Application of an Enhanced Whale Optimization Algorithm on Coverage Optimization of Sensor
Abstract
:1. Introduction
1.1. Wireless Sensor Network Coverage Model
1.2. Overview of Whale Optimization Algorithm (WOA)
1.3. The Lévy Flight Method
1.4. Genetic Algorithm
2. Proposed WOA-LFGA
2.1. Initialization Based on Chaotic Map
2.2. Enhanced Exploitation Phase
2.3. An Improved Method Based on Genetic Algorithm
2.4. Boundary Processing Strategy
Algorithm 1: WOA-LFGA |
Input: Fitness function Output: Available optimal solution (i) Initialization process Step1: Initialize parameter and variable values used in the algorithm. Step2: Initialize the whales population X = Xi (i = 1, 2,…, N) using chaotic mapping by Equation (19). Step3: Calculate the fitness for X and select the best individual and assign it to X*. Step4: Set the iteration counter to t = 0. (ii) Iterative process Step5: While t < maxiter, Do. Step6: Update the position for Xi by Equation (7) (if p < 0.5 and |A| < 1) or Equation (14) (if p < 0.5 and |A| ≥ 1) or Equation (12) (if p ≥ 0.5). Step7: Select the best 10% and the worst 20% of individuals and use crossover and mutation strategies to update individuals for the worst 20% based on the best 10% of individuals. Step8: Return the search agents that go beyond the boundaries of the search space using Equation (22). Step9: Calculate the fitness for X and update X* if there is a better solution. Step10: Iterate the counter t = t + 1. End. (iii) Results obtained Step11: Output the best agent X*. The end. |
3. Results and Discussion
3.1. WOA-LFGA for Function Optimization
3.2. WOA-LFGA for WSN Coverage Optimization Problem
3.2.1. Comparison of WOA-LFGA with Other Basic Algorithms
3.2.2. Comparison of WOA-LFGA with Different Modified WOA
3.3. WOA-LFGA for WSN Coverage Practical Application
3.3.1. Comparison of WOA-LFGA with Other Basic Algorithms
3.3.2. Comparison of WOA-LFGA with Different Modified WOA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mukherjee, M.; Adhikary, I.; Mondal, S.; Mondal, A.K.; Pundir, M.; Chowdary, V. Vision of IoT: Applications, Challenges, and Opportunities with Dehradun Perspective. In Proceeding of International Conference on Intelligent Communication, Control and Devices; Advances in Intelligent Systems and Computing; Springer: Singapore, 2017. [Google Scholar]
- Da Xu, L.; He, W.; Li, S. Internet of Things in Industries: A Survey. IEEE Trans. Ind. Inform. 2014, 10, 2233–2243. [Google Scholar]
- Zhao, X.; Askari, H.; Chen, J. Nanogenerators for smart cities in the era of 5G and Internet of Things. Joule 2021, 5, 1391–1431. [Google Scholar] [CrossRef]
- Majid, M.; Habib, S.; Javed, A.R.; Rizwan, M.; Srivastava, G.; Gadekallu, T.R.; Lin, J.C.W. Applications of Wireless Sensor Networks and Internet of Things Frameworks in the Industry Revolution 4.0: A Systematic Literature Review. Sensors 2022, 22, 2087. [Google Scholar] [CrossRef] [PubMed]
- Rashid, B.; Rehmani, M.H. Applications of wireless sensor networks for urban areas: A survey. J. Netw. Comput. Appl. 2016, 60, 192–219. [Google Scholar] [CrossRef]
- Li, M.; Li, Z.; Vasilakos, A.V. A Survey on Topology Control in Wireless Sensor Networks: Taxonomy, Comparative Study, and Open Issues. Proc. IEEE 2013, 101, 2538–2557. [Google Scholar] [CrossRef]
- Yoon, Y.; Kim, Y.H. Maximizing the coverage of sensor deployments using a memetic algorithm and fast coverage estimation. IEEE Trans. Cybern. 2021, 52, 6531–6542. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Du, H.T. K-Sweep coverage with mobile sensor nodes in wireless sensor networks. IEEE Internet Things J. 2021, 8, 13888–13899. [Google Scholar] [CrossRef]
- Wang, W.; Huang, H.; He, F.; Xiao, F.; Sha, C. An enhanced virtual force algorithm for diverse k-coverage deployment of 3d underwater wireless sensor networks. Sensors 2019, 19, 3496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulswamy, S.L.; Roobert, A.A.; Hariharan, K. A novel coverage improved deployment strategy for wireless sensor network. Wirel. Pers. Commun. 2021, 124, 868–891. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Gupta, B. 2-D coverage optimization in obstacle-based FOI in WSN using modified PSO. J. Supercomput. 2022, 79, 4847–4869. [Google Scholar] [CrossRef]
- Zhu, W.; Huang, C.L.; Yeh, W.C.; Jiang, Y.; Tan, S.Y. A Novel Bi-Tuning SSO Algorithm for Optimizing the Budget-Limited Sensing Coverage Problem in Wireless Sensor Networks. Appl. Sci. 2021, 11, 10197. [Google Scholar] [CrossRef]
- Nematzadeh, S.; Torkamanian-Afshar, M.; Seyyedabbasi, A.; Kiani, F. Maximizing coverage and maintaining connectivity in WSN and decentralized IoT: An efficient metaheuristic-based method for environment-aware node deployment. Neural Comput. Appl. 2022, 35, 611–641. [Google Scholar] [CrossRef]
- Dao, T.K.; Chu, S.C.; Nguyen, T.T.; Nguyen, T.D.; Nguyen, V.T. An Optimal WSN Node Coverage Based on Enhanced Archimedes Optimization Algorithm. Entropy 2022, 24, 1018. [Google Scholar] [CrossRef] [PubMed]
- ZainEldin, H.; Badawy, M.; Elhosseini, M.; Arafat, H.; Abraham, A. An improved dynamic deployment technique based-on genetic algorithm (IDDT-GA) for maximizing coverage in wireless sensor networks. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 4177–4194. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A.D. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.S. Improved Whale Optimization Algorithm Based On Nonlinear Adaptive Weight and Golden Sine Operator. IEEE Access 2020, 8, 77013–77048. [Google Scholar] [CrossRef]
- Liu, J.; Shi, J.; Hao, F.; Dai, M. A novel enhanced global exploration whale optimization algorithm based on Lévy flights and judgment mechanism for global continuous optimization problems. Eng. Comput. 2022, 39, 2433–2461. [Google Scholar] [CrossRef]
- Kaur, G.; Arora, S. Chaotic whale optimization algorithm. J. Comput. Des. Eng. 2018, 5, 275–284. [Google Scholar] [CrossRef]
- Bozorgi, S.M.; Yazdani, S. IWOA: An improved whale optimization algorithm for optimization problems. J. Comput. Des. Eng. 2019, 6, 243–259. [Google Scholar]
- Luo, J.; Shi, B.Y. A hybrid whale optimization algorithm based on modified differential evolution for global optimization problems. Appl. Intell. 2019, 49, 1982–2000. [Google Scholar] [CrossRef]
- Mafarja, M.; Jaber, I.; Ahmed, S.; Thaher, T. Whale Optimisation Algorithm for high-dimensional small-instance feature selection. Int. J. Parallel Emergent Distrib. Syst. 2019, 32, 80–96. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, Q.; Chen, H.; Heidari, A.A.; Cai, Z.; Li, J.; Abdelrahim, E.M.; Mansour, R.F. Whale Optimization with Random Contraction and Rosenbrock Method for COVID-19 disease prediction. Biomed. Signal Process. Control 2023, 83, 104638. [Google Scholar] [CrossRef] [PubMed]
- Shivahare, B.D.; Gupta, S.K. Efficient covid-19 ct scan image segmentation by automatic clustering algorithm. J. Healthc. Eng. 2022, 2022, 9009406. [Google Scholar] [CrossRef] [PubMed]
- Tong, W. A hybrid algorithm framework with learning and complementary fusion features for whale optimization algorithm. Sci. Program. 2020, 2020, 5684939. [Google Scholar] [CrossRef] [Green Version]
- Prabhakar, D.; Satyanarayana, M. Side lobe pattern synthesis using hybrid sswoa algorithm for conformal antenna array. Eng. Sci. Technol. Int. J. 2019, 22, 1169–1174. [Google Scholar] [CrossRef]
- Mohammed, H.; Rashid, T. A novel hybrid GWO with WOA for global numerical optimization and solving pressure vessel design. Neural Comput. Appl. 2020, 32, 14701–14718. [Google Scholar] [CrossRef] [Green Version]
- Mantegna, R.N. Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes. Phys. Rev. E 1994, 49, 4677–4683. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The Arithmetic Optimization Algorithm. Comput. Methods Appl. Mech. Eng. 2021, 376, 113609. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future Gener. Comput. Syst. 2020, 111, 300–323. [Google Scholar] [CrossRef]
- Peraza-Vázquez, H.; Peña-Delgado, A.F.; Echavarría-Castillo, G.; Morales-Cepeda, A.B.; Velasco-Álvarez, J.; Ruiz-Perez, F. A Bio-Inspired Method for Engineering Design Optimization Inspired by Dingoes Hunting Strategies. Math. Probl. Eng. 2021, 2021, 9107547. [Google Scholar] [CrossRef]
- Zhong, C.; Li, G.; Meng, Z. Beluga whale optimization: A novel nature-inspired metaheuristic algorithm. Knowl. Based Syst. 2022, 251, 109215. [Google Scholar] [CrossRef]
- Prim, R. Shortest connection networks and some generalizations. Bell Syst. Tech. J. 1957, 36, 1389–1401. [Google Scholar] [CrossRef]
- Mohammed, H.M.; Umar, S.U.; Rashid, T.A. A Systematic and Meta-Analysis Survey of Whale Optimization Algorithm. Comput. Intell. Neurosci. 2019, 2019, 8718571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, H.M.; Umar, S.U.; Rashid, T.A. An efficient double adaptive random spare reinforced whale optimization algorithm. Expert Syst. Appl. 2020, 154, 113018. [Google Scholar] [CrossRef]
- Chakraborty, S.; Saha, A.K.; Sharma, S.; Mirjalili, S.; Chakraborty, R. A novel enhanced whale optimization algorithm for global optimization. Comput. Ind. Eng. 2021, 153, 107086. [Google Scholar] [CrossRef]
Function | D | Range | fmin |
---|---|---|---|
30 | [−100, 100] | 0 | |
30 | [−10, 10] | 0 | |
30 | [−100, 100] | 0 | |
30 | [−100, 100] | 0 | |
30 | [−30, 30] | 0 | |
30 | [−100, 100] | 0 | |
30 | [−1.28, 1.28] | 0 | |
30 | [−1, 1] | 0 | |
30 | [−100, 100] | 0 | |
30 | [−5, 10] | 0 |
Function | D | Range | fmin |
---|---|---|---|
30 | [−500, 500] | −418.98 × D | |
30 | [−10, 10] | 0 | |
30 | [−5, 5] | −39.166 × D | |
30 | [−5.12, 5.12] | 0 | |
30 | [−32, 32] | 0 | |
30 | [−600, 600] | 0 | |
30 | [−10, 10] | −1 | |
30 | [−50, 50] | 0 | |
30 | [−50, 50] | 0 | |
2 | [−65, 65] | 1 | |
4 | [−5, 5] | 0.00030 | |
2 | [−5, 5] | −10.316 | |
2 | [−5, 5] | 0.398 | |
2 | [−2, 2] | −3 | |
3 | [1, 3] | −3.86 | |
6 | [0, 1] | −3.32 | |
4 | [0, 10] | −10.1532 | |
4 | [0, 10] | −10.4028 | |
4 | [0, 10] | −10.5363 |
Function | D | Range | fmin |
---|---|---|---|
F30(CF1): f1, f2, f3,…, f10 = Sphere Function [σ1, σ2, σ3,…, σ10] = [1, 1, 1,…, 1] [λ1, λ2, λ3,…, λ10] = [5/100, 5/100, 5/100,…, 5/100] | 10 | [−5, 5] | 0 |
F31(CF2): f1, f2, f3,…, f10 = Griewank’s Function [σ1, σ2, σ3,…, σ10] = [1, 1, 1,…, 1] [λ1, λ2, λ3,…, λ10] = [5/100, 5/100, 5/100,…, 5/100] | 10 | [−5, 5] | 0 |
F32(CF3): f1, f2, f3,…, f10 = Griewank’s Function [σ1, σ2, σ3,…, σ10] = [1, 1, 1,…, 1] [λ1, λ2, λ3,…, λ10] = [1, 1, 1,…, 1] | 10 | [−5, 5] | 0 |
F33(CF4): f1, f2 = Ackley’s Function, f3, f4 = Rastrigin’s Function, f5, f6 = Weierstrass Function, f7, f8 = Griewank’s Function, f9, f10 = Sphere’s Function [σ1, σ2, σ3,…, σ10] = [1, 1, 1,…, 1] [λ1, λ2, λ3,…, λ10] = [5/32, 5/32, 1, 1, 5/0.5, 5/0.5, 5/100, 5/100, 5/100, 5/100] | 10 | [−5, 5] | 0 |
F34(CF5): f1, f2 = Rastrigin’s Function, f3, f4 = Weierstrass Function, f5, f6 = Griewank’s Function, f7, f8 = Ackley’s Function, f9, f10 = Sphere’s Function [σ1, σ2, σ3,…, σ10] = [1, 1, 1,…, 1] [λ1, λ2, λ3,…, λ10] = [1/5, 1/5, 5/0.5, 5/0.5, 5/100, 5/100, 5/32, 5/32, 5/100, 5/100] | 10 | [−5, 5] | 0 |
F35(CF6): f1, f2 = Rastrigin’s Function, f3, f4 = Weierstrass Function, f5, f6 = Griewank’s Function, f7, f8 = Ackley’s Function, f9, f10 = Sphere’s Function [σ1, σ2, σ3,…, σ10] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] [λ1, λ2, λ3,…, λ10] = [0.1 × 1/5, 0.2 × 1/5, 0.3 × 5/0.5, 0.4 × 5/0.5, 0.5 × 5/100, 0.6 × 5/100, 0.7 × 5/32, 0.8 × 5/32, 0.9 × 5/100, 1 × 5/100] | 10 | [−5, 5] | 0 |
PSO | AOA | GWO | SSA | WOA | WOA-LFGA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ave | std | ave | std | ave | std | ave | std | ave | std | ave | std | |
F1 | 0.01145 | 0.016214 | 1.82 × 10−20 | 9.99 × 10−20 | 2.71 × 10−27 | 7.04 × 10−27 | 1.42 × 10−07 | 1.62 × 10−07 | 2.31 × 10−71 | 1.14 × 10−70 | 0 | 0 |
F2 | 2.020543 | 4.065539 | 0 | 0 | 1.08 × 10−16 | 8.93 × 10−17 | 2.285371 | 1.666859 | 1.07 × 10−50 | 4.58 × 10−50 | 0 | 0 |
F3 | 2444.118 | 1926.835 | 0.003659 | 0.007401 | 9.85 × 10−06 | 1.90 × 10−05 | 1382.524 | 777.8525 | 71.50822 | 172.5122 | 0 | 0 |
F4 | 7.036386 | 1.311499 | 0.025943 | 0.019751 | 8.16 × 10−07 | 8.64 × 10−07 | 11.60046 | 3.603777 | 1.293207 | 1.217586 | 1.65 × 10−10 | 7.94 × 10−10 |
F5 | 237.9364 | 552.168 | 28.43077 | 0.241825 | 27.0996 | 0.744425 | 358.5001 | 543.5524 | 27.72318 | 0.381725 | 20.77285 | 10.26487 |
F6 | 0.008698 | 0.014406 | 3.18966 | 0.252549 | 0.767048 | 0.393704 | 2.80 × 10−07 | 5.94 E−07 | 0.263031 | 0.199383 | 0.070958 | 0.122792 |
F7 | 0.049637 | 0.017275 | 6.93 × 10−05 | 6.73 E−05 | 0.001663 | 0.0008 | 0.190837 | 0.075292 | 0.003031 | 0.002759 | 0.001748 | 0.003825 |
F8 | 1.62 × 10−18 | 7.45 × 10−18 | 0 | 0 | 1.60 × 10−94 | 8.74 × 10−94 | 1.60 × 10−06 | 1.04 × 10−06 | 8.07 × 10−101 | 4.42 × 10−100 | 0 | 0 |
F9 | 3715.167 | 3804.074 | 0.006306 | 0.015188 | 1.00 × 10−05 | 1.44 × 10−05 | 1543.173 | 827.1876 | 139.0415 | 349.0566 | 3.84 × 10−26 | 1.99 × 10−25 |
F10 | 135.1749 | 86.41104 | 278.754 | 50.12035 | 3.35 × 10−07 | 7.80 × 10−07 | 43.32593 | 15.77741 | 25.84223 | 104.563 | 6.12 × 10−17 | 3.35 × 10−16 |
F11 | −8588.58 | 743.6667 | −5347.08 | 428.9775 | −5856.44 | 736.0021 | −7429.88 | 767.0725 | −10327.8 | 1815.032 | −62304.4 | 2.22 × 10−11 |
F12 | 1.85834 | 0.705254 | 0 | 0 | 2.08691 | 2.001494 | 1 | 1.48 × 10−09 | 0.129003 | 0.407659 | 0 | 0 |
F13 | −1010.53 | 32.04003 | −488.895 | 65.78818 | −906.163 | 66.86702 | −999.69 | 41.44037 | −1173.67 | 3.427174 | −1174.98 | 0.005266 |
F14 | 54.17668 | 12.63687 | 0 | 0 | 1.948371 | 3.150168 | 47.85746 | 15.99706 | 1.89 × 10−15 | 1.04 × 10−14 | 0 | 0 |
F15 | 0.768649 | 0.668676 | 8.88 × 10−16 | 0 | 1.03 × 10−13 | 1.69 × 10−14 | 2.481978 | 0.913383 | 4.20 × 10−15 | 2.46 × 10−15 | 8.88 × 10−16 | 0 |
F16 | 0.035694 | 0.042562 | 0.182622 | 0.131219 | 0.004629 | 0.008419 | 0.015976 | 0.00876 | 0.01046 | 0.039824 | 0 | 0 |
F17 | 7.94 × 10−15 | 4.29 × 10−14 | 7.38 × 10−08 | 6.46 × 10−08 | 1.19 × 10−15 | 3.31 × 10−16 | 2.39 × 10−16 | 1.31 × 10−15 | −1 | 4.61 × 10−17 | −1 | 0 |
F18 | 0.170733 | 0.276331 | 0.521644 | 0.051792 | 0.054542 | 0.02857 | 6.834328 | 2.62791 | 0.01398 | 0.016893 | 0.006835 | 0.019706 |
F19 | 0.156988 | 0.196888 | 2.840098 | 0.098464 | 0.628701 | 0.19635 | 13.60701 | 14.96327 | 0.278207 | 0.185077 | 0.208052 | 0.199385 |
F20 | 0.998004 | 5.83 × 10−17 | 8.2796 | 4.850009 | 3.676116 | 3.874222 | 1.295293 | 0.827786 | 2.865604 | 2.997616 | 1.687328 | 1.873362 |
F21 | 0.002626 | 0.006021 | 0.012879 | 0.022459 | 0.004451 | 0.008095 | 0.001558 | 0.003563 | 0.000612 | 0.000297 | 0.000362 | 0.000218 |
F22 | −1.03163 | 6.45 × 10−16 | −1.03163 | 1.30 × 10−07 | −1.03163 | 2.57 × 10−08 | −1.03163 | 2.67 × 10−14 | −1.03163 | 9.35 × 10−10 | −1.03163 | 4.91 × 10−16 |
F23 | 0.397887 | 0 | 0.40893 | 0.008738 | 0.397889 | 2.69 × 10−06 | 0.397887 | 3.68 × 10−14 | 0.397891 | 8.11 × 10−06 | 0.397887 | 6.37 × 10−15 |
F24 | 3 | 1.24 × 10−15 | 6.60127 | 9.334635 | 3.00005 | 6.62 × 10−05 | 3 | 2.13 × 10−13 | 3.900112 | 4.929503 | 3 | 1.63 × 10−06 |
F25 | −3.86278 | 2.65 × 10−15 | −3.85196 | 0.004077 | −3.8615 | 0.00228 | −3.86278 | 1.89 × 10−11 | −3.85717 | 0.009316 | −3.86278 | 2.14 × 10−15 |
F26 | −3.26514 | 0.07867 | −3.06929 | 0.075255 | −3.25627 | 0.085463 | −3.21838 | 0.05356 | −3.25865 | 0.122607 | −3.28633 | 0.055417 |
F27 | −6.01714 | 3.525257 | −3.58449 | 1.100864 | −8.51535 | 2.579639 | −8.65039 | 2.831563 | −6.57441 | 2.361348 | −10.1532 | 3.51 × 10−14 |
F28 | −8.44332 | 3.329769 | −4.01415 | 1.838357 | −10.4014 | 0.000913 | −8.44212 | 3.093598 | −7.38245 | 2.669453 | −10.4029 | 2.28 × 10−13 |
F29 | −7.2628 | 3.864573 | −3.45313 | 1.352861 | −9.81322 | 2.238027 | −8.03092 | 3.636316 | −7.68458 | 2.925501 | −10.5364 | 1.29 × 10−12 |
PSO | AOA | GWO | SSA | WOA | WOA-LFGA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ave | std | ave | std | ave | std | ave | std | ave | std | ave | std | |
F30 | 188.4598 | 104.2843 | 429.9201 | 122.6024 | 165.2451 | 120.3013 | 143.3333 | 138.1736 | 147.113 | 109.1869 | 81.9337 | 109.8375 |
F31 | 210.1492 | 147.6265 | 603.8082 | 141.238 | 217.9645 | 110.3465 | 193.744 | 119.9475 | 212.4452 | 102.3541 | 167.121 | 119.973 |
F32 | 254.4012 | 118.5757 | 739.0197 | 169.9494 | 218.669 | 100.6576 | 329.7179 | 239.0358 | 494.4398 | 203.5997 | 438.3484 | 132.1945 |
F33 | 497.786 | 191.054 | 853.3283 | 70.53408 | 709.6582 | 188.0356 | 630.5518 | 272.5582 | 633.3295 | 174.6679 | 576.9929 | 128.6628 |
F34 | 249.408 | 231.7561 | 493.5288 | 182.9644 | 187.0822 | 137.7849 | 182.7982 | 202.8263 | 206.8386 | 159.906 | 165.38 | 111.3664 |
F35 | 826.5022 | 155.8774 | 877.2691 | 66.94098 | 837.5018 | 152.0384 | 762.027 | 185.1875 | 824.9949 | 159.4651 | 814.3615 | 167.8058 |
PSO | AOA | GWO | SSA | WOA | WOA-LFGA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D | ave | std | ave | std | ave | std | ave | std | ave | std | ave | std | |
F1 | 50 | 10.86347 | 14.44537 | 0.000863 | 0.001639 | 6.16 × 10−20 | 4.36 × 10−20 | 0.85548 | 1.003725 | 1.66 × 10−73 | 7.15 × 10−73 | 0 | 0 |
100 | 2316.109 | 3668.931 | 0.021699 | 0.008517 | 1.75 × 10−12 | 1.2 × 10−12 | 1471.517 | 385.5454 | 3.39 × 10−72 | 1.51 × 10−71 | 0 | 0 | |
500 | 235236.4 | 25977.07 | 0.6333 | 0.037321 | 0.001453 | 0.000521 | 96418.89 | 5452.527 | 1.71 × 10−73 | 5.04 × 10−73 | 0 | 0 | |
F2 | 50 | 10.53083 | 11.77191 | 2.3 × 10−147 | 1 × 10−146 | 2.51 × 10−12 | 1.32 × 10−12 | 8.895375 | 2.801584 | 2.35 × 10−49 | 1.05 × 10−48 | 0 | 0 |
100 | 65.36263 | 22.83761 | 2.42 × 10−53 | 1.08 × 10−52 | 4.11 × 10−08 | 1.52 × 10−08 | 48.25606 | 7.948359 | 8.59 × 10−50 | 1.89 × 10−49 | 0 | 0 | |
500 | 1390.407 | 110.3861 | 0.001232 | 0.001668 | 0.010938 | 0.00145 | 541.6126 | 19.43979 | 3.87 × 10−49 | 1.68 × 10−48 | 0 | 0 | |
F3 | 50 | 16884.77 | 4607.752 | 0.103386 | 0.097921 | 0.333669 | 0.597959 | 9735.95 | 5803.166 | 565.1298 | 762.9405 | 3.86 × 10−19 | 1.73 × 10−18 |
100 | 101956.4 | 11759.16 | 1.127456 | 1.75346 | 636.1386 | 928.2477 | 64451 | 32153.11 | 4706.516 | 7708.618 | 3.07 × 10−17 | 1.37 × 10−16 | |
500 | 2764988 | 318150.2 | 33.67954 | 16.67636 | 334085.1 | 95550.54 | 1275053 | 728370.7 | 88474.96 | 146520.3 | 2.52 × 10−12 | 1.13 × 10−11 | |
F4 | 50 | 17.96243 | 1.707676 | 0.046721 | 0.015961 | 0.000272 | 0.000202 | 20.63042 | 4.258961 | 2.152591 | 2.361506 | 2.43 × 10−10 | 1.07 × 10−09 |
100 | 40.44695 | 3.397269 | 0.092903 | 0.010875 | 0.587254 | 0.433484 | 27.99427 | 2.744113 | 3.388053 | 2.958831 | 1.38 × 10−10 | 4.27 × 10−10 | |
500 | 76.60742 | 3.587335 | 0.180715 | 0.013151 | 65.33815 | 5.519397 | 40.29455 | 2.292022 | 3.380097 | 2.410942 | 9.41 × 10−09 | 3.08 × 10−08 | |
F5 | 50 | 5662.017 | 19968.47 | 48.77104 | 0.157029 | 47.43632 | 0.947389 | 3276.49 | 5682.868 | 48.04747 | 0.403162 | 34.7513 | 20.54994 |
100 | 203892.7 | 68214.38 | 98.87163 | 0.115737 | 97.96276 | 0.542074 | 156566.4 | 75343.73 | 98.13826 | 0.19119 | 49.03683 | 48.75961 | |
500 | 4.59 × 10+08 | 1.37 × 10+08 | 499.0966 | 0.064668 | 498.083 | 0.237754 | 37597520 | 3829547 | 495.8758 | 0.415621 | 161.4206 | 225.6898 | |
F6 | 50 | 8.762354 | 7.964543 | 7.148222 | 0.382553 | 2.763138 | 0.603988 | 0.594813 | 0.590689 | 0.838658 | 0.362111 | 0.528771 | 0.43255 |
100 | 2473.402 | 3667.765 | 18.2289 | 0.63456 | 10.5705 | 1.229664 | 1426.96 | 511.486 | 2.277557 | 0.810151 | 2.215489 | 1.824284 | |
500 | 229660.1 | 31072.21 | 116.0074 | 1.081187 | 92.01562 | 1.958327 | 93586.05 | 6284.008 | 19.57877 | 7.912018 | 19.30641 | 21.22633 | |
F7 | 50 | 0.596402 | 1.806843 | 7.14 × 10−05 | 5.37 × 10−05 | 0.003166 | 0.001527 | 0.564758 | 0.128404 | 0.003614 | 0.004185 | 0.002136 | 0.003517 |
100 | 6.536545 | 8.826638 | 6.06 × 10−05 | 5.39 × 10−05 | 0.006948 | 0.004253 | 2.843964 | 0.659053 | 0.003686 | 0.003096 | 0.001628 | 0.004275 | |
500 | 3707.805 | 687.6992 | 8.02 × 10−05 | 8.17 × 10−05 | 0.049075 | 0.012875 | 276.4369 | 53.53303 | 0.003276 | 0.004661 | 0.000924 | 0.000913 | |
F8 | 50 | 1.44 × 10−14 | 3.85 × 10−14 | 0 | 0 | 1.86 × 10−88 | 6.35 × 10−88 | 2.19 × 10−06 | 1.69 × 10−06 | 1.2 × 10−107 | 5.5 × 10−107 | 0 | 0 |
100 | 2.64 × 10−11 | 8.42 × 10−11 | 0 | 0 | 2.15 × 10−35 | 9.61 × 10−35 | 2.29 × 10−06 | 1.67 × 10−06 | 9.8 × 10−104 | 2.8 × 10−103 | 0 | 0 | |
500 | 1.88 × 10−05 | 4.2 × 10−05 | 0 | 0 | 0.000271 | 0.001131 | 5.71 × 10−06 | 7.21 × 10−06 | 1.3 × 10−110 | 5.7 × 10−110 | 0 | 0 | |
F9 | 50 | 18886.55 | 5430.519 | 0.05631 | 0.049453 | 0.367136 | 0.657843 | 10379.31 | 5073.609 | 711.4174 | 1668.814 | 1.98 × 10−14 | 8.84 × 10−14 |
100 | 106450 | 15037.64 | 1.059031 | 0.969092 | 641.6541 | 619.2241 | 43718.87 | 25770.16 | 5269.864 | 7375.078 | 1.21 × 10−20 | 5.02 × 10−20 | |
500 | 2696744 | 385835 | 38.4927 | 28.86932 | 328280.4 | 66473.19 | 1217109 | 526500.8 | 1625552 | 6833751 | 3.41 × 10−18 | 1.36 × 10−17 | |
F10 | 50 | 624.1645 | 207.4525 | 798.6709 | 98.33566 | 0.073548 | 0.07947 | 391.2071 | 89.38285 | 46.64148 | 192.6738 | 0.004231 | 0.018922 |
100 | 2536.807 | 451.22 | 2051.827 | 173.7202 | 122.6674 | 52.30159 | 1956.498 | 227.5388 | 227.8372 | 676.5795 | 4.18 × 10−05 | 0.000187 | |
500 | 24484.75 | 1175.066 | 8.84 ×10+14 | 3.54 ×10+15 | 3854.575 | 356.6187 | 10441.52 | 642.2583 | 559.5588 | 1632.451 | 500.7807 | 1714.189 | |
F11 | 50 | −12786.3 | 798.5763 | −6730.6 | 555.5429 | −9006.98 | 796.4451 | −11829.8 | 1409.544 | −17237.6 | 3259.934 | −103841 | 2.99 × 10−11 |
100 | −21997.3 | 1611.842 | −9932.03 | 556.0954 | −16523.7 | 1163.17 | −22109.6 | 1951.76 | −33053 | 6993.32 | −207681 | 5.97 × 10−11 | |
500 | −65272.3 | 2572.758 | −22147.4 | 1418.863 | −53823.4 | 13825.98 | −60450.6 | 5024.125 | −183344 | 28730.99 | 1038407 | 1.19 × 10−10 | |
F12 | 50 | 3.512278 | 1.823459 | 0 | 0 | 1.997852 | 0.767904 | 1.00591 | 0.009882 | 0 | 0 | 0 | 0 |
100 | 8.708894 | 3.634477 | 0 | 0 | 2.969532 | 0.649941 | 3.56948 | 0.820859 | 0.052619 | 0.235318 | 0 | 0 | |
500 | 116.9072 | 9.152489 | 6.35 × 10−06 | 1.81 × 10−06 | 28.20371 | 59.83419 | 107.274 | 4.117031 | 5.55 × 10 −18 | 2.48 × 10 −17 | 0 | 0 | |
F13 | 50 | −1681.47 | 45.5754 | −675.226 | 76.99906 | −1352.15 | 90.40042 | −1648.11 | 38.54963 | −1956.64 | 1.398103 | −1958.07 | 0.215703 |
100 | −3303.19 | 63.15214 | −1084.03 | 124.9054 | −2299.99 | 157.4946 | −3023.55 | 71.17438 | −3910.89 | 5.958551 | −3915.88 | 0.840303 | |
500 | −12380.6 | 261.834 | −3680.81 | 261.3991 | −7753.78 | 531.8809 | −10816.8 | 224.6012 | −19540.2 | 34.90968 | −19567.5 | 37.75219 | |
F14 | 50 | 119.9365 | 28.58934 | 0 | 0 | 4.178933 | 4.74967 | 88.4886 | 30.73374 | 0 | 0 | 0 | 0 |
100 | 382.7355 | 54.84386 | 0 | 0 | 10.74289 | 7.341498 | 230.9327 | 35.07983 | 0 | 0 | 0 | 0 | |
500 | 4449.093 | 186.3669 | 5.97 × 10−06 | 5.37 × 10−06 | 70.76179 | 18.02281 | 3151.214 | 160.9733 | 4.55 × 10−14 | 2.03 × 10−13 | 0 | 0 | |
F15 | 50 | 2.715587 | 0.484115 | 8.88 × 10−16 | 0 | 4.53 × 10−11 | 3.17 × 10−11 | 4.635025 | 1.206284 | 4.26 × 10−15 | 2.44 × 10−15 | 8.88 × 10−16 | 0 |
100 | 6.525648 | 2.065837 | 0.000484 | 0.000793 | 1.22 × 10−07 | 4.02 × 10−08 | 10.2093 | 1.047667 | 4.26 × 10−15 | 2.7 × 10−15 | 8.88 × 10−16 | 0 | |
500 | 18.05284 | 0.448287 | 0.007914 | 0.000662 | 0.001876 | 0.000293 | 14.24981 | 0.224026 | 3.55 × 10−15 | 2.27 × 10−15 | 8.88 × 10−16 | 0 | |
F16 | 50 | 1.059217 | 0.145573 | 1.062206 | 0.144497 | 0.003473 | 0.007606 | 0.508193 | 0.177961 | 0.008673 | 0.038785 | 0 | 0 |
100 | 35.28278 | 50.71112 | 585.2056 | 187.6203 | 0.003466 | 0.008471 | 12.83264 | 2.844918 | 5.55 × 10 −18 | 2.48 × 10 −17 | 0 | 0 | |
500 | 2133.145 | 209.9714 | 10516.47 | 2772.351 | 0.004728 | 0.020304 | 867.917 | 65.88722 | 0 | 0 | 0 | 0 | |
F17 | 50 | 1.53 × 10−21 | 1.16 × 10−21 | 2.82 × 10−12 | 3.22 × 10−12 | 2.6 × 10−22 | 6.62 × 10−22 | 1.47 × 10−21 | 8.59 × 10−22 | −1 | 6.24 × 10−17 | −1 | 0 |
100 | 6.52 × 10−41 | 1.2 × 10−40 | 2.17 × 10−23 | 2.7 × 10−23 | 8.56 × 10−41 | 1.9 × 10−40 | 3.66 × 10−41 | 4.07 × 10−41 | −0.85 | 0.366348 | −1 | 0 | |
500 | 4.8 × 10−177 | 0 | 1.3 × 10−111 | 4.4 × 10−111 | 1.1 × 10−173 | 0 | 1.4 × 10−182 | 0 | −0.7 | 0.470162 | −1 | 0 | |
F18 | 50 | 3.386843 | 1.228704 | 0.734116 | 0.044766 | 0.106871 | 0.047385 | 11.49135 | 2.713314 | 0.012943 | 0.007324 | 0.012762 | 0.020302 |
100 | 2936.118 | 6291.82 | 0.901293 | 0.025436 | 0.276781 | 0.060778 | 31.0403 | 10.6664 | 0.020269 | 0.011114 | 0.016797 | 0.022049 | |
500 | 4.79 × 10+08 | 2.04 × 10+08 | 1.082153 | 0.010931 | 0.766924 | 0.058279 | 1530375 | 926662 | 0.024601 | 0.011647 | 0.044441 | 0.070781 | |
F19 | 50 | 42.53796 | 20.41387 | 4.875282 | 0.080773 | 2.085256 | 0.373575 | 76.36419 | 12.04896 | 0.413098 | 0.227486 | 0.314442 | 0.409962 |
100 | 73149.61 | 62122.54 | 9.968205 | 0.057886 | 6.84329 | 0.459763 | 9531.26 | 15735.96 | 1.139066 | 0.584451 | 1.134865 | 1.559223 | |
500 | 1.5 × 10+09 | 2.72 × 10+08 | 50.221 | 0.039006 | 50.05496 | 1.3932 | 34036361 | 9213893 | 7.216821 | 3.138501 | 4.851414 | 6.68935 |
Parameter | Value |
---|---|
Region size | 100 m × 100 m |
Sensing range | 11 m |
Sensor nodes number N | 27 |
Individual number | 50 |
Iterations | 200 |
Test times | 30 |
Method | ave | std | C |
---|---|---|---|
SMA | 68.9237% | 0.0173 | 0.6715 |
DOA | 76.2457% | 0.0183 | 0.7429 |
AOA | 68.3437% | 0.0137 | 0.6659 |
BWO | 64.1613% | 0.0205 | 0.6251 |
WOA | 79.6813% | 0.0231 | 0.7763 |
WOA-LFGA | 90.9703% | 0.0019 | 0.8863 |
N = 10 | N = 15 | N = 20 | N = 25 | N = 30 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Method | ave | std | ave | std | ave | std | ave | std | ave | std |
SMA | 34.63% | 0.00877 | 47.70% | 0.01028 | 57.51% | 0.01102 | 66.70% | 0.01215 | 73.96% | 0.02138 |
DOA | 37.73% | 0.00657 | 53.55% | 0.01176 | 64.77% | 0.01743 | 73.12% | 0.02305 | 79.83% | 0.01749 |
AOA | 34.59% | 0.00685 | 47.58% | 0.01183 | 57.85% | 0.0186 | 65.42% | 0.01425 | 72.50% | 0.01506 |
BWO | 34.52% | 0.00919 | 46.03% | 0.01634 | 55.40% | 0.02252 | 62.08% | 0.02008 | 67.43% | 0.02664 |
WOA | 37.87% | 0.00264 | 54.04% | 0.01373 | 67.29% | 0.01785 | 75.84% | 0.02531 | 82.70% | 0.02263 |
WOA-LFGA | 38.29% | 0.00042 | 56.72% | 0.00381 | 72.16% | 0.00747 | 88.75% | 0.00105 | 93.71% | 0.00272 |
Method | ave | std | C |
---|---|---|---|
CWOA | 68.3363% | 0.0263 | 0.6658 |
WOABAT | 78.0493% | 0.0217 | 0.7604 |
RDWOA | 81.9797% | 0.0171 | 0.7987 |
WOAmM | 81.2440% | 0.0250 | 0.7916 |
EGE-WOA | 56.2650% | 0.0489 | 0.5482 |
WOA-LFGA | 90.9703% | 0.0019 | 0.8863 |
N = 10 | N = 15 | N = 20 | N = 25 | N = 30 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Method | ave | std | ave | std | ave | std | Ave | std | ave | std |
CWOA | 35.46% | 0.0116 | 48.44% | 0.0223 | 58.01% | 0.0253 | 65.02% | 0.0186 | 72.98% | 0.0251 |
WOABAT | 37.61% | 0.0040 | 53.81% | 0.0103 | 65.58% | 0.0160 | 74.49% | 0.0234 | 81.73% | 0.0210 |
RDWOA | 38.08% | 0.0021 | 55.11% | 0.0076 | 69.53% | 0.0078 | 78.40% | 0.0157 | 85.35% | 0.0236 |
WOAmM | 38.04% | 0.0020 | 54.93% | 0.0108 | 68.12% | 0.0120 | 78.04% | 0.0200 | 84.99% | 0.0214 |
EGE-WOA | 31.00% | 0.0221 | 41.04% | 0.0443 | 49.71% | 0.0391 | 51.94% | 0.0535 | 59.58% | 0.0627 |
WOA-LFGA | 38.29% | 0.0004 | 56.72% | 0.0038 | 72.16% | 0.0074 | 88.75% | 0.0010 | 93.71% | 0.0027 |
Parameter | Value |
---|---|
Region size | 440,400 m2 |
Sensing range | 100 m |
Sensor nodes number N | 13 |
Individual number | 50 |
Iterations | 200 |
Test times | 30 |
Method | ave | std | C |
---|---|---|---|
SMA | 11.4011% | 0.0159 | 0.1229 |
DOA | 53.0607% | 0.0530 | 0.5722 |
AOA | 52.3511% | 0.0306 | 0.5645 |
BWO | 52.2743% | 0.0579 | 0.5637 |
WOA | 37.2967% | 0.0935 | 0.4022 |
WOA-LFGA | 83.7718% | 0.0035 | 0.9033 |
Method | ave | std | C |
---|---|---|---|
CWOA | 53.4095% | 0.0666 | 0.5759 |
WOABAT | 37.4971% | 0.0527 | 0.4043 |
RDWOA | 51.3324% | 0.0508 | 0.5535 |
WOAmM | 38.7471% | 0.0452 | 0.4178 |
EGE-WOA | 43.9632% | 0.0366 | 0.4741 |
WOA-LFGA | 83.7718% | 0.0035 | 0.9033 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Zhang, B.; Zhang, Y. Application of an Enhanced Whale Optimization Algorithm on Coverage Optimization of Sensor. Biomimetics 2023, 8, 354. https://doi.org/10.3390/biomimetics8040354
Xu Y, Zhang B, Zhang Y. Application of an Enhanced Whale Optimization Algorithm on Coverage Optimization of Sensor. Biomimetics. 2023; 8(4):354. https://doi.org/10.3390/biomimetics8040354
Chicago/Turabian StyleXu, Yong, Baicheng Zhang, and Yi Zhang. 2023. "Application of an Enhanced Whale Optimization Algorithm on Coverage Optimization of Sensor" Biomimetics 8, no. 4: 354. https://doi.org/10.3390/biomimetics8040354
APA StyleXu, Y., Zhang, B., & Zhang, Y. (2023). Application of an Enhanced Whale Optimization Algorithm on Coverage Optimization of Sensor. Biomimetics, 8(4), 354. https://doi.org/10.3390/biomimetics8040354