Computational Fluid Dynamics Analysis in Biomimetics Applications: A Review from Aerospace Engineering Perspective
Abstract
:1. Introduction
2. Adaptive Bio-Inspired Applications in Aircraft Technology
3. Research on Biomimetics Related to CFD Applications
3.1. Biological Organisms of Plant Species
3.2. Insects
3.3. Flying Animals
3.4. Aquatic Animals
4. CFD Model Construction
4.1. Issues Related to CFD Study of Bio-Inspired Aquatic and Flying Animals
4.1.1. Presumptive Parameters
4.1.2. Geometrical Configuration
4.1.3. Kinematic Modeling Parameters
4.1.4. Performance Parameters
4.2. Merits and Limitations of Biomimetics-CFD Applications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bar-Cohen, Y. Biomimetics: Biologically Inspired Technology. In II Eccomas Thematic Conference on Smart Structures and Materials; Soares, C.M., Ed.; CRC Press: Lisbon, Portugal, 2005; pp. 7–15. [Google Scholar]
- Bar-Cohen, Y. Biomimetics—Using Nature to Inspire Human Innovation. Bioinspir. Biomim. 2006, 1, P1–P12. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, O.H. Some Interesting and Useful Biomimetic Transforms. In Proceedings of the 3rd International Biophysics Congress, Boston, MA, USA, 29 August–3 September 1969; p. 297. [Google Scholar]
- Hwang, J.; Jeong, Y.; Park, J.M.; Lee, K.H.; Hong, J.W.; Choi, J. Biomimetics: Forecasting the Future of Science, Engineering, and Medicine. Int. J. Nanomed. 2015, 10, 5701–5713. [Google Scholar] [CrossRef] [Green Version]
- Sayma, A. Introduction: CFD Techniques. In Computational Fluid Dynamics; BookBooN: London, UK, 2009; p. 10. ISBN 9788776814304. [Google Scholar]
- Versteeg, H.K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics—The Finite Volume Method; Pearson Education Limited: London, UK, 1995; p. 267. [Google Scholar]
- Bachmann, T.; Wagner, H. The Three-Dimensional Shape of Serrations at Barn Owl Wings: Towards a Typical Natural Serration as a Role Model for Biomimetic Applications. J. Anat. 2011, 219, 192–202. [Google Scholar] [CrossRef]
- Alerstam, T.; Gudmundsson, G.A.; Jonsson, P.E.; Karlsson, J.; Lindstrom, A. Orientation, Migration Routes and Flight Behaviour of Knots, Turnstones and Brant Geese Departing from Iceland in Spring. Arctic 1990, 43, 201–214. [Google Scholar] [CrossRef]
- Naqvi, M.A.; Abbas, A.; Shah, H.R.; Hamid, M. Nature Inspired Flying Vehicles and Future Challenges in Aerospace. Int. J. Automot. Eng. Technol. 2015, 4, 40–53. [Google Scholar] [CrossRef] [Green Version]
- Salami, E.; Montazer, E.; Ward, T.A.; Nik Ghazali, N.N.; Anjum Badruddin, I. Aerodynamic Performance of a Dragonfly-Inspired Tandem Wing System for a Biomimetic Micro Air Vehicle. Front. Bioeng. Biotechnol. 2022, 10, 423. [Google Scholar] [CrossRef]
- Singh, B.; Yidris, N.; Basri, A.A.; Pai, R. Study of Mosquito Aerodynamics for Imitation as a Small Robot and Flight in a Low-Density Environment. Micromachines 2021, 12, 511. [Google Scholar] [CrossRef]
- Norberg, U.M. Vertebrate Flight Mechanics, Physiology, Morphology, Ecology and Evolution; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Bie, D.; Li, D.; Xiang, J.; Li, H.; Kan, Z.; Sun, Y. Design, Aerodynamic Analysis and Test Flight of a Bat-Inspired Tailless Flapping Wing Unmanned Aerial Vehicle. Aerosp. Sci. Technol. 2021, 112, 106557. [Google Scholar] [CrossRef]
- Bushnell, D.M.; Moore, K.J. Drag Reduction in Nature. Annu. Rev. Fluid Mech. 1991, 23, 65–79. [Google Scholar] [CrossRef]
- Fish, F.E.; Battle, J.M. Hydrodynamic-Design of the Humpback Whale Flipper. J. Morphol. 1995, 225, 51–60. [Google Scholar] [CrossRef]
- Fish, F.E.; Lauder, G.V. Passive and Active Flow Control By Swimming Fishes and Mammals. Annu. Rev. Fluid Mech. 2006, 38, 193–224. [Google Scholar] [CrossRef] [Green Version]
- Miklosovic, D.S.; Murray, M.M.; Howle, L.E. Experimental Evaluation of Sinusoidal Leading Edges. J. Aircr. 2007, 44, 1404–1407. [Google Scholar] [CrossRef]
- Miklosovic, D.S.; Murray, M.M.; Howle, L.E.; Fish, F.E. Leading-Edge Tubercles Delay Stall on Humpback Whale (Megaptera Novaeangliae) Flippers. Phys. Fluids 2004, 16, 38–42. [Google Scholar] [CrossRef] [Green Version]
- Aftab, S.M.A.; Ahmad, K.A. CFD Study on NACA 4415 Airfoil Implementing Spherical and Sinusoidal Tubercle Leading Edge. PLoS ONE 2017, 12, e0183456. [Google Scholar]
- Pavlov, V.; Rosental, B.; Hansen, N.F.; Beers, J.M.; Parish, G.; Rowbotham, I.; Block, B.A. Hydraulic Control of Tuna Fins: A Role for the Lymphatic System in Vertebrate Locomotion. Sci. Anim. Physiol. 2017, 357, 310–314. [Google Scholar] [CrossRef] [Green Version]
- Triantafyllou, M.S.; Winey, N.; Trakht, Y.; Elhassid, R.; Yoerger, D. Biomimetic Design of Dorsal Fins for AUVs to Enhance Maneuverability. Bioinspir. Biomim. 2020, 15, 035003. [Google Scholar] [CrossRef] [PubMed]
- Rose, J.B.R.; Natarajan, S.G.; Gopinathan, V.T. Biomimetic Flow Control Techniques for Aerospace Applications: A Comprehensive Review; Springer: Dordrecht, The Netherlands, 2021; Volume 20, ISBN 0123456789. [Google Scholar]
- Karthik, H. Computational Fluid Dynamics For Biomimetics: Springtails Are Not a Drag! Can. Sci. Fair J. 2020, 3, 1–5. [Google Scholar]
- Bixler, G.D.; Bhushan, B. Fluid Drag Reduction and Efficient Self-Cleaning with Rice Leaf and Butterfly Wing Bioinspired Surfaces. Nanoscale 2013, 5, 7685–7710. [Google Scholar] [CrossRef]
- Kumar, S.K.; Pendyala, S. Computational Analysis of Morphing Geometry Inspired From Butterfly Wings in the Application Micro Aerial Vehicles. J. Robot. Autom. Res. 2022, 3, 300–307. [Google Scholar]
- Zhang, Y.; Wang, X.; Wang, S.; Huang, W.; Weng, Q. Kinematic and Aerodynamic Investigation of the Butterfly in Forward Free Flight for the Butterfly-Inspired Flapping Wing Air Vehicle. Appl. Sci. 2021, 11, 2620. [Google Scholar] [CrossRef]
- Ghosh, K. CFD Analysis of Butterfly Type Ornithopter. Int. Res. J. Eng. Technol. 2020, 7, 7368–7371. [Google Scholar]
- Senda, K.; Obara, T.; Kitamura, M.; Nishikata, T.; Hirai, N.; Iima, M.; Yokoyama, N. Modeling and Emergence of Flapping Flight of Butterfly Based on Experimental Measurements. Robot. Auton. Syst. 2012, 60, 670–678. [Google Scholar] [CrossRef] [Green Version]
- Sanuki, K.; Fujikawa, T. Motion Analysis of Butterfly-Style Flapping Robot Using Cfd Based on 3d-Cad Model and Experimental Flight Data. J. Robot. Mechatron. 2021, 33, 216–222. [Google Scholar] [CrossRef]
- Aaroh; Zuber, M.; Khader, S.M.A.; Kalburgi, S.; Basri, E.I.; Ahmad, K.A. Performance of a Monarch Butterfly for Various Flapping Angle. Int. J. Eng. Technol. 2018, 7, 126–130. [Google Scholar]
- Bomphrey, R.J.; Nakata, T.; Phillips, N.; Walker, S.M. Smart Wing Rotation and Trailing-Edge Vortices Enable High Frequency Mosquito Flight. Nature 2017, 544, 92–95. [Google Scholar] [CrossRef]
- Luo, Y.; He, G.; Liu, H.; Wang, Q.; Song, H. Aerodynamic Performance of Dragonfly Forewing-Hindwing Interaction in Gliding Flight. IOP Conf. Ser. Mater. Sci. Eng. 2019, 538, 012048. [Google Scholar] [CrossRef]
- Rajendra Prasad, K.; Venkatasubbaiah, G.; Syamsundar, C. Computational Fluid Dynamics of Hovering in Flapping Insect Wings. Int. J. Sci. Technol. Res. 2020, 9, 3642–3648. [Google Scholar]
- Khan, M.A.; Padhy, C. Aerodynamic and Experimental Analysis of Bio-Mimic Corrugated Dragonfly Aerofoil. INCAS Bull. 2020, 12, 73–85. [Google Scholar] [CrossRef]
- Shern, L.Y.; Sa’at, F.A.Z.M.; Wahap, M.A.A. CFD Study of A Micro Air Vehicle (MAV). J. Mech. Eng. Technol. 2022, 14, 25–45. [Google Scholar]
- ZHOU, C.; ZHANG, Y.; WU, J. Effect of Flexibility on Unsteady Aerodynamics Forces of a Purely Plunging Airfoil. Chin. J. Aeronaut. 2020, 33, 88–101. [Google Scholar] [CrossRef]
- Nakata, T.; Liu, H.; Bomphrey, R.J. A CFD-Informed Quasi-Steady Model of Flapping-Wing Aerodynamics. J. Fluid Mech. 2015, 783, 323–343. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, A.T.; Kim, J.K.; Han, J.S.; Han, J.H. Extended Unsteady Vortex-Lattice Method for Insect Flapping Wings. J. Aircr. 2016, 53, 1709–1718. [Google Scholar] [CrossRef]
- Li, Y.; Yonezawa, K.; Xu, R.; Liu, H. A Biomimetic Rotor-Configuration Design for Optimal Aerodynamic Performance in Quadrotor Drone. J. Bionic Eng. 2021, 18, 824–839. [Google Scholar] [CrossRef]
- Li, Y.; Yonezawa, K.; Liu, H. Effect of Ducted Multi-Propeller Configuration on Aerodynamic Performance in Quadrotor Drone. Drones 2021, 5, 101. [Google Scholar] [CrossRef]
- Zhang, H.; Wen, C.; Yang, A. Optimization of Lift Force for a Bio-Inspired Flapping Wing Model in Hovering Flight. Int. J. Micro Air Veh. 2016, 8, 92–108. [Google Scholar] [CrossRef] [Green Version]
- Jadhav, S.S.; Lua, K.B.; Tay, W.B. Effect of Clap-and-Fling Mechanism on Force Generation in Flapping Wing Micro Aerial Vehicles. Bioinspir. Biomim. 2019, 14, 036006. [Google Scholar] [CrossRef]
- Nguyen, K.; Au, L.T.K.; Phan, H.V.; Park, H.C. Comparative Dynamic Flight Stability of Insect-Inspired Flapping-Wing Micro Air Vehicles in Hover: Longitudinal and Lateral Motions. Aerosp. Sci. Technol. 2021, 119, 107085. [Google Scholar] [CrossRef]
- Olejnik, D.A.; Muijres, F.T.; Karásek, M.; Honfi Camilo, L.; De Wagter, C.; de Croon, G.C.H.E. Flying Into the Wind: Insects and Bio-Inspired Micro-Air-Vehicles With a Wing-Stroke Dihedral Steer Passively Into Wind-Gusts. Front. Robot. AI 2022, 9, 820363. [Google Scholar] [CrossRef] [PubMed]
- Perl, I.; Maya, R.; Sabag, O.; Beatus, T. Lateral Instability in Fruit Flies Is Determined by Wing-Wing Interaction and Wing Elevation Kinematics. Phys. Fluids 2023, 35, 041904. [Google Scholar] [CrossRef]
- Ghosh, K. Numerical Analysis of the Three-Dimensional Aerodynamics of a Thrush Nightingale (Luscinia Luscinia). Int. Res. J. Eng. Technol. 2020, 7, 1325–1331. [Google Scholar]
- Kumar, V.S.; Kumar, D.; Goyal, T.; Mohite, P.M.; Kamle, S. Development and Application of PP-CNT Composite for Hummingbird Inspired MAV Flapping Wings. In Proceedings of the International Micro Air Vehicle Conference and Competition, Delft, The Netherlands, 1 June 2014; Volume 208016, pp. 180–187. [Google Scholar]
- Geder, J.; Ramamurti, R.; Viswanath, K. Simulation of a Flapping Wing UAV Using a Coupled CFD-Control Tool. In Proceedings of the 33rd AIAA Applied Aerodynamics Conference, Dallas, TX, USA, 22–26 June 2015; pp. 1–10. [Google Scholar]
- Yang, X.; Pei, Y.; Yang, W.; Nian, P.; Song, B. Numerical Simulation of a Bio-Inspired Flexible Flapping-Wing Based on Experimental Measured Deformation. In Proceedings of the 32nd Congress of the International Council of the Aeronautical Sciences (ICAS) 2021, Shanghai, China, 6–10 September 2021; pp. 1–10. [Google Scholar]
- Bin Abas, M.F.; Singh, B.; Ahmad, K.A.; Ng, E.Y.K.; Khan, T.; Sebaey, T.A. Dwarf Kingfisher-Inspired Bionic Flapping Wing and Its Aerodynamic Performance at Lowest Flight Speed. Biomimetics 2022, 7, 123. [Google Scholar] [CrossRef]
- Bodling, A.; Sharma, A. Numerical Investigation of Noise Reduction Mechanisms in a Bio-Inspired Airfoil. J. Sound Vib. 2019, 453, 314–327. [Google Scholar] [CrossRef]
- Ananthan, V.B.; Akkermans, R.A.D. Trailing Edge Noise Reduction Using Bio-Inspired Finlets. J. Sound Vib. 2023, 549, 117553. [Google Scholar] [CrossRef]
- Bardera, R.; Rodríguez-Sevillano, Á.A.; Barroso, E.; Matías, J.C. Numerical Analysis of a Biomimetic UAV with Variable Length Grids Wingtips. Results Eng. 2023, 18, 101087. [Google Scholar] [CrossRef]
- da Silva Benoit, A.G.M.; do Araujo, L.S.; Schaffazick, L.H.; Demarco, G.; dos Santos, C.G. Preliminary Studies of the Influence of Surface Temperature on the Aerodynamic Coefficients of Biomimetic-Based Airfoils. In Proceedings of the XXVIII Congresso Nacional de Estudantes de Engenharia Mecânica, Santa Maria, Brazil, 9–13 May 2022. [Google Scholar]
- Arrondeau, B.; Rana, Z.A. Computational Aerodynamics Analysis of Non-Symmetric Multi-Element Wing in Ground Effect with Humpback Whale Flipper Tubercles. Fluids 2020, 5, 247. [Google Scholar] [CrossRef]
- Papadopoulos, C.; Katsiadramis, V.; Yakinthos, K. Influence of Tubercles’ Spanwise Distribution on Swept Wings for Unmanned Aerial Vehicles. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2021, 235, 95–103. [Google Scholar] [CrossRef]
- Bhatia, D.; Zhao, Y.; Yadav, D.; Wang, J. Drag Reduction Using Biomimetic Sharkskin Denticles. Eng. Technol. Appl. Sci. Res. 2021, 11, 7665–7672. [Google Scholar] [CrossRef]
- Marimuthu, S.; Al-Rabeei, S.; Boha, H.A. Three-Dimensional Analysis of Biomimetic Aerofoil in Transonic Flow. Biomimetics 2022, 7, 20. [Google Scholar] [CrossRef]
- Meng, H.; Lou, J.; Chen, T.; Xu, C.; Chen, H.; Yang, Y.; Cui, Y. Cantilever-Based Micro Thrust Measurement and Pressure Field Distribution of Biomimetic Robot Fish Actuated by Macro Fiber Composites (MFCs) Actuators. Smart Mater. Struct. 2021, 30, 035001. [Google Scholar] [CrossRef]
- Jaya, A.S.; Rukmono, L.Y.W. The Biomimetic Fin Performance Evuluation for an Efficient Autonomous Underwater Vehicle to Support the Revolution in Military Affairs in Underwater Defense. J. Pertahanan 2021, 7, 376–386. [Google Scholar] [CrossRef]
- Spalart, P.R.; Venkatakrishnan, V. On the Role and Challenges of CFD in the Aerospace Industry. Aeronaut. J. 2016, 120, 209–232. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Zhang, X.; Tian, X.; Li, X.; Lu, W. A Review on Fluid Dynamics of Flapping Foils. Ocean Eng. 2020, 195, 106712. [Google Scholar] [CrossRef]
Category | Animal | Anatomical Structures | Anatomical Advantages | Engineering Application | References |
---|---|---|---|---|---|
Flying | Birds | Limbs and feathers | The forces of lift, thrust, drag, and gravity influence the flight patterns of birds | Flapping UAVs | [7] |
Owls | Feathers | Fly silently and help to absorb aerodynamic sound and suppress vibrations when waves of sound come crushing over the wing | UAVs Wind turbines | [7] | |
Wild geese | Wings | Ascending air current with less effort | AIRBUS | [8] | |
Insects (dragonfly) | Multiple wings and legs | Pressure gradients for lift and thrust by flapping | small UAVs (micro aerial vehicles) | [9] | |
Flapping wings | Wake capture occurs when wings change direction | Biomimetic MAV | [10] | ||
Insects (mosquito) | Flapping wing and membrane wing | Flaps at a moderately high frequency relative to similar insects | Miniature unmanned autonomous (robots) | [11] | |
Bats | Limbs | The membrane of skin that stretches between arms and legs helps to produce lift | small UAVs (micro aerial vehicles) | [9,12,13] | |
Aquatic | Whale | Flipper (Tubercles effect) | Tubercles on the leading edge produce greater lift and less drag than a smooth surface fin | small UAVs (micro aerial vehicles) | [14,15,16,17,18,19] |
Tuna | Median fins | Hydrofoils produce sideways lift force when the fin plane is at an angle with the fluid flow direction | Autonomous underwater vehicles | [20,21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basri, E.I.; Basri, A.A.; Ahmad, K.A. Computational Fluid Dynamics Analysis in Biomimetics Applications: A Review from Aerospace Engineering Perspective. Biomimetics 2023, 8, 319. https://doi.org/10.3390/biomimetics8030319
Basri EI, Basri AA, Ahmad KA. Computational Fluid Dynamics Analysis in Biomimetics Applications: A Review from Aerospace Engineering Perspective. Biomimetics. 2023; 8(3):319. https://doi.org/10.3390/biomimetics8030319
Chicago/Turabian StyleBasri, Ernnie Illyani, Adi Azriff Basri, and Kamarul Arifin Ahmad. 2023. "Computational Fluid Dynamics Analysis in Biomimetics Applications: A Review from Aerospace Engineering Perspective" Biomimetics 8, no. 3: 319. https://doi.org/10.3390/biomimetics8030319
APA StyleBasri, E. I., Basri, A. A., & Ahmad, K. A. (2023). Computational Fluid Dynamics Analysis in Biomimetics Applications: A Review from Aerospace Engineering Perspective. Biomimetics, 8(3), 319. https://doi.org/10.3390/biomimetics8030319