioanal. Chem. 2003, 376, 260–269. [Google Scholar] [CrossRef]
- Makeyev, Y.V.; Lifanov, A.P.; Sovloukov, A.S. On-line microwave measurement of crude oil water content. In Proceedings of the 2009 19th International Crimean Conference Microwave & Telecommunication Technology, Sevastopol, Ukraine, 14–18 September 2009; IEEE: New York, NY, USA, 2009. [Google Scholar]
- Makeev, Y.V.; Lifanov, A.P.; Sovlukov, A.S. Microwave measurement of water content in flowing crude oil. Autom. Remote Control 2013, 74, 157–169. [Google Scholar] [CrossRef]
- Sharma, P.; Lao, L.; Falcone, G. A microwave cavity resonator sensor for water-in-oil measurements. Sens. Actuators B Chem. 2018, 262, 200–210. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.; Xiu, G.Y. Research on ultra short wave method to measure water content of crude oil. In Proceedings of the 2008 9th International Conference on Signal Processing, Beijing, China, 26–29 October 2008; IEEE: New York, NY, USA, 2008. [Google Scholar]
- Liu, K.; Gao, G.; Wang, F.; Wu, D.; Wu, Z.; Gong, Y. Research on oil-water two-phase water content detection model based on near-infrared spectroscopy, In Proceedings of the Third International Symposium on Computer Engineering and Intelligent Communications (ISCEIC 2022), Xi’an, China, 16–18 September 2022; SPIE: Bellingham, WA, USA, 2023; Volume 12462.
- Qing, M.; Liang, H.; Zhang, J.; Zhan, H. The mechanism of detecting water content in oil-water emulsions using impedance spectroscopy. J. Pet. Sci. Eng. 2020, 188, 106863. [Google Scholar] [CrossRef]
- Leal-Junior, A.; Lopes, G.; Avellar, L.; Frizera, A.; Marques, C. Temperature-insensitive water content estimation in oil-water emulsion using POF sensors. Opt. Fiber Technol. 2023, 76, 103240. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, G. Measurement of water content in heavy oil with cavity resonator. Results Phys. 2020, 18, 103192. [Google Scholar] [CrossRef]
- Borges, G.R.; Farias, G.B.; Braz, T.M.; Santos, L.M.; Amaral, M.J.; Fortuny, M.; Franceschi, E.; Dariva, C.; Santos, A.F. Use of near infrared for evaluation of droplet size distribution and water content in water-in-crude oil emulsions in pressurized pipeline. Fuel 2015, 147, 43–52. [Google Scholar] [CrossRef]
- Kim, P.; Moon, H.; Park, J.H. Electrochemical Detection of Surfactant-Encapsulated Aqueous Nanodroplets in Organic Solution. Chemosensors 2023, 11, 112. [Google Scholar] [CrossRef]
- Mir, S.; Naderifar, A.; Rahidi, A.; Alaei, M. Recent advances in oil/water separation using nanomaterial-based filtration methods for crude oil processing-a review. J. Pet. Sci. Eng. 2022, 215, 110617. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Lu, Y.; Wang, Y.; Guo, Y.; Shi, W. Preparation of 2D Materials and Their Application in Oil–Water Separation. Biomimetics 2023, 8, 35. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Lu, Y.; Shi, W.; Tian, H. PDMS/PVDF Electrospinning Membranes for Water-in-Oil Emulsion Separation and UV Protection. Biomimetics 2022, 7, 217. [Google Scholar] [CrossRef] [PubMed]
- Emmerich, J.; Tang, Q.; Wang, Y.; Neubauer, P.; Junne, S.; Maaß, S. Optical inline analysis and monitoring of particle size and shape distributions for multiple applications: Scientific and industrial relevance. Chin. J. Chem. Eng. 2019, 27, 257–277. [Google Scholar] [CrossRef]
- Liu, Q.; Chu, B.; Peng, J.; Tang, S. A Visual Measurement of Water Content of Crude Oil Based on Image Grayscale Accumulated Value Difference. Sensors 2019, 19, 2963. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Niu, B.; Zhuang, X.; Liao, H. Water content ratio measurement with neural network based on simulated annealing. In Proceedings of the 2011 Seventh International Conference on Natural Computation, Shanghai, China, 26–28 July 2011; IEEE: New York, NY, USA, 2011. [Google Scholar]
- Sircar, A.; Yadav, K.; Rayavarapu, K.; Bist, N.; Oza, H. Application of machine learning and artificial intelligence in oil and gas industry. Pet. Res. 2021, 6, 379–391. [Google Scholar] [CrossRef]
- Stratiev, D.; Sotirov, S.; Sotirova, E.; Nenov, S.; Dinkov, R.; Shishkova, I.; Kolev, I.V.; Yordanov, D.; Vasilev, S.; Atanassov, K.; et al. Prediction of Molecular Weight of Petroleum Fluids by Empirical Correlations and Artificial Neuron Networks. Processes 2023, 11, 426. [Google Scholar] [CrossRef]
- Mayet, A.M.; Chen, T.-C.; Alizadeh, S.M.; Al-Qahtani, A.A.; Qaisi, R.M.A.; Alhashim, H.H.; Eftekhari-Zadeh, E. Application of Artificial Intelligence for Determining the Volume Percentages of a Stratified Regime’s Three-Phase Flow, Independent of the Oil Pipeline’s Scale Thickness. Processes 2022, 10, 1996. [Google Scholar] [CrossRef]
- Mayet, A.M.; Alizadeh, S.M.; Hamakarim, K.M.; Al-Qahtani, A.A.; Alanazi, A.K.; Grimaldo Guerrero, J.W.; Alhashim, H.H.; Eftekhari-Zadeh, E. Application of Wavelet Characteristics and GMDH Neural Networks for Precise Estimation of Oil Product Types and Volume Fractions. Symmetry 2022, 14, 1797. [Google Scholar] [CrossRef]
- Mayet, A.M.; Nurgalieva, K.S.; Al-Qahtani, A.A.; Narozhnyy, I.M.; Alhashim, H.H.; Nazemi, E.; Indrupskiy, I.M. Proposing a High-Precision Petroleum Pipeline Monitoring System for Identifying the Type and Amount of Oil Products Using Extraction of Frequency Characteristics and a MLP Neural Network. Mathematics 2022, 10, 2916. [Google Scholar] [CrossRef]
- Liu, J.; Lin, H.; Liu, Y.; Xiong, L.; Li, C.; Zhou, T.; Ma, M. Global Relation-Aware-Based Oil Detection Method for Water Surface of Catchment Wells in Hydropower Stations. Sustainability 2023, 15, 6966. [Google Scholar] [CrossRef]
- Otremba, Z.; Piskozub, J. Modelling the Spectral Index to Detect a Baltic-Type Crude Oil Emulsion Dispersed in the Southern Baltic Sea. Remote Sens. 2021, 13, 3927. [Google Scholar] [CrossRef]
- Dong, J.; Sitler, K.; Scalia, J.; Ge, Y.; Bireta, P.; Sihota, N.; Hoelen, T.P.; Lowry, G.V. Application of Transfer Learning and Convolutional Neural Networks for Autonomous Oil Sheen Monitoring. Appl. Sci. 2022, 12, 8865. [Google Scholar] [CrossRef]
- Amri, E.; Dardouillet, P.; Benoit, A.; Courteille, H.; Bolon, P.; Dubucq, D.; Credoz, A. Offshore Oil Slick Detection: From Photo-Interpreter to Explainable Multi-Modal Deep Learning Models Using SAR Images and Contextual Data. Remote Sens. 2022, 14, 3565. [Google Scholar] [CrossRef]
- Li, F.; Wang, J.; Wang, Z.; Ji, D.; Wang, S.; Wei, P.; Cao, W. Bio-Inspired Eco-Friendly Superhydrophilic/Underwater Superoleophobic Cotton for Oil-Water Separation and Removal of Heavy Metals. Biomimetics 2022, 7, 177. [Google Scholar] [CrossRef]
- Zhang, Q.; Wei, C.; Wang, Y.; Du, S.; Zhou, Y.; Song, H. Potential for Prediction of Water Saturation Distribution in Reservoirs Utilizing Machine Learning Methods. Energies 2019, 12, 3597. [Google Scholar] [CrossRef] [Green Version]
- Salehuddin, N.F.; Omar, M.B.; Ibrahim, R.; Bingi, K. A Neural Network-Based Model for Predicting Saybolt Color of Petroleum Products. Sensors 2022, 22, 2796. [Google Scholar] [CrossRef] [PubMed]
- Durrani, M.A.; Ahmad, I.; Kano, M.; Hasebe, S. An Artificial Intelligence Method for Energy Efficient Operation of Crude Distillation Units under Uncertain Feed Composition. Energies 2018, 11, 2993. [Google Scholar] [CrossRef] [Green Version]
- Jiao, D.; Urban, A.; Zhu, X.; Zhe, J. Oil property sensing array based on a general regression neural network. Tribol. Int. 2021, 164, 107221. [Google Scholar] [CrossRef]
- Maaß, S.; Rojahn, J.; Hänsch, R.; Kraume, M. Automated drop detection using image analysis for online particle size monitoring in multiphase systems. Comput. Chem. Eng. 2012, 45, 27–37. [Google Scholar] [CrossRef]
- Komarova, E.V.; Prosochkina, T.R.; Trapeznikova, E.F.; Nikitina, A.P. A Method of Quantitative Analysis of Polymeric Particles in Water Environments. Bash. Chem. J. 2021, 28, 56–61. [Google Scholar]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; Razveeva, I.; Chernil’nik, A.; Beskopylny, N. Concrete Strength Prediction Using Machine Learning Methods CatBoost, k-Nearest Neighbors, Support Vector Regression. Appl. Sci. 2022, 12, 10864. [Google Scholar] [CrossRef]
- Stel’makh, S.A.; Shcherban’, E.M.; Beskopylny, A.N.; Mailyan, L.R.; Meskhi, B.; Razveeva, I.; Kozhakin, A.; Beskopylny, N. Prediction of Mechanical Properties of Highly Functional Lightweight Fiber-Reinforced Concrete Based on Deep Neural Network and Ensemble Regression Trees Methods. Materials 2022, 15, 6740. [Google Scholar] [CrossRef]
- Beskopylny, A.; Lyapin, A.; Anysz, H.; Meskhi, B.; Veremeenko, A.; Mozgovoy, A. Artificial Neural Networks in Classification of Steel Grades Based on Non-Destructive Tests. Materials 2020, 13, 2445. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Mailyan, L.R.; Stel’makh, S.A.; Shcherban’, E.M.; Razveeva, I.F.; Beskopylny, N.A.; Dotsenko, N.A.; El’shaeva, D.M. The Program for Determining the Mechanical Properties of Highly Functional Lightweight Fiber-Reinforced Concrete Based on Artificial Intelligence Methods. Russian Federation Computer Program. 2022668999, 14 October 2022. Available online: https://www.fips.ru/registers-doc-view/fips_servlet?DB=EVM&DocNumber=2022668999&TypeFile=html (accessed on 11 May 2023).
- Davidenko, L.M. Intelligent technologies in the practice of the oil and gas sector. E-Management 2020, 3, 4–12. [Google Scholar] [CrossRef]
- Lu, Q.; Sun, S.; Duan, H.; Wang, S. Analysis and forecasting of crude oil price based on the variable selection-LSTM integrated model. Energy Inform. 2021, 4, 47. [Google Scholar] [CrossRef]
- Shen, F.; Chao, J.; Zhao, J. Forecasting exchange rate using deep belief networks and conjugate gradient method. Neurocomputing 2015, 167, 243–253. [Google Scholar] [CrossRef]
- Chen, Y.; He, K.; Tso, G. Forecasting Crude Oil Prices: A Deep Learning based Model. Procedia Comput. Sci. 2017, 122, 300–307. [Google Scholar] [CrossRef]
- Zarayev, V.F.; Cherentsov, D.A.; Mareyeva, A.Y.; Strekalov, A.V.; Pirogov, S.P. Applying machine learning to predict the effect of an anti-turbulence additive on the hydraulic efficiency of oil pipelines. Territ. Neft. 2021, 3–4, 14–22. [Google Scholar]
- Andronov, Y.V.; Strekalov, A.V. Research of the application of neural networks ensembles for improving the quality of solving of regression tasks. Neftegazov. Delo 2015, 13, 50–55. [Google Scholar]
- Huang, S.; Peng, L.; Sun, H.; Li, S. Deep Learning for Magnetic Flux Leakage Detection and Evaluation of Oil & Gas Pipelines: A Review. Energies 2023, 16, 1372. [Google Scholar] [CrossRef]
- Aladwani, F.; Elsharkawy, A. Improved prediction of heavy oil viscosity at various conditions utilizing various supervised machine learning regression. Pet. Sci. Technol. 2022, 41, 406–424. [Google Scholar] [CrossRef]
- Markovic, S.; Bryan, J.L.; Ishimtsev, V.; Turakhanov, A.; Rezaee, R.; Cheremisin, A.; Kantzas, A.; Koroteev, D.; Mehta, S.A. Improved Oil Viscosity Characterization by Low-Field NMR Using Feature Engineering and Supervised Learning Algorithms. Energy Fuels 2020, 34, 13799–13813. [Google Scholar] [CrossRef]
- Wagner, F.; Eltner, A.; Maas, H.-G. River water segmentation in surveillance camera images: A comparative study of offline and online augmentation using 32 CNNs. Int. J. Appl. Earth Obs. Geoinf. 2023, 119, 103305. [Google Scholar] [CrossRef]
- Panckow, R.P.; Bliatsiou, C.; Nolte, L.; Böhm, L.; Maaß, S.; Kraume, M. Characterisation of particle stress in turbulent impeller flows utilising photo-optical measurements of a flocculation system—PART 1. Chem. Eng. Sci. 2023, 267, 118333. [Google Scholar] [CrossRef]
- Shagalov, S.V. Hydrostatic Mixer and Method of its Manufacturing. 2013134954/05, 10 January 2015. Available online: https://patents.google.com/patent/RU2538885C1/en (accessed on 10 May 2023).
- Shagalov, S.V. Hydrostatic Mixer (Versions). 2011140413/05A, 10 June 2013. Available online: https://patents.google.com/patent/RU2483791C1/en?oq=2483791 (accessed on 10 May 2023).
- Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and Flexible Image Augmentations. Information 2020, 11, 125. [Google Scholar] [CrossRef] [Green Version]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Razveeva, I.F.; Kozhakin, A.N.; Beskopylny, N.A.; Onore, G.S. Image Augmentation Program. Russian Federation Computer Program. 2022685192, 21 December 2022. Available online: https://www.fips.ru/registers-doc-view/fips_servlet?DB=EVM&DocNumber=2022685192&TypeFile=html (accessed on 11 May 2023).
- Beskopylny, A.N.; Shcherban’, E.M.; Stel’makh, S.A.; Mailyan, L.R.; Meskhi, B.; Razveeva, I.; Kozhakin, A.; El’shaeva, D.; Beskopylny, N.; Onore, G. Discovery and Classification of Defects on Facing Brick Specimens Using a Convolutional Neural Network. Appl. Sci. 2023, 13, 5413. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Shcherban’, E.M.; Stel’makh, S.A.; Mailyan, L.R.; Meskhi, B.; Razveeva, I.; Kozhakin, A.; El’shaeva, D.; Beskopylny, N.; Onore, G. Detecting Cracks in Aerated Concrete Samples Using a Convolutional Neural Network. Appl. Sci. 2023, 13, 1904. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.Y.; Mark Liao, H.Y. YOLOv4: Optimal Speed and Accuracy of Object Detection. Comput. Vis. Pattern Recognit. 2020, 2004, 10934. [Google Scholar] [CrossRef]
- Xu, S.; Deng, J.; Huang, Y.; Ling, L.; Han, T. Research on Insulator Defect Detection Based on an Improved MobilenetV1-YOLOv4. Entropy 2022, 24, 1588. [Google Scholar] [CrossRef]
№ | Parameter | Value |
---|---|---|
1 | Number of shots in the training set | 350 |
2 | Number of shots in the validation set | 75 |
3 | Number of shots in the test set | 75 |
4 | Batch size | 10 |
5 | Number of epochs | 300 |
6 | learning rate | 0.01 |
7 | Solver | SGD |
Num | Parameter | IoU = 0.50 | IoU = 0.75 |
---|---|---|---|
1 | Precision | 89% | 74% |
2 | Recall | 73% | 64% |
3 | Average precision | 89% | 78% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beskopylny, A.N.; Chepurnenko, A.; Meskhi, B.; Stel’makh, S.A.; Shcherban’, E.M.; Razveeva, I.; Kozhakin, A.; Zavolokin, K.; Krasnov, A.A. Detection and Dispersion Analysis of Water Globules in Oil Samples Using Artificial Intelligence Algorithms. Biomimetics 2023, 8, 309. https://doi.org/10.3390/biomimetics8030309
Beskopylny AN, Chepurnenko A, Meskhi B, Stel’makh SA, Shcherban’ EM, Razveeva I, Kozhakin A, Zavolokin K, Krasnov AA. Detection and Dispersion Analysis of Water Globules in Oil Samples Using Artificial Intelligence Algorithms. Biomimetics. 2023; 8(3):309. https://doi.org/10.3390/biomimetics8030309
Chicago/Turabian StyleBeskopylny, Alexey N., Anton Chepurnenko, Besarion Meskhi, Sergey A. Stel’makh, Evgenii M. Shcherban’, Irina Razveeva, Alexey Kozhakin, Kirill Zavolokin, and Andrei A. Krasnov. 2023. "Detection and Dispersion Analysis of Water Globules in Oil Samples Using Artificial Intelligence Algorithms" Biomimetics 8, no. 3: 309. https://doi.org/10.3390/biomimetics8030309
APA StyleBeskopylny, A. N., Chepurnenko, A., Meskhi, B., Stel’makh, S. A., Shcherban’, E. M., Razveeva, I., Kozhakin, A., Zavolokin, K., & Krasnov, A. A. (2023). Detection and Dispersion Analysis of Water Globules in Oil Samples Using Artificial Intelligence Algorithms. Biomimetics, 8(3), 309. https://doi.org/10.3390/biomimetics8030309