Deep Learning Combinatorial Models for Intelligent Supply Chain Demand Forecasting
Abstract
:1. Introduction
2. Literature Review
2.1. Research on Intelligent Supply Chain under Low Carbon and Environmental Objectives
2.2. Demand Forecasting
2.3. Demand Prediction of New Energy Vehicles
3. Research Methods
3.1. Models
3.1.1. Seasonal Autoregressive Integrated Moving Average Model (SARIMA)
3.1.2. Long Short-Term Memory Network (LSTM)
3.1.3. Back Propagation Neural Network (BPNN)
- Network initialization:
- 2.
- Hidden layer calculation:
- 3.
- Output layer calculation:
- 4.
- Error calculation:
- 5.
- Use gradient descent to update weights and biases in order to reduce errors.
3.2. Stacking Ensemble Method
3.3. Evaluation Criteria
4. Analysis and Discussion
4.1. Experimentation
4.1.1. Experimental Data
4.1.2. Experimental Environment
4.1.3. Parameter Settings
4.1.4. Experimental Analysis
4.2. Discussion
4.2.1. Comparison and Evaluation of Prediction Models
4.2.2. Challenges
4.2.3. Prediction
5. Summary and Prospect
5.1. Conclusions
5.2. Prospect
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, P.; Lan, L.P.; Chen, Y.; Hao, Z.; Xing, Y.X.; Cai, X.; Zhang, C.M.; Chen, Y.S. Evaluation of whole-life carbon emission projections for energy-efficient and new energy vehicles for 2035. Environ. Sci. 2023, 44, 2365–2374. [Google Scholar] [CrossRef]
- Qiao, Y.J.; Zhao, S.J.; Wu, C.B.; Zang, J.Y. Research on low-carbon development strategy of China’s automobile industry with the ‘Carbon-Park and Carbon-Neutrality’ goal. China Soft Sci. 2022, 2022, 31–40. [Google Scholar]
- Li, J.B. Study on the innovation system evolutionary proceedings and driving forces of the strategic emerging industry. Stud. Sci. Sci. 2016, 34, 1426–1431. [Google Scholar] [CrossRef]
- Dairi, A.; Harrou, F.; Sun, Y.; Khadraoui, S. Short-term forecasting of photovoltaic solar power production using a variational auto-encoder driven deep learning approach. Appl. Sci. 2020, 10, 8400. [Google Scholar] [CrossRef]
- Alameer, Z.; Fathalla, A.; Li, K.L.; Ye, H.W.; Zhang, J.H. Multistep-ahead forecasting of coal prices using a hybrid deep learning model. Resour. Policy 2020, 65, 101588. [Google Scholar] [CrossRef]
- Liu, A.J.; Yang, Y.; Miao, J.; Li, Z.X.; Lu, H.; Li, F. Pricing research for automotive supply chains considering low-carbon consumer preferences under a dual policy. Kybernetes 2022, 52, 1976–1998. Available online: https://www.emerald.com/insight/0368-492X.html (accessed on 27 February 2023). [CrossRef]
- Tan, T.; Huang, Z.T.; Lin, Y.L.; Bi, G.C. Big data driven demand analysis of new energy vehicles. Renew. Energy Resour. 2020, 7, 967–971. [Google Scholar] [CrossRef]
- Lu, M.F.; Xu, Y.Y. New Features, challenges and countermeasures of supply chain economy in the context of ‘Double Carbon’ target. Soc. Sci. Xinjiang 2022, 1, 38–46, 146. [Google Scholar] [CrossRef]
- Wang, J. Driving factors and realization mechanism of digital supply chain ecosystem under ‘Dual carbon’ goal heterogeneous poverty and integrated governance. Acad. Forum 2022, 45, 83–92. [Google Scholar] [CrossRef]
- Liu, G.D.; Li, Y.Z.; Zeng, J.Z. Low carbon transformation and efficiency improvement of supply chain under the goal of ‘Double Carbon’. South China Financ. 2022, 10, 22–33. [Google Scholar]
- Han, M.W.; Song, H.; Hu, X.Q.; Yang, X.Y. Optimal decision and coordination of Dual-channel green supply chain with price reference effect under the target of peaking carbon emission and carbon neutral. J. Ind. Technol. Econ. 2023, 2, 3–15. [Google Scholar]
- Yang, J.F.; Zhang, T.S.; Zhou, C.B.; Ling, L.M.; Wang, X. Research on the path of green manufacturing system construction in China under the carbon peaking and carbon neutrality goals. Chin. J. Environ. Manag. 2022, 14, 75–80. [Google Scholar] [CrossRef]
- Jeong, S.; Park, S.; Kim, S. Analysis of the recall demand pattern of imported cars and application of ARIMA demand forecasting model. J. Soc. Korea Ind. Syst. Eng. 2020, 43, 93–106. [Google Scholar] [CrossRef]
- Wang, H.Q.; Zhu, C. Prediction of dynamic requirement of mechanical product based on multi-variate grey model. J. Mach. Des. 2013, 30, 13–17. [Google Scholar] [CrossRef]
- Cloke, H.L.; Pappenberger, F. Ensemble flood forecasting: A review. J. Hydrol. 2009, 375, 613–626. [Google Scholar] [CrossRef]
- Belotti, J.; Siqueira, H.; Araujo, L.; Stevan Jr, S.L.; de Mattos Neto, P.S.; Marinho, M.H.; de Oliveira, J.F.; Usberti, F.; de Almeida Leone Filho, M.; Converti, A.; et al. Neural-based ensembles and unorganized machines to predict streamflow series from hydroelectric plants. Energies 2020, 13, 4769. [Google Scholar] [CrossRef]
- Wu, W.; Emerton, R.; Duan, Q.Y.; Wood, A.W.; Wetterhall, F.; Robertson, D.E. Ensemble flood forecasting: Current status and future opportunities. Wiley Interdiscip. Rev. Water 2020, 7, e1432. [Google Scholar] [CrossRef]
- Kaya, A.; Kaya, G.; Cebi, F. Forecasting automobile sales in Turkey with artificial neural networks. Int. J. Bus. Anal. 2019, 6, 50–60. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.Y.; Qiao, J.J.; Wang, M.T.; Liu, Y.F.; Qi, L.J. Smart grid forecasting method based on data on preprocessing and Bi-LSTM. Electr. Meas. Instrum. 2023, 1–7. Available online: https://kns.cnki.net/kcms/detail/23.1202.TH.20230213.1658.008.html (accessed on 1 March 2023).
- Lee, J.G.; Kim, T.; Sung, K.W.; Han, S.W. Automobile parts reliability prediction based on claim data: The comparison of predictive effects with deep learning. Eng. Fail. Anal. 2021, 129, 105657. [Google Scholar] [CrossRef]
- Wang, W. Application of optimal linear combination forecast model in tourism demand forecasting: A case of forecasting of visitors from mainland China to Macao. Math. Pract. Theory 2018, 48, 49–58. [Google Scholar]
- Fan, D.Y.; Sun, H.; Yao, J.; Zhang, K.; Yan, X.; Sun, Z.X. Well production forecasting based on ARIMA-LSTM model considering manual operations. Energy 2021, 220, 119708. [Google Scholar] [CrossRef]
- Rui, Y.; Liao, J.Q.; Yang, J.; Wei, S.; Nong, M.Y.; Li, F.P. Multi-hour and multi-site air quality index forecasting in Beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clustering. Expert Syst. Appl. 2021, 169, 114513. [Google Scholar] [CrossRef]
- Wang, J.; Teng, Y.F.; Liu, Y.; Yang, D.H. Combined forecasting of the vehicle holdings based on gray-neural network. In Proceedings of the 27th Chinese Control and Decision Conference, Qingdao, China, 23–25 May 2015. [Google Scholar] [CrossRef]
- Chandriah, K.K.; Naraganahalli, R.V. RNN/LSTM with modified Adam optimizer in deep learning approach for automobile spare parts demand forecasting. Multimed. Tools Appl. 2021, 80, 26145–26159. [Google Scholar] [CrossRef]
- Siwek, K.; Stanislaw, O. Improving the accuracy of prediction of PM10 pollution by the wavelet transformation and an ensemble of neural predictors. Eng. Appl. Artif. Intell. 2012, 25, 1246–1258. [Google Scholar] [CrossRef]
- Neto, P.S.D.M.; Firmino, P.R.A.; Siqueira, H.; Tadano, Y.D.S.; Alves, T.A.; De Oliveira, J.F.L.; Marinho, M.H.D.N.; Madeiro, A.F. Neural-based ensembles for particulate matter forecasting. IEEE Access 2021, 9, 14470–14490. [Google Scholar] [CrossRef]
- Zhao, W.L.; Chang, D.F.; Zhu, Z.L.; Gao, Y.P. Port traffic volume forecast with SARIMA-BP model. Navig. China 2020, 43, 50–55. [Google Scholar]
- Caliwag, A.C.; Lim, W. Hybrid VARMA and LSTM method for lithium-ion battery state-of-charge and output voltage forecasting in electric motorcycle applications. IEEE Access 2019, 7, 59680–59689. [Google Scholar] [CrossRef]
- Hu, J.B.; Zhao, K.; Yang, Y.H. Research on China’s industrial carbon emission peak prediction and control factors: Empirical analysis based on BP-LSTM neural network model. Guizhou Soc. Sci. 2021, 2021, 135–146. [Google Scholar] [CrossRef]
- Hu, F.J.; Liu, P.X.; Zhao, X.L. Demand analysis of alternative fuel vehicle based on different machine learning methods. Tianjin Constr. Sci. Technol. 2022, 32, 5–10. [Google Scholar]
- Dong, X.H.; Feng, Z.W.; Zhang, J.A.; Li, N.N. New energy vehicle scale prediction method with nonlinear residual. Electr. Power Eng. Technol. 2022, 41, 76–84. [Google Scholar]
- Wang, H.; Li, M.; Jiao, Y.; Yu, K.L. New energy vehicle sales forecasting method based on combination model. Softw. Guide 2023, 22, 133–141. [Google Scholar]
- Xu, J.; Chi, F.J.; Ge, L.J.; Li, J.; Zhang, L.; Xian, Y.M. Short-term combined commercial load forecasting method based on SARIMA-GRNN-SVM. Proc. CSU-EPSA 2020, 32, 85–91. [Google Scholar] [CrossRef]
- Han, J.L.; Xiong, P.P.; Sun, J.H. Stock price time series prediction based on LSTM and grey model. J. Nanjing Univ. Inf. Sci. Technol. (Nat. Sci. Ed.) 2023, 1–22. Available online: https://kns.cnki.net/kcms/detail/32.1801.N.20230105.1635.003.html (accessed on 22 March 2023).
- Liu, C.S.; Qu, J.S.; Ge, Y.J.; Tang, J.X.; Gao, X.Y.; Liu, L.N. Carbon emissions forecasting in China’s transportation sector based on LSTM model. China Environ. Sci. 2023, 43, 2574–2582. [Google Scholar] [CrossRef]
- Shi, J.Q.; Zhang, J.H. Load forecasting method based on multi-model fusion stacking ensemble learning. Proc. Chin. Soc. Electr. Eng. 2019, 39, 4032–4042. [Google Scholar] [CrossRef]
- Wang, H.; Cao, Y.; Li, Y.; Lin, L.; Ren, L.H.; Liu, G.H.; Zhou, G.X. Prediction model of temperature in warehouse based on improved particle swarm optimization BP neural network. J. China Cereals Oils Assoc. 2023, 1–10. [Google Scholar] [CrossRef]
- Huang, Q.; Xie, H.L. Research on the Application of Machine Learning in Stock Index Futures Forecast—Comparison and analysis based on BP neural network, SVM, and XGBoost. Math. Pract. Theory 2018, 48, 297–307. [Google Scholar]
- Xue, H.W.; Liu, Y.; Zhuang, W.C.; Yin, G.D. A detection method of vehicle abnormal behavior in V2X environment based on stacking ensemble learning. Automot. Eng. 2021, 43, 501–508, 536. [Google Scholar] [CrossRef]
MSE | LSTM’s Hidden Layer Size Is 2 | LSTM’s Hidden Layer Size Is 3 | LSTM’s Hidden Layer Size Is 4 |
---|---|---|---|
BP’s hidden layer size is 7 | 26.416 | 11.665 | 16.794 |
BP’s hidden layer size is 8 | 26.002 | 7.672 | 13.468 |
BP’s hidden layer size is 9 | 29.629 | 13.717 | 13.718 |
Model | Model Parameter |
---|---|
Random Forest | Trees is 100, leaf is 5 |
BP | Hidden layer size is 5 |
LSTM | Feedback delays are 12, hidden layer size is 3 |
SVR | Penalty coefficient is 1, the highest degree of the kernel function is 3 |
SARIMA-LSTM-BP | In the LSTM, Feedback delays are 12, hidden layer size is 3; in the BP, hidden layer size is 8 |
Prediction Model | SARIMA | Random Forest | SVR | BP | LSTM | SARIMA-LSTM-BP |
---|---|---|---|---|---|---|
RMSE | 3.354 | 18.608 | 4.664 | 3.850 | 3.658 | 2.757 |
MSE | 11.252 | 346.255 | 21.752 | 14.823 | 13.379 | 7.603 |
MAE | 2.266 | 9.051 | 2.854 | 2.550 | 2.188 | 1.912 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Li, M.; Tong, J.; Feng, X. Deep Learning Combinatorial Models for Intelligent Supply Chain Demand Forecasting. Biomimetics 2023, 8, 312. https://doi.org/10.3390/biomimetics8030312
Ma X, Li M, Tong J, Feng X. Deep Learning Combinatorial Models for Intelligent Supply Chain Demand Forecasting. Biomimetics. 2023; 8(3):312. https://doi.org/10.3390/biomimetics8030312
Chicago/Turabian StyleMa, Xiaoya, Mengxiu Li, Jin Tong, and Xiaying Feng. 2023. "Deep Learning Combinatorial Models for Intelligent Supply Chain Demand Forecasting" Biomimetics 8, no. 3: 312. https://doi.org/10.3390/biomimetics8030312
APA StyleMa, X., Li, M., Tong, J., & Feng, X. (2023). Deep Learning Combinatorial Models for Intelligent Supply Chain Demand Forecasting. Biomimetics, 8(3), 312. https://doi.org/10.3390/biomimetics8030312