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Abstract: Stroke patients cannot use their hands as freely as usual. However, recovery after a
stroke is a long road for many patients. If artificial intelligence can assist human arm movement,
it is believed that the possibility of stroke patients returning to normal hand movement can be
significantly increased. In this study, the artificial neuromolecular system (ANM system) developed
by our laboratory is used as the core motion control system to learn to control the mechanical arm,
produce similar human rehabilitation actions, and assist patients in transiting between different
activities. The strength of the ANM system lies in its ability to capture and process spatiotemporal
information by exploiting the dynamic information processing inside neurons. Five experiments are
conducted in this research: continuous learning, dimensionality reduction, moving problem domains,
transfer learning, and fault tolerance. The results show that the ANM system can find out the arm
movement trajectory when people perform different rehabilitation actions through the ability of
continuous learning and reduce the activation of multiple muscle groups in stroke patients through
the learning method of reducing dimensions. Finally, using the ANM system can reduce the learning
time and performance required to switch between different actions through transfer learning.

Keywords: rehabilitation; computational intelligence; evolutionary learning; self-organizing learning;
robotic arm

1. Introduction

Stroke is a common disease in recent years, and there is a trend of gradual increase.
Typically, a person experiences a partial loss of physical function and impaired cognitive
function after a stroke. After a stroke, patients must undergo active rehabilitation, especially
during the first three months. The role of rehabilitation therapy is to stimulate the brain to
replace damaged brain cells with other brain cells through some exercise so that the lost
function can be restored to a certain extent.

Generally speaking, the problem of a stroke patient is that he (or she) can make some
movements autonomously but accompanied by obviously coordinated movements. For
example, when a patient wants to raise their arms, his (or her) shoulder blades will retract
and lift significantly, and the elbows will bend. This is because the action of human beings
is not a single strand of muscle but the result of the coordinated movement of multiple
muscles between the agonistic muscle and the antagonistic muscle. Generally speaking,
to complete a successful action, two things must happen simultaneously. One is that the
agonist muscle must contract to start a move, while the other is that the antagonist muscle
must relax to inhibit it. The brain coordinates these movements to ensure muscle groups
do not accidentally clash. To achieve this, it must send inhibitory or excitatory signals
to the correct muscle groups so that they contract synchronously and efficiently. After a
stroke, however, a patient’s brain’s ability to send the proper signals to muscle groups may
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be impossible, resulting in difficulty activating a single muscle group (instead, multiple
muscle groups may be simultaneously activated).

Even worse, when the signal between the brain and the muscles malfunctions, it can
cause the muscles to contract or spasm involuntarily in what is known as “abnormal coordi-
nated movements”. Generally speaking, the best way to overcome “abnormal coordinated
movements” after a stroke is through the repeated practice of correct rehabilitation move-
ments. However, there is no question that this can be difficult to achieve when the patient’s
condition does not improve gradually. In this case, if the patient is constantly asked to
continue the rehabilitation exercise, the patient may be very distressed and eventually give
up. The best approach is through the diagnosis of the physiotherapist and occupational
therapist, who formulate a rehabilitation treatment plan that suits a patient’s individual
needs. With a rehabilitation treatment plan, how to practice it is very important. There is
no doubt that the help of a therapist (especially hands-on treatment) is crucial. However,
hands-on treatment by a therapist is quite labor-intensive. Some scholars suggest using
some instruments to drive the patient’s limbs to make continuous movements to assist in
the treatment [1]. However, these early instruments did not provide the patient with any
feedback information for reference and improvement. With the advancement of technology,
the current design of robots not only excels in high precision, high reproducibility, and
excellent reusability but can also provide multiple types of feedback information to users.
It is generally accepted that the assistance of rehabilitation robots in implementing reha-
bilitation programs for patients may have the following three benefits. First, it can reduce
the burden on the therapist and prevent sports injuries. Second, it can provide patients
with a stable quality of treatment while performing repetitive, continuous, monotonous
movements. Thirdly, a series of quantitative indicators can be systematically established to
evaluate the degree of recovery of patients by obtaining the patient’s status and force data
from different angles through intelligent robots.

In recent years, some have emphasized the so-called “adjuvant therapy strategies”.
The idea is to use the robot to simulate the function of the therapist’s movements, such as
giving the patient the right amount of resistance and help at the right time. Generally, this
practice promotes the recovery of the patient’s health. When the patient cannot complete
the required actions independently, the intelligent robot will use assisted force similar to
that of a clinical physiotherapist [2–8]. An alternative to the use of assistive force is the use
of electrical muscle stimulation [9,10]. However, which is the best way to assist the patient
is still an open question [11].

The most commonly used current robot for assisting stroke patients is an end-point
fixation system, such as MIT-Manus [12], which fixes the distal part of the patient to guide
the desired motion. In 1998, the scholar Krebs designed a planar action robot arm (MIT-
MANUS) to allow patients to move through the robot arm and use the information from
the screen to assist their hands in acting successfully. Cozens [13] proposed a simple single-
axis torque motor robot system in 1999 and proved that it is helpful for the upper limb
rehabilitation training of patients with spasticity and muscle weakness. Hesse et al. [14,15]
developed a pair of hands to control the robotic Bi-Manu-Track to improve forearm prona-
tion/supination and wrist flexion coordination. In 2005, Colombo et al. [16] developed a
shoulder–elbow robot with 2 degrees of freedom and a wrist robot with 1 degree of freedom
(DOG) to assist patients with hand movements. The robots designed in the above studies
mainly use the patient’s end contact to make different actions.

A group of scholars [17–20] pointed out that the upper limbs of patients after stroke
often have so-called “abnormal coordinated movements”. These movements include
shoulder external rotation and abduction, forearm elbow flexion, forearm supination or
internal rotation, and flexion of the forearm and wrist. For example, when a patient tries to
move the affected arm, his (or her) shoulders are raised and elbows bent. At present, some
robot-assisted systems have been proven to be helpful to some extent in the upper-limb
treatment of stroke patients. However, there may still be considerable variation in the
‘coordinated abnormality’ presented by different patients. Even the same patient may act
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differently in various situations. Aimed at these different situations, this study wishes to
explore the above questions hypothetically, in the so-called “artificial world”. Our approach
is to build up the action database systematically to a certain extent. Then, we use a brain
simulation system with a self-organizing ability to establish the relationship between these
actions and the possibility of action conversion.

2. The ANM System

As we all know, the main design of a digital computer is to provide a friendly program-
ming environment. People first designed some symbols to express meaningful information.
These symbols are manipulated by a set of rules that operate on them. The final result
derived (or deduced) is interpreted by people later as the information people want to
explore. Through these symbols and rules, people can use highly structured designs to
find many solutions to problems. However, the meanings represented by these symbols
are bridged by people’s abstract thinking, and the rules that operate on these symbols are
the functions that they present. In this design, small changes (symbols and rules) can lead
to significant changes in the results. Thus, a programmable system may frequently need to
be redesigned due to minor changes in requirements. This problem refers to the inability
to connect a symbol (word or vocabulary) with what it represents, the so-called symbol
grounding problem [21]. It is difficult for a computer to understand what people mean by
“meaning”, despite the “wisdom” it can generate.

Biological systems do not have the so-called symbolic problem that the structure of bio-
logical systems is closely related to their functions. Autonomous learning is a fundamental
property and the essence of biological systems. The origin of the ANM system, established
by the team early, is to capture the possible information processing between neurons and
inside neurons in the brain to capture the gradual structure/function capability of biological
systems. These properties are crucial in the problem domain of robotics for rehabilitation
assistance. On the one hand, each patient’s needs are different. The system must have
long-term learning ability. That is, in a complex and complicated learning problem domain,
the system should have the capability of long-term continuous learning. At the same time,
when faced with changes in patient needs (that is, facing a moving or changing problem),
the system must show fairly good adaptability in dealing with the changes.

2.1. ANM System Overview

The ANM system mainly uses the internal dynamics of information-processing neu-
rons to simulate the capability of integrating different spatiotemporal signals. The motiva-
tion for this hypothesis stems from various physiological evidence that the cytoskeleton
inside actual neurons performs a function of information integration. These neurons are
then manipulated (controlled) by another group of neurons with a memory function, called
control neurons, to complete the assigned task. All information-processing and control
neurons form the central processing subsystem are shown in Figure 1.
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2.2. The Processing Mechanism of an Information-Processing Neuron

This study captures information processing in actual neurons and hypothesizes that
its internal dynamics occur in the cytoskeleton. The cytoskeleton can be imagined as a
small network of input/output converters, just like the acceptance/response mediator
(perception-action mediator) mentioned in physiology.

When external signals are transmitted to the cytoskeleton, a specific type of signal
flow will occur (the components of the cytoskeleton will determine the type of signal).
When different types of signals converge somewhere in the cytoskeleton, it may affect the
enzymes in the cell to open or close the ion channels they control. The switching of these
ion channels leads to an increase in the electrical potential inside the neuron. When the
potential of the neuron rises to a certain level, the neuron will be triggered.

In this study, there are four types of cytoskeleton elements (Figure 2), namely, basic
constituent molecules (microtubule, microfilament, neurofilament, denoted as C1, C2, and
C3, respectively), readin enzymes, readout enzymes, and microtubule-associated proteins
(MAPs), as described below:

i. Readin enzymes: The function of readin enzymes in the cytoskeleton is to convert
the signals transmitted to the neuron cell membrane into cytoskeletal signals. Its
presence or absence determines whether signals sent to the neuron’s cell membrane
are translated into cytoskeletal signals.

ii. Readout enzymes: The function of readout enzymes is to convert cytoskeletal signals
into external output signals transmitted to other neurons. However, only when a
particular combination of signals converges where the readout enzyme is present
is it sufficient to activate the readout enzyme (indirectly, it prompts the neuron to
fire). Thus, the presence or absence of the readout enzyme will determine whether
the neuron fires.

iii. Constituent molecules: The function of these constituent molecules is to transmit
information. When the readin enzyme converts the signal outside the cell membrane
into the cytoskeletal signal, it will flow along the constituent molecules of the same
type. We assume that there are three different types of constituent molecules. Each
type of molecule has its transmission speed. Different types of molecule types influ-
ence each other to varying degrees. Changing these types of molecules will affect the
type of signal. Figure 3 illustrates how the signal is transmitted. In this study, a two-
dimensional circular lattice was used to simulate the signal flow on the cytoskeleton.
When the signal reaches the edge of the annular lattice, it will pass to the other end of
the annular space (as shown in Figure 3).

iiii. MAP: The primary function of MAP is to connect the different basic components
of the cytoskeleton and to be responsible for the transmission (influence) of signals
between different types of molecules. When a cytoskeletal signal is transmitted to
a site with a MAP, it activates the constituent molecules at the other end through
the MAP. There are two possible scenarios for this activation. The first is to change
the state of the constituent molecules at the other end, and the second is to promote
the initiation of new cytoskeletal signals by the constituent molecules at the other
end. Thus, changing the presence or absence of a MAP will determine whether the
different constituent molecules can influence each other.
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2.3. Control Neurons

The role of control neurons is to select (control) a group of information-processing
neurons with internal dynamics, which will be trained (through evolutionary learning) to
be specific input/output processors. Control neurons are divided into high-level control
neurons and low-level control neurons. High-level control neurons are responsible for
selecting (controlling) lower-level control neurons (this control combination will change as
the learning time increases). The lower-level control neurons are responsible for manipulat-
ing (controlling) those groups of information-processing neurons with similar cytoskeletal
structures (this control combination is fixed). Figure 4 shows the connection between
control neurons and information-processing neurons.
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2.4. How the ANM System Works?

The ANM system has a multi-level architecture. The evolutionary learning mechanism
used in this study is similar to Darwin’s “mutation-selection”-type search method (Figure 5).
The evolutionary learning mechanism is divided into two stages. The first stage is at the
level of control neurons, and the second stage is at the level of information-processing
neurons. The training of the system is conducted through alternately training the system in
these two stages. We first train the system for a certain amount of time in the first stage
of learning. Then, we train the system for a while in the second stage of learning. The
whole learning process is to repeat the above-mentioned different stages of learning until
the training ends. We note that the purpose of the first stage of learning is to generate
a suitable combination of information-processing neurons, while the second stage is to
modify the information-processing neurons selected. The learning steps at each stage can
be summarized into the following three steps:

i. Evaluation: evaluate the performance of each sub-network according to the experi-
mental requirements, and find the best sub-network.

ii. Copy: copy the variable settings of the best subnet to other subnets.
iii. Variation: each subnet randomly mutates the original setting.
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3. Application Domain

The data used in this study were generated using what is known as an “artificial
world”. The approach is to systematically build up a database of actions and then change
some of the data in a partially random fashion. In this study, we use the V-REP simulation
system to design a humanoid robotic arm with 7 degrees of freedom (as shown in Figure 6),
each controlled by a motor. We first use the V-REP simulation system to establish the
trajectory data of a single movement and then generate the trajectory data of relatively
complicated movements. Finally, we partially and randomly change the above trajectory
data, assuming that each stroke patient cannot accurately act.
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We note that the above data generated with an artificial world approach are not the
movement trajectories of humans. Without the inherent limitation of human data, the
artificial world approach provides a comparatively large data set for us to perform various
functions. The purpose is to demonstrate that the ANM system (an artificial brain-like
system) possesses good learning and adaptable capability. Under such considerations, the
authenticity of data may be insignificant, but rather it is significant whether a successful
transduction mechanism exists. We will call it a “success” if autonomous learning can make
the appropriate transduction.

3.1. Trajectory Data for a Single Movement

For a person with healthy hands, they can move freely under the brain’s instructions.
In the first experiment, we train the ANM system to learn the four actions (shrug, swing,
side-lift, and up-lift) that healthy people can perform freely, as shown in Figure 7. Our
simulation results show that when we turn the M1 motor 25 degrees, the M2 motor
40 degrees, the M3 motor 100 degrees, and the M4 motor 150 degrees, we can simulate
human-like shrug, swing, lateral lifting, and upward movements, respectively. For each
of the above actions, we fetch the end position (X, Y, Z coordinate values) of the robot
arm every 50 microseconds during the execution of the action. Finally, we link each end
position coordinate throughout the motion to create the goal trajectory. To facilitate the
visualization of the two-degree space, we give the three-axis trajectory as three two-axis
trajectory diagrams (as shown in Figure 8).
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3.2. Trajectory Data of Complex Movements

In the data generated in the previous section, we established trajectory data for four
basic actions (shrug, swing, side-lift, and up-lift). It is easy for people with healthy hands
to perform any combination of these four movements. In terms of performing two out of
the four actions simultaneously, there are six possible combinations. Likewise, there are
four possible combinations if three of these four actions are performed simultaneously. Of
course, the most complicated action is to perform these four actions simultaneously.



Biomimetics 2023, 8, 385 9 of 16

3.3. Data on Various Action Combinations for Different Patients after Stroke

The literature tells us that stroke patients often have “abnormal coordinated move-
ments” of the upper limbs. This study hypothesizes that stroke sufferers have difficulty
activating a single group of muscles and instead will produce a simultaneous activation of
multiple groups of muscles. In this study, the above data were changed in a local random
way to form the data of different stroke patients.

3.4. Input/Output Interface (Linkage to the ANM System)

All the information-processing neurons of the ANM system are equally divided into
three groups according to the classification of the three axes. The firing behavior of each
group of information-processing neurons represents the manipulation control of the robotic
arm of a specific axis (Figure 9). In the current implementation, we use the time difference
between two adjacent firing neurons of the same group to describe the degree of actuation
of this axis; that is, there is an S-shaped waveform-like relationship (Equation (1)) between
the time difference and the degree of actuation. The magnitude of this degree of motion
will gradually decrease over time. This study also assumes that the relationship between
the extent of the attenuation and the elapsed time is similar to an S-shaped waveform. It
weakens slowly at first, but, over time, it weakens faster. Before the drive completely wears
off, the new waveform from another firing neuron is added to the old waveform to form
a larger waveform. The entire driving waveform represents the driving of an axis at the
finger-end of the manipulator.
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If a new waveform is generated shortly after one waveform, the two waveforms will
be processed in a tandem superimposed manner. A double-peak waveform is formed at the
two peaks, and the overlapping area in the middle will be superimposed. The waveforms
generated by the firing behavior of the neurons in the same group were superimposed
to form a relatively large waveform. The ANM system superimposes (transduces) all the
waveforms generated from the input records into time-series data of hand activities. The
final waveform (the time-series data) will be contrasted with the time-series data of healthy
subjects. The fitness is measured as the dynamic time-warping distance (to be referred to
as DTW) between these two time-series data, as shown in Equation (2). The smaller the
DTW distance, the better the system’s fitness.

Degree of actuation = (
1

1 + e(−2 × t)
− 0.5 ) × 2 × 90 (1)

DTW = ∑i

∣∣∣∑50
j=1

(
Vij − Aij

)∣∣∣ (2)

where Vij and Aij represent the target trajectory generated by the V-REP system and the
trajectory generated by the ANM system, respectively, i = x-axis, y-axis, and z-axis.
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4. Experiments

We know that in nature, continuous evolutionary learning is an essential condition for
the survival of biological systems, especially in an unknown environment. Five experiments
are conducted in this research. The first part focuses on the learning ability of the system.
The second part lets the system learn actions with reduced degrees of freedom. This
experiment considers how to reduce the number of muscle groups stimulated. The third
part explores the adaptive learning ability of the system, meaning the ability to adapt
to a moving (or changing) problem. The fourth part investigates how machine learning
knowledge learned from a task is re-used to boost the learning performance on another
related task. The fifth part examines how a learned system copes with environmental
change, assuming patients have different types of strokes.

4.1. Perpetual Learning

In this experiment, we first let the ANM system learn the trajectory curves of the above
four actions. The learning results are shown in Figure 10. In the early stage of learning, the
gap between DTW distances increases and is relatively large, but, in the later stages, this
range becomes smaller and smaller. Most importantly, the system still showed continuous
improvement, even in the late stage of learning. The main reason for the ANM system is the
gradual transformation of structure/function. This tests the system’s learning ability for an
intelligent system. In particular, when our system changes the difficulty of the problem to
a considerable extent, the system must show the capability of continuous improvement.
This experiment also let the ANM system learn the trajectory curves in two, three, and
four DOGs. We note that the learning of the ANM system is terminated at cycle 300, and
the results are shown in Table 1. The improvement in the regression coefficient R2 value
in Table 1 shows that the ANM system presents a good learning effect. This study also
allows the system to continue learning to about 2000 generations. The results show that
the system can show continuous improvement for each action. However, to explore the
different information processing of the ANM system more extensively, the experimental
results in this part of this paper stop at the place where the number of learning times is
300 generations. This is because most of the neurons in the ANM system have internal
dynamic processing functions; the computational time required to simulate this type of
data processing with a digital computer is relatively large (especially using a sequential
processing machine to simulate a parallel processing system).
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Table 1. Each rehabilitation action’s DTW and R2 score at cycles 1 and 300.

Rehabilitation Action DTW
At Cycle 1

DTW
At Cycle 300

R2 Score
At Cycle 1

R2 Score
At Cycle 300

Shrug, Swing, Side-lift, Up-lift 40.25 4.64 −12.63 0.69

Shrug, Swing, Side-lift 27.12 5.96 −18.31 0.55

Shrug, Swing, Up-lift 32.94 3.75 −18.95 0.63

Shrug, Side-lift, Up-lift 33.73 4.03 −17.85 0.70

Swing, Side-lift, Up-lift 35.89 4.19 −17.51 0.85

Shrug, Swing 28.92 4.39 −37.01 0.73

Shrug, Side-lift 28.29 6.44 −24.38 0.61

Shrug, Up-lift 29.96 5.01 −25.77 0.82

Swing, Side-lift 25.30 3.99 −16.19 0.44

Swing, Up-lift 37.29 5.62 −21.94 0.53

Side-lift, Up-lift 28.90 4.16 −33.43 0.60

4.2. Adaptive Learning

The motivation for this experiment was to think from the perspective of the rehabili-
tation of stroke patients. As mentioned earlier, a stroke patient often has a “coordinated
movement disorder” in the upper limbs, that is, the simultaneous activation of multiple
muscle groups. If the patient can reduce the possibility of stimulating several groups of
muscles simultaneously, the patient is relatively more able to perform the desired action.

As far as a person with healthy hands is concerned, they can perform the actions they
want to perform according to their free will. However, a patient after a stroke might have
abnormal coordinated movements. The following experiment is motivated by how to help
the rehabilitation of stroke patients by reducing the possibility of several groups of muscles
being activated simultaneously when a patient wants to perform some simple movements.
The approach taken in this study is to have the ANM system learn to reduce actions with
relatively more degrees of freedom to actions with relatively fewer degrees of freedom. We
train the system to move simultaneously from four to three degrees of freedom, then to
two degrees of freedom, and finally to one degree of freedom. In addition to gradually
reducing the number of activities one by one, another approach facilitates more activity
change at a time.

Table 2 shows that the system can successfully assist patients to move simultane-
ously from four to three degrees of freedom. From the perspective of assisting stroke
patients, the system can help to reduce the possibility of stimulating several muscle groups
simultaneously (that is, the patient is relatively more able to perform the desired move-
ment). Table 3 shows the improvement rates from moving simultaneously in four to three
degrees of freedom, then to two degrees of freedom, and finally to one. Table 4 shows
the improvement rates from moving simultaneously in three degrees of freedom to two
degrees of freedom and finally to one degree of freedom. Table 5 shows the results of
the improvement rates from moving simultaneously in two degrees of freedom to one
degree of freedom. This implies that the ANM system can help patients improve their
simultaneous movement problems.

Table 2. The improvement from four to three degrees of freedom.

From

To To Three Movements

Shrug, Swing, Side-Lift Shrug, Swing, Up-Lift Shrug, Side-Lift, Up-Lift Swing, Side-Lift, Up-Lift

Before After Rate Before After Rate Before After Rate Before After Rate

Shrug, Swing, Side-lift, Up-lift 41.79 3.85 90.8% 45.51 3.82 91.6% 45.59 4.02 91.2% 49.26 4.75 90.4%
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Table 3. The improvement from four to three degrees of freedom, then to two, and finally to one.

From To To Three Movements To Two Movements To Single Movement

From Four Movements
Shrug,
Swing,

Side-Lift

Shrug,
Swing,
Up-Lift

Shrug,
Side-Lift,
Up-Lift

Swing,
Side-Lift,
Up-Lift

Shrug,
Swing

Shrug,
Side-Lift

Shrug,
Up-Lift

Swing,
Side-Lift

Swing,
Up-Lift

Side-Lift,
Up-Lift Shrug Swing Side-Lift Up-Lift

Shrug, Swing,
Side-lift, Up-lift 90.8% 91.6% 91.2% 90.4% 93.8% 88.8% 92.7% 88.6% 90.4% 93.8% 92.8% 90.4% 88.5% 90.2%

Table 4. The improvement from three to two degrees of freedom and finally to one.

From To To Two Movements To Single Movement

From Three Movement Shrug,
Swing

Shrug,
Side-Lift

Shrug,
Up-Lift

Swing,
Side-Lift

Swing,
Up-Lift

Side-Lift,
Up-Lift Shrug Swing Side-Lift Up-Lift

Shrug, Swing, Side-lift 84.2% 85.7% 91.4% 89.5% 87.3% 89.8% 90.7% 92.1% 90.7% 89.6%

Shrug, Swing, Up-lift 92.0% 91.4% 90.3% 91.7% 90.0% 88.6% 86.3% 91.3% 90.9% 93.6%

Shrug, Side-lift, Up-lift 92.0% 87.3% 91.4% 92.4% 89.3% 91.9% 91.3% 92.3% 86.0% 92.0%

Swing, Side-lift, Up-lift 91.2% 88.8% 93.2% 89.2% 90.1% 94.8% 90.0% 93.8% 85.0% 93.0%

Table 5. The rate of improvement from two degrees of freedom to a single degree of freedom.

From To To Single Movement

From Two Movement Shrug Swing Side-Lift Up-Lift

Shrug, Swing 89.9% 87.1% 90.1% 87.0%

Shrug, Side-lift 85.9% 92.9% 84.7% 90.8%

Shrug, Up-lift 90.6% 95.4% 89.4% 88.9%

Swing, Side-lift 89.9% 90.2% 86.1% 93.2%

Swing, Up-lift 88.6% 92.2% 92.0% 91.7%

Side-lift, Up-lift 83.7% 86.5% 92.0% 87.1%

4.3. Learning in Moving Problem Domain

The experiment is performed to test the adaptability in confronting domain changes.
The approach adopted is that we first let the system learn a set of actions for a while,
and then the learned system is asked to learn another set of steps. The whole experiment
has two purposes. The first purpose is to test the system’s performance against changing
systems (that is, to understand the system’s ability to adapt to changes in the problem). The
second purpose is to investigate whether the system can reproduce the ability to adapt to
changes in the problem domain through the previous learning results. From the perspective
of rehabilitation, the goal of this experiment can be interpreted as first letting the patient
learn a set of movements, and later the rehabilitation movements required are changed in
order to know how the patient can adapt to the change through the help of the system. The
experimental results are shown in Tables 6–8.

Table 6. The result of the adaptability in confronting one degree of freedom of domain changes.

From To Shrug Swing Side-Lift Up-Lift

Shrug − 90.1% 92.4% 86.6%

Swing 95.8% − 86.9% 91.6%

Side-lift 94.2% 89.9% − 89.9%

Up-lift 82.9% 89.8% 90.6% −
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Table 7. The result of the adaptability in confronting two degrees of freedom of domain changes.

From To
Shrug,
Swing

Shrug,
Side-Lift

Shrug,
Up-Lift

Swing,
Side-Lift

Swing,
Up-Lift

Side-Lift,
Up-Lift

Shrug, Swing − 87.3% 83.3% 83.4% 91.2% 89.2%

Shrug, Side-lift 88.9% − 94.3% 93.7% 89.5% 91.2%

Shrug, Up-lift 89.3% 91.1% − 92.6% 93.7% 89.1%

Swing, Side-lift 90.9% 87.7% 88.0% − 90.1% 90.2%

Swing, Up-lift 89.6% 90.3% 92.4% 93.1% − 87.9%

Side-lift, Up-lift 89.2% 90.7% 90.6% 89.9% 89.0% −

Table 8. The result of the adaptability in confronting three degrees of freedom of domain changes.

From To Shrug, Swing,
Side-Lift

Shrug, Swing,
Up-Lift

Shrug, Side-Lift,
Up-Lift

Swing, Side-Lift,
Up-Lift

Shrug, Swing, Side-lift − 91.6% 91.4% 88.4%

Shrug, Swing, Up-lift 95.4% − 90.4% 93.1%

Shrug, Side-lift, Up-lift 91.9% 87.2% − 91.5%

Swing, Side-lift, Up-lift 93.2% 93.2% 91.4% −

4.4. Transfer Learning

Transfer learning (TL) is a research field in which the machine learning knowledge
learned from a task is re-used to boost the learning performance on another related task.
This is one of the generalization capabilities that a learned system applies to a family
of relevant problem domains. From the point of view of the intelligent system assisting
patients in rehabilitation, it means whether it is possible to use the learning results of some
previous rehabilitation actions to make it easier to learn different, but relevant, rehabilitation
actions. Regarding transfer learning, two issues need to be addressed. The first issue is
whether a system that leverages the performance of new job assignments is better than
one that does not utilize transfer learning at the beginning of learning. The second issue is
whether the system has a better effect on the performance of new job assignments than if it
does not use transfer learning after using the same long learning time (for example, after
learning 500 learning cycles) (as shown in Table 9).

Table 9. Compare the improvement rate of using transfer learning with not using transfer learning.

At Cycle 1 At Cycle 500

Rehabilitation Action Without TL
(DTW)

With TL
(DTW)

Improvement
Rate

Without TL
(DTW)

With TL
(DTW)

Improvement
Rate

Shrug, Swing, Side-lift 30.11 12.75 57.7% 6.85 4.79 30.1%

Shrug, Swing, Up-lift 36.59 10.06 72.5% 4.92 5.24 −6.5%

Shrug, Side-lift, Up-lift 34.57 9.54 72.4% 10.97 5.80 47.1%

Swing, Side-lift, Up-lift 40.02 4.88 87.8% 5.94 4.31 27.4%

Shrug, Swing 28.73 17.72 38.3% 6.31 6.26 0.8%

Shrug, Side-lift 29.05 20.48 29.5% 7.35 7.48 −1.8%

Shrug, Up-lift 33.86 8.05 76.2% 6.18 5.28 14.6%

Swing, Side-lift 28.61 13.20 53.9% 6.55 6.10 6.9%

Swing, Up-lift 38.55 11.03 71.4% 5.57 5.24 5.9%

Side-lift, Up-lift 32.77 9.33 71.5% 5.98 4.56 23.7%



Biomimetics 2023, 8, 385 14 of 16

Table 9. Cont.

At Cycle 1 At Cycle 500

Rehabilitation Action Without TL
(DTW)

With TL
(DTW)

Improvement
Rate

Without TL
(DTW)

With TL
(DTW)

Improvement
Rate

Shrug 29.17 19.69 32.5% 7.03 6.32 10.1%

Swing 31.27 17.52 44.0% 4.88 5.78 −18.4%

Side-lift 26.71 20.05 24.9% 7.38 7.18 2.7%

Up-lift 34.26 9.34 72.7% 4.09 4.33 −5.9%

4.5. Noise Tolerance

As mentioned earlier, stroke patients stimulate multiple muscle groups at the same
time. Additionally, different stroke patients may have different levels of muscle group
stimulation. In this study, the motion trajectories of the simultaneous stimulation of
multiple muscle groups were varied in a local stochastic manner to shape stroke conditions
in different patients. For each rehabilitation action, five different trajectories were generated.
The method of this experiment is to take the results of the first part of the experiment
(i.e., the system after long-term learning), then test it with the trajectories generated above
and take the average of these five runs. The results are shown in Table 10.

Table 10. The improvement rate of noise tolerance at cycle one and cycle 500.

At Cycle 1 At Cycle 500

Rehabilitation Action Without TL
(DTW)

Random
(DTW)

Improvement
Rate

Without TL
(DTW)

Random
(DTW)

Improvement
Rate

Shrug, Swing, Side-lift 30.11 20.18 57.7% 6.85 6.05 30.1%

Shrug, Swing, Up-lift 36.59 15.23 72.5% 4.92 5.06 −6.5%

Shrug, Side-lift, Up-lift 34.57 22.41 72.4% 10.97 6.10 47.1%

Swing, Side-lift, Up-lift 40.02 15.42 87.8% 5.94 4.83 27.4%

Shrug, Swing 28.73 23.20 38.3% 6.31 6.53 0.8%

Shrug, Side-lift 29.05 18.28 29.5% 7.35 5.81 −1.8%

Shrug, Up-lift 33.86 12.88 76.2% 6.18 5.46 14.6%

Swing, Side-lift 28.61 27.32 53.9% 6.55 5.92 6.9%

Swing, Up-lift 38.55 10.89 71.4% 5.57 5.45 5.9%

Side-lift, Up-lift 32.77 20.34 71.5% 5.98 6.59 23.7%

Shrug 29.17 11.77 32.5% 7.03 4.81 10.1%

Swing 31.27 11.31 44.0% 4.88 3.49 −18.4%

Side-lift 26.71 22.38 24.9% 7.38 5.43 2.7%

Up-lift 34.26 10.56 72.7% 4.09 4.53 −5.9%

5. Discussion

We know that biological systems have an excellent adaptability that allows them to
continue operating (or operating) in an unknown or uncertain environment. An ambiguous
or poorly defined problem domain belongs to a novel or partially unfamiliar territory, while
a disturbed or changing problem domain belongs to a so-called uncertain or uncertain en-
vironment in statistical terms. Adaptability includes two abilities: learning and adaptation.
It should be noted that adaptability is a broader term (or concept) than adaptation because
it, more broadly, has self-regulation to correct errors.

Adaptability is undoubtedly a highly desirable goal from the perspective of using
robots in assisting patients’ rehabilitation. To establish a rehabilitation assistance system
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suitable for different people and different needs, an intelligent system must possess a rich
learning capability to perform long-term continuous learning on a complicated learning
problem and a considerable degree of plasticity for adaptation to different needs. Since each
patient is injured differently, the need for an assistive robot differs. Customized design is
an inevitable trend. An intelligent assistance system must be able to find the best answer to
assist the patient in a self-correcting manner. In addition, the system must also have some
degree of noise tolerance to cope with transient variation in the patient’s actuation because
the method and strength of each patient’s movement are not exactly the same. Noise
tolerance refers to the ability of a system to continue operating in a disturbed environment.

Adaptive learning is another important feature that an intelligent rehabilitation assis-
tance system must have when there are permanent changes in the problem domain. From
a rehabilitation point of view, this requirement can be interpreted as the patient having to
learn new movements, i.e., changing the required rehabilitation movements. This aspect
includes incremental or mobile changes in the requirements of rehabilitation movements.
In this case, using the previously learned action experience to accelerate the adaptation to
remember new actions (i.e., transfer learning) is essential.

6. Conclusions

Robotic rehabilitation is a method that achieves sensorimotor training with external
mechanical assistance. The current development of assistive robots mainly integrates
the most advanced aspects of artificial intelligence, medicine, biomechanics, and human
factors engineering to meet the following two requirements. The first requirement is to
produce precise control over the machine, and the second is to meet the needs of different
customizations. However, these two requirements can sometimes take work to be satisfied
simultaneously. The intelligent system acts as a bridge between the two requirements.

The difference between the traditional neural network and the ANM system proposed
in this study lies in the information processing inside the neuron. The former is the learning
result generated using mathematical calculations, while the latter emphasizes information
processing inside neurons. The former must be completed through network information
processing to simulate spatiotemporal information processing. In contrast, the ANM
system used in this study can be expressed in terms of the internal dynamics of a single
neuron. In other words, a single neuron in the ANM system can process spatiotemporal
information sufficient to represent the traditional neural network. Because of this, we
can capture the characteristics of gradual changes in biological structure/function by
simulating the internal activities of neurons through information processing inside neurons.
The experimental results in this study prove that it has perpetual learning capability and
sufficient adaptability.
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