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Abstract: Many approaches inspired by brain science have been proposed for robotic control,
specifically targeting situations where knowledge of the dynamic model is unavailable. This is crucial
because dynamic model inaccuracies and variations can occur during the robot’s operation. In this
paper, inspired by the central nervous system (CNS), we present a CNS-based Biomimetic Motor
Control (CBMC) approach consisting of four modules. The first module consists of a cerebellum-like
spiking neural network that employs spiking timing-dependent plasticity to learn the dynamics
mechanisms and adjust the synapses connecting the spiking neurons. The second module constructed
using an artificial neural network, mimicking the regulation ability of the cerebral cortex to the
cerebellum in the CNS, learns by reinforcement learning to supervise the cerebellum module with
instructive input. The third and last modules are the cerebral sensory module and the spinal cord
module, which deal with sensory input and provide modulation to torque commands, respectively.
To validate our method, CBMC was applied to the trajectory tracking control of a 7-DoF robotic arm
in simulation. Finally, experiments are conducted on the robotic arm using various payloads, and the
results of these experiments clearly demonstrate the effectiveness of the proposed methodology.

Keywords: brain-inspired computing system; neuromorphic computing; spiking neural network;
reinforcement learning; robotic arm

1. Introduction

The past few years have seen a blossoming of robotic applications in various fields,
including manufacturing, health care and customer service, etc. The key issue of developing
robots up to these applications lies in the control ability of the manipulation. For a force-
controlled robot, the mapping between joint torque commands and the end-effector position
is often generated by a previously acquired dynamic model, whose accuracy plays a vital
role in the control ability. However, due to the uncertainties of the working environment
and the development of elastic, muscle-like actuators, the accurate modeling of a robot’s
dynamics is almost intractable in many scenarios. As a result of the evolution after billions
of years, animals, especially human beings, have developed an adaptive control solution for
motor performance that will work robustly in different environments with elastic muscles
and joints, without the presence of a dynamic model, and can almost outperform the most
state-of-art robots in many aspects. Therefore, researchers turn to bio-inspired approaches
for inspiration.

Mimicking the learning ability of the cerebral cortex, some researchers have adopted
artificial neural networks (ANNs), which are built by layers of computing neurons, as a
solution for controlling robots without a dynamic model. In [1], an ANN-based control
strategy is proposed for a flexible robotic arm with consideration of friction for both motor
and payload. In the research of [2], an adaptive control method is introduced to the
manipulator with unknown system dynamics. Wang et al. [3] take the output nonlinearity
and unmodeled dynamics into consideration and develops an ANN module to approximate
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the unknown dynamics. In [4–6], some controlling methods based on ANN are also
introduced to handle environment uncertainties and disturbance, like robotic manipulators
working underwater. However, ANNs can only loosely model the functioning of the
cerebral cortex. Artificial neurons in the network process information by nonlinear function
of the sum of neuron inputs, and the output is transmitted through neuron connections
and adjusted as the learning proceeds. These conventional neurons lack the ability to carry
time-related information and thus the network can hardly deal with the temporal–spatial
information of a robot during movement. Furthermore, the training process of ANNs,
which is time and energy costing and computationally expensive, raises the stringency of
demand on robotic processors [7].

To make up for the deficit, many other researchers have turn to spiking neural net-
works (SNNs) that mimic the underlying mechanisms of the brain more realistically. Unlike
conventional neurons in ANNs, spiking neurons in SNNs precisely model the information
transfer and processing as it happens in biological neurons, i.e., via discrete spikes that
fire in certain timing patterns. This temporal coding mechanism in SNNs enables them to
capture the temporal evolution of analog signals, making it a better solution for robotic
control. Many works on SNN-based robotic applications have been presented. In [8,9], an
SNN is trained with reinforcement learning to control a single-joint arm for target reaching.
In [10,11], a 4-DoF robotic arm is controlled by a single-layer SNN network that is trained
with spiking timing-dependent plasticity (STDP). Recently, DeWolf et al. [12] combined
SNN and a neuromorphic chip to present a neurorobotic controller.

Despite the cerebral cortex, the involvement of the cerebellum in muscle and motor
control has also been long advocated. Following this path, an SNN with cerebellum-
inspired structure is presented in [13] for controlling a 2-DoF robotic arm, based on which a
solution for compliant control and control under nondeterministic time delay is presented
in [14,15], respectively.

The above studies have taken a positive step toward bio-inspired control in robots,
mimicking some parts of the human brain in function or structure. However, their problem
lies in viewing the cerebral cortex or the cerebellum as a stand-alone controller. An impor-
tant observation about the brain is that schemas are distributed and computed in different
brain areas. Motor control in vertebrates by the central nervous system (CNS) involves the
cerebral motor cortex, basal ganglia, thalamus, cerebellum, brain stem, and spinal cord,
and they work in collaboration in a hierarchical control loop [16]. It is therefore of great
practical importance to study how this human control loop as a whole can be applied to
robotic control.

In this paper, the main contributions are as follows:

• We propose a system model of the CNS-based Biomimetic Motor Control (CBMC)
inspired by the human control loop for issues in control.

• A proposed implementation of this model involves utilizing an SNN for the cerebellum
module, which is supervised by an ANN in the cerebral motor cortex module. This
implementation is then applied to the control of a 7-DoF robotic arm.

The remainder of this paper is organized as follows: Section 2 presents the system
model of CBMC. Section 3 will apply the above system to a 7-DoF robotic arm for demon-
stration. The results and discussion will be given in Section 4, and concluding remarks will
be presented in Section 5.

2. CBMC: A Biomimetic Control Approach

In human motor control, several areas of the CNS, including the cerebral cortex,
cerebellum, and spinal cord, contribute to the temporal–spatial coordination of the skele-
tomuscular system [17], as can be seen in Figure 1A [18]. The simplified control loop
related to the cerebral cortex and cerebellum in supervising the spinal cord’s control of the
skeletomuscular system is depicted in Figure 1B [16]. Motor programs and commands are
generated in the cerebral cortex, and the motor program is fed into the cerebellum, which
sends out motor commands combining programs from the cerebral cortex and the sensory
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information from the spinal cord. The motor commands from the cerebral cortex and the
cerebellum are then summed and sent out to the muscle via the brain stem and the spinal
cord. The structure of the human motor control loop gives us some insights into how the
CNS controls body movements.

Mimicking the CNS, the CBMC we proposed is shown in Figure 1C. It comprises
four parts: the cerebral motor cortex module (CMCM), the cerebral sensory cortex module,
the cerebellum module, and the spinal cord module. The spinal cord module carries
signals between the arm and the brain and, at the same time, controls some reflexes
without involving the brain. Sensory feedback signals from the spinal cord module are then
processed in the cerebral sensory cortex module and fed into the CMCM and the cerebellum.
The CMCM can choose the appropriate actions and plan the trajectory’s shape to finish
the general target. In contrast, the cerebellum module, which is supervised by the CMCM,
provides corrections to compensate for errors from nonlinearities, delays, Coriolis, etc., and
ensures the smoothness of movement. Motion trajectory is generated in the CMCM by
a planner and fed into the agent, modeled by an ANN, and into the cerebellum module,
which is in the structure of a cerebellar-like SNN. By taking the trajectory from the planner
and the sensory feedback information from the cerebral sensory cortex module, the agent
will provide a cerebral torque and instructive inputs to the cerebellum module. In the
cerebellum module, the sensory feedback, planned trajectory, and instructive inputs are
combined and analyzed for a cerebellum torque response, which is then added with the
cerebral torque to form a joint torque command that will be sent down to the spinal cord
module. Finally, after being processed in the spinal cord module, the joint torque command
is conveyed toward the robot for manipulation.

Cerebellum

Cerebral cortex

A B

C

Figure 1. (A) Natural human motor control system. (B) Simplified human control loop related to the
cerebral cortex, cerebellum, and spinal cord. (C) The CNS-based Biomimetic Motor Control (CBMC)
control loop.

2.1. Cerebellum Module

To better demonstrate how the cerebellum module works, we will introduce it from
three perspectives: the neuron model, the synaptic plasticity model, and the network structure.
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2.1.1. Neuron Model

In an SNN, neural information transmitted between different neurons is carried in
spike sequences, which can be defined as

S(t) = ∑
f

δ(t f − t0), (1)

where f = 1, 2, . . . is the index label of a spike and δ(·) is a Dirac function. The input signal
i(t) of a neuron from one synapse induced by a spike sequence can therefore be described
as [19]

i(t) =
∫ ∞

0
S(s− t)exp(−s/τs)ds, (2)

where τs is a time constant.
In the existing literature, many spiking neural models have been proposed, such as the

Hodgkin–Huxley [20] model as well as the Integrate-and-Fire model and its variants [21].
Although the Hodgkin–Huxley model has a better biomimetic reality, it is difficult to realize
in the application for computation complexity. Maintaining the feature of membrane
potential leakage in neurons and having a high computation efficiency, the Leaky-Integrate-
and-Fire (LIF) model [22] is used as the spiking neuron model. The membrane potential of
a LIF neuron u changes according to

τm
du
dt

(t) = ureset − u(t) + R(i0(t) + ∑ wjij(t)) (3)

where τm = RC is the time constant of the neuron membrane that models the voltage
leakage. ureset is the potential value after each reset. i0(t) stands for an external current
driving the neural state, ij(t) denotes the input current from the j-th synapse, and wj
represents the strength of the j-th synapse. Once the membrane potential reaches the firing
threshold u f ire, a single spike is fired from the neuron, and its potential is set back to ureset.

2.1.2. Synaptic Plasticity Model

As seen in Equation (3), the neuron potential is influenced by the input synaptic weight
wj, which can be changed during the working process of the network. How to map the
relationship between neuronal activity and the synaptic weights is what synaptic plasticity
models will solve. Popular models can be classified into two types, namely, the rate-based
and the spike-based. The latter has shown promising applications in robots and other
autonomous systems [23], so we will take it here as an example.

The spike-based learning rule, often termed STDP, connects the weight change with
the timing of individual spikes. If a presynaptic spike precedes a postsynaptic spike, then
the synaptic activity will be strengthened, but if they happen in reversed order, then the
synaptic activity will be weakened. The mathematical model of STDP can be given as [24]

∆w =

Ae
−(|tpre−tpost |)

τ+ , tpre − tpost ≤ 0

Be
−(|tpre−tpost |)

τ− , tpre − tpost > 0
(4)

where tpre and tpost are the firing time of presynaptic neuron and postsynaptic neuron
respectively, τ+ ans τ− are time constants, and A > 0 and B < 0 are constants scaling the
change of weights, respectively.

2.1.3. Network Structure

Many computational models of the cerebellum have already been proposed, such as
CMAC [25] and the Schweighofer–Arbib model [26]. The cerebellar-like network employed
in our work is similar to that in [14,15], as depicted in Figure 2.
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There are five different neural layers in this network: (1) mossy fibers (MFs); (2) granule
cells (GCs); (3) climbing fibers (CFs); (4) Purkinje cells (PCs); (5) deep cerebellar nuclei
(DCN). The desired and actual joint position and velocity are concatenated and coded into
spiking patterns in the MF layer, which will then project excitatory afferent on both GC
and DCN. The movement error of each joint will also be fed into CF and coded into spikes.
GC will store and process the spiking pattern from MF and then generate spikes through
parallel fibers (PFs) to PC. By combining the neural spike activity of both CF and GC, PC
will accordingly give inhibitory afferent to DCN. Finally, joint torque commands will be
produced by DCN combining spike information from MF, CF, and PC. The learning ability
of this cerebellar-like network is achieved in the PFs by STDP.

GC

MF DCN

PC

CF

Excitatory

Inhibitory LTP/LTD

Input/Output

PF

Figure 2. The cerebellar-like network.

2.2. Cerebral Motor Cortex Module

The CMCM is constructed of a feed-forward neural network, whose two main pur-
poses are mimicking the dopamine mechanisms in baby learning and supervising the
cerebellum module.

2.2.1. Learning Mechanism

The cerebral motor cortex plays an important role in human motion learning through
trial and error, especially in babyhood. One of the complex learning mechanisms is induced
by dopamine, which facilitates humans to replay newly acquired motions. The principle
that humans learn from the consequences of their actions nowadays has been developed as
the reinforcement learning (RL) method in artificial intelligence [27]. Therefore, RL is used
to mimic the learning mechanism in CMCM, and the whole process can be modeled as a
Markov decision process [28]:

P(st+1|st) = P(st+1|s1, . . . , st). (5)

The agent (cerebral motor cortex module) selects an action at at each time step with state st
and policy π

at = π(st). (6)

Then, the next state st+1 is governed by a deterministic transition process

st+1 = f (st, at) (7)

and a reward rt+1 is returned from the state st+1 with reward function

rt+1 = R(st+1). (8)

Basically, the target of RL is to learn an optimal policy π? at each time step to obtain a
maximum cumulative reward

Rt =
∞

∑
k=1

γk−1rt+k, (9)
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where γ ∈ [0, 1) because earlier rewards are more predictable than the long-term fu-
ture reward, and the discount rate value helps avoid infinite returns in loopy Markov
processes [29].

2.2.2. Supervision to the Cerebellum

As depicted in Figure 1C, the cerebellum module receives an instructive input from the
CMCM, which influences the spiking firing rates of neurons in the cerebellum module and
serves as supervision of the cerebellum to achieve a specific target. For instance, the CMCM
will learn an additional movement to counteract the external force disturbances. A similar
scene has been found in the cortex activities of monkeys when learning an arm-reaching
task in a curl force field [30]. In addition, to demonstrate the different control levels between
the CMCM and cerebellum module, a lower update frequency is employed in the CMCM.

3. Case Study: Trajectory Tracking Control of a 7-DoF Robotic Arm
3.1. Control Framework

In this section, we apply our method to trajectory tracking control tasks of a 7-DoF
robotic arm, the Flexiv Rizon4s, as shown in Figure 3B. The whole control scheme is
depicted in Figure 3A, where the direct output from the CMCM to the spinal cord module
is omitted, and the dotted line implies a different frequency from other modules. In each
control loop of the cerebellum module, the manipulator planner generates predefined
reference position and orientation trajectories, and the joint trajectories are calculated with
inverse kinematics. The cerebellum module receives the desired joint trajectories qd, q̇d
and feedback states qa, q̇a, then generates joint torques τcer. The spinal cord module here
provides a gravity compensation torque. With every 20 loops of the cerebellum module
running, the CMCM updates an additional zero-order-hold instructive input added to the
desired joint trajectories based on the current targets and robot states.

Planner  

Agent

Tuning

Trajectory

State Estimate

Gravity

Compensation

Cerebral Motor Cortex

Cerebellum

Spinal Cord

Motion

Trajectory

Robot

State

Joint Torque

Commands

Joint Encoders

Cerebral Sensory Cortex

Cerebellar-like 

Network

J1

J2

J3

J4

J5

J6
J7

A B

Figure 3. CBMC for the trajectory tracking of a 7-DoF robotic arm. (A) Overall control framework of
CBMC. (B) The diagram of the 7-DoF robotic arm model.

3.2. Implementation of CBMC
3.2.1. Cerebellum-like SNN

In this paper, the cerebellum module is implemented with SpikingJelly [31], which
is an open-source deep learning framework for SNN and has been used for exploring
the applications of bio-inspired SNN in many aspects [32–34]. The cerebellum-like SNN
described in Figure 2 consists of five layers: MFs, GCs, PCs, CFs, and DCN. All of them
are divided into seven microcomplexes, each one for controlling a robot joint. In the MF–
GC, CF–PC, CF–DCN, and PC–DCN connections, the seven microcomplexes are indeed
independent, where the MF–GC, CF–PC, and CF–DCN connections act like encoders.
However, the neurons from MFs to DCN and GCs to PCs are all fully connected, which
means the seven microcomplexes are dependent. The MF–DCN connection generates a
constant membrane voltage changing to both positive and negative torque neurons in DCN,
which helps in reducing the noise influence. The GC–PC connection is where STDP learns
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the dynamic mechanism of the robot from the command information encoded in MF and
the error information encoded in CF and improves the control effects of the cerebellum-like
SNN. The following part will introduce how to implement the five layers in detail.

The MF layer has 40 spiking neurons per microcomplex, 280 in total, translating the
analog information to spikes. For each joint, the 40 neurons are divided into four subgroups
for encoding feedback and desired joint positions and velocities, respectively, with ten neu-
rons each. For an analog value a with interval [rmin, rmax], one spike Si,MF(i = 1, 2, . . . , 10)
among the 10 neurons will be fired when

a ∈ [ci−1, ci],
ck = rmin + k · (rmax−rmin)

10 , k = 0, 1, . . . , 10.
(10)

Therefore, 4 neurons per joint and 28 in total will be active at each time step. Every
combination of four spikes is uniquely connected to one of 10,000 neurons per microcomplex
in the GC layer with the excitatory synapse, represented by a positive weight wMF-GC. All
the neurons in the MF layer are concatenated together, fully connecting to the neurons in
the DCN layer with excitatory synapse weight wMF-DCN.

CF layer modifies the error between the desired and actual trajectories per joint to
spikes with 100 spiking neurons per microcomplex. The front half of the 100 neurons are
dedicated to the forward movement of each joint, and the back half are for joint reversing,
which mimics the interaction between agonist and antagonist muscles in human movement.
The normalized error value ej ∈ [−1, 1] of each joint is given as

ej =
qd,j − qa,j + q̇d,j − q̇a,j

qupper,j − qlower,j + q̇upper,j − q̇lower,j
, j = 1, 2, . . . , 7, (11)

where qd,j, q̇d,j, qa,j, q̇a,j are the desired and actual joint position and velocity, respectively,
and qupper,j, qlower,j, q̇upper,j, q̇lower,j are the upper and lower bounds of j-th joint position
and velocity. Poisson encoding is applied depending on the error value of each joint to
obtain the spikes Sj,i,CF, which can be expressed as

Sj,i,CF =

{
1, if |ej| > rand(0, 1)
0, else.

, j = 1, 2, . . . , 7. (12)

In order to be consistent with the joint movement, only up to half of the neurons of the CF
layer will be active per microcomplex, which means if ej > 0, i = 1, 2, . . . , 50; otherwise,
i = 51, 52, . . . , 100. Each neuron in the CF layer is connected one-to-one with each neuron
in the PC layer and DCN layer with excitatory synapse weights wCF-PC and wCF-DCN,
respectively, also indicating the two other layers have the same number of neurons with
the CF layer.

Neurons in the GC, PC, and DCN layers are all modeled as discrete-time LIF neurons
to approximate the dynamics of the continuous-time LIF neurons. The membrane potential
discrete-time charging function of the LIF neuron is

h[t] = v[t− 1]− 1
τm

(v[t− 1]− vreset) + x[t], (13)

where τm is the voltage leaking time constant and x[t] is the input from synapses. To avoid
confusion, h[t] is used to represent the membrane potential after neuronal charging but
before neuronal firing at time t, v[t] is the membrane potential after neuronal firing, and
vreset is the reset value of membrane potential. The reset function of the membrane potential
v[t] depending on the firing state is

v[t] =
{

vreset, if S[t] = 1
h[t], else.

(14)
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The firing state of the LIF neuron is described as

S[t] =
{

1, if h[t] ≥ v f ire
0, else.

, (15)

where v f ire is the firing threshold. Therefore, a LIF neuron will fire a spike when the
membrane potential h[t] reaches the firing threshold. All the configuration parameters of
LIF neurons are summarized in Table 1.

Table 1. Model parameters of discrete-time LIF neurons.

Parameters GC PC DCN

vreset 0 0 0
v f ire 1.0 5.0 1.5
τm 50 60 12

The control mechanism of the cerebellum module is learned at the GC–PC connections
by adjusting the synapses in PFs with the STDP mechanism. The trace method [35] is used
to implement STDP and avoid recording all the firing times of presynaptic and postsynaptic
neurons described in Equation (4). The update of synapse weight at time t with the trace
method is

∆wi,j[t] = fpost(wi,j[t]) · tri[t] · Sj[t]− fpre(wi,j[t]) · trj[t] · Si[t], (16)

where indices i, j indicate the presynaptic and postsynaptic neurons, respectively, fpost, fpre
are functions constraining how weight changes, and tri[t], trj[t] are the traces of the presy-
naptic and postsynaptic neurons that track their firing. The updated functions of the
traces are

tri[t] = tri[t− 1]− tri[t− 1]
τpre

+ Si[t]

trj[t] = trj[t− 1]−
trj[t− 1]

τpost
+ Sj[t],

(17)

where τpre, τpost are the time constants of the presynaptic and postsynaptic neurons, similar
to the leakage of LIF neurons. Si[t], Sj[t] in both Equations (16) and (17) are the firing states
of the presynaptic and postsynaptic neurons.

Receiving excitatory synapses from the GC and CF layers, the neurons in the PC layer
are activated and then one-to-one connected to the neurons in the DCN layer but with
an inhibitory synapse, represented by a negative weight wPC-DCN. Table 2 summarizes
all the synapse weights. Finally, combining all the excitatory synapses from MF and CF
layers and inhibitory synapses from the CF layer, the neurons in the DCN layer generate
spikes, and then those spikes are mapped to joint torques τcer. The decode function of each
microcomplex is as follows

τcer,j = αj

(
50

∑
i=1

Sj,i[t]−
100

∑
i=51

Sj,i[t]

)
, (18)

where j = 1, 2, . . . , 7 is corresponding to the joint number, αj is the mapping factor trans-
forming the spikes to torques and is set as α = (4.5, 4.5, 4.5, 1.7, 2.7, 1.0, 0.05) N ·m/spike.

Table 2. Parameters of synapse weights.

Synapses wMF-GC wMF-DCN wCF-DCN wCF-PC

value 0.25 0.0028 0.45 −0.5
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3.2.2. CMCM with Deep Deterministic Policy Gradient

In this project, deep deterministic policy gradient (DDPG) [36] algorithm as the RL
implementation in CMCM is adopted to supervise the cerebellum module, based on a deep
reinforcement learning library PFRL [37]. DDPG is a model-free algorithm that learns the
deterministic policy to the continuous action domain, as

a = µ(s|θµ) (19)

where a ∈ R7 is the action vector, s ∈ R28 is the state vector, and θµ is the parameter of the
policy network. The actions are interpreted as additional desired joint positions and added
to the original position targets from the trajectory generator. The state vector s is spliced by
the desired and actual joint positions and velocities.

In addition, an action-value function Q(s, a) is used in DDPG for describing the
expected reward in Equation (9) after taking an action at in state st. Considering the
function approximators parameterized by θQ, one target of the DDPG is minimizing the
Bellman residual

L(θQ) = E
[(

Q(st, at|θQ)− yt

)2
]

, (20)

where
yt = r(st, at) + γQ′(st+1, µ′(st+1|θµ′)|θQ′). (21)

Here, r(st, at) is the reward function and γ is the discount factor, Q′, µ′ are target networks.
Another target of the DDPG is learning the policy, which is evaluated by maximizing the
performance objective

J(θµ) = E[Q(st, µ(st|θµ))]. (22)

For the trajectory-tracking tasks, the total reward f in one simulation step is a weighted
sum of the punishment of the joint errors and Cartesian position error as

f = 0.5
7

∑
j=1

f joint,j + fc, (23)

where

f joint,j =

{
−0.1 , if q̇des,j · q̇act,j < 0
−10‖qdes,j − qact,j‖2 , else.

fc = −10‖xdes − xact‖2.
(24)

A constant punishment is given if the desired and actual joint velocity direction are not
the same. Otherwise, we punish the joint position errors. Here, x denotes the Cartesian
position of the end-effector, and the punishment is set as the distance from the target to the
estimated Cartesian position.

The whole training process is divided into two stages. First, the cerebellum module is
pre-trained without the CMCM, then it is fixed, and the agent explores the tuning policy to
the cerebellum module with the aid of the reward mechanism. The learning algorithm of
CMCM is as shown in Algorithm 1.

We train our CBMC with a specific trajectory target, which is an inclined circle as
described in Equation (25), and without payload on the end-effector in the PyBullet physics
simulator [38], and 150 trials in each epoch. The initial state of the robot is not on the
trajectory at the beginning. One hundred epochs, thus 15 k trials, are performed, and the
learning curves of the actor network and critic network are shown in Figure 4. After this
learning process, the controller is applied to different trajectory-tracking tasks and is faced
with unknown payloads on the end-effector.
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Algorithm 1 Learning algorithm of CBMC

1: Load the cerebellum-like SNN
2: Initialize main critic network, actor network, target networks, and replay buffer
3: Initialize relative frequency F between cerebellum module and CMCM
4: for epoch = 1 to N do
5: Initialize the neurons states
6: Initialize the robot states
7: Initialize the period reward r = 0
8: for t = 1 to M do
9: if (t Mod F) == 1 then

10: Generate action at according to current policy and states
11: Update cerebellum-like SNN
12: end if
13: Calculate torque commands τ from CBMC
14: Execute torque commands and observe new states st+1
15: Compute reward f and accumulate the period reward r = r + f
16: if (t Mod F) == 1 and t 6= 1 then
17: Store transition (st−F, at−F, R, st) in replay buffer
18: Reset the period reward r = 0
19: Update the critic and actor networks by training on a small batch of samples

from the replay buffer
20: Update the target networks
21: end if
22: end for
23: end for

0 2000 4000 6000 8000 10,000 12,000 14,000

Figure 4. The loss curves of the actor and critic networks.

3.3. Experiment Settings

To assess the efficacy of our novel control strategy in robot dynamic control and
trajectory tracking, we execute experiments considering two key factors. On the one hand,
we test our CBMC on the robotic arm with different payloads on the end-effector in smooth
trajectories. A single-joint movement will cause interaction forces to all other joints. The
disturbance force cannot be compensated easily on the condition that the dynamics model
is unknown. On the other hand, we test our CBMC controlling the end-effector tracking
different trajectories containing a circle trajectory in the inclined plane and an eight-like
trajectory in the horizontal plane, covering most of the possible translation motions of the
robotic arm in the Cartesian space. The circular and eight-like trajectories are described in
Equation (25).
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Circle:


x = x0 + Rc · cos(2πt/Tc) · cos θ

y = y0 + Rc · sin(2πt/Tc)

z = z0 + Rc · cos(2πt/Tc) · sin θ

Eight-like:


x = x0 + Re · cos(2πt/Te)

y = y0 + 0.5Re · sin(4πt/Te)

z = z0

, (25)

where Rc = Re = 0.14 m is the radius of the trajectory, Tc = Te = 3 s is the period, and
θ = 30° is the slant angle of the circle along the horizontal plane. (x0, y0, z0) is used to adapt
the trajectory within the workspace of robot. Providing the 3-D position and maintaining
the orientation of the end-effector, the joint trajectories are calculated through an offline
process using the inverse kinematics of the robot.

The performance of the CBMC on trajectory tracking is evaluated by comparing the
desired and the actual joint positions. We use the mean square error (MSE) as the metric to
evaluate the errors described in the following equations:

MSEj =
1
K

K

∑
t=1
‖qd,j[t]− qa,j[t]‖2

MSE =
1
N

N

∑
j=1

MSEj,

(26)

where K = 3× 104 denotes the simulation timestep number, corresponding to 10 cycles of
the trajectories, and N = 7 is the number of joints.

4. Results and Discussion

In this section, we outline the experimental results that show how our method works
and verify its effectiveness in trajectory tracking facing unknown payloads. To demonstrate
that, the performances of the control effects with payloads of 0, 0.5, and 2.5 kg are studied
on the aforementioned inclined circle and eight-like trajectories. On the other hand, we also
evaluate our controller in target reaching task, whose movement is an s-curve toward a
target point over time, to show the ability to face irregular but usual movements in human
daily life.

Firstly, a brief description of the neuron activities in the control process is described
in Figure 5, which shows the DCN neurons’ activities in the first three cycles under the
condition of inclined circle trajectory and no payload on the end-effector. There are seven
hundred neurons, and each hundred corresponds to a joint actuator. When the membrane
voltage of a neuron reaches its firing threshold, which is set as 1.5 in Figure 5A, one can see
a corresponding spike is fired in Figure 5B.

Taking the first joint as an example, the first fifty neuron spikes will generate a positive
acceleration and, therefore, dense spikes are fired in the beginning time as shown in
Figure 5B to accelerate the robotic arm from a static state to the desired trajectory. In
contrast, the last fifty neuron spikes will generate a deceleration by negative torque. Thus,
combined with the orange dotted line in Figure 6, which is the corresponding joint tracking
trajectory, indicating deceleration of the first joint around 800, 3800 ms and acceleration
around 2200, 5200 ms, we find it is consistent with the DCN neuron spikes’ activity as
shown in Figure 5B, where dense spikes of the last fifty neurons are fired when there is
deceleration and the first fifty are fired when there is acceleration. This phenomenon is not
obvious in the last three joints because of the small torques for the same joint movements.

Different payloads, as mentioned before, are tested on the inclined circle trajectory.
Figure 6 shows the joint trajectories tracking curves of the CBMC with different payloads
in the first three cycles, and Figure 7A shows end-effector tracking curves in the whole ten
cycles. The results show the reliable ability of the CBMC when the dynamics of the robotic
arm change.
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simulation time [ms]

Figure 5. The DCN neurons’ activities in the first three cycles under the condition of inclined circle
trajectory and no payload. (A) The heat map of the membrane voltages of the DCN neurons. (B) The
corresponding spike’s firing states.

Figure 6. The joint trajectories tracking curves of the CBMC to different payloads in the first three
cycles under the inclined circle trajectory condition.

In addition, we also test the CBMC on the eight-like trajectory that it never learns in
the training process. Compared to the circle trajectory, the eight-like trajectory requires a
faster and steeper change of the velocity and direction in the Cartesian space, resulting in
more joint disturbances. Nonetheless, as depicted in the Cartesian trajectories of Figure 7B
and the joint trajectories of Figure 8, the CBMC still shows a good performance on the
condition of unknown trajectory and payloads. Table 3 lists the MSE of the joint position
error under different trajectories and payloads. The CBMC shows a similar MSE loss in the
Eight-like trajectory of about 1.2× 10−4 compared to the training inclined circle trajectory
for all conditions of payloads.
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A B C

Figure 7. The desired versus actual trajectories of the end-effector with different payloads in the
Cartesian space. (A) The inclined circle trajectory in Cartesian space. (B) The 8-like trajectory in
Cartesian space. (C) The target reaching task trajectory in Cartesian space.

Figure 8. The joint trajectories tracking curves of the CBMC to different payloads in the 8-like
trajectory condition.

Table 3. MSE of the joint position error under different trajectories and payloads.

Trajectory No Payload
(×10−4)

0.5 kg (×10−4) 2.5 kg (×10−4)

Inclined Circle 7.134± 0.749 8.250± 1.075 12.825± 1.795
Eight-Like Trajectory 8.340± 0.725 9.642± 0.819 13.862± 0.934

Target Reaching 1.266± 0.646 1.309± 0.711 1.633± 0.936

The target-reaching task consists of ten different reaching targets as the star markers
shown in Figure 7C, which are around the same starting point. The challenges are inter-
action forces caused by acceleration and deceleration at the beginning and end, and the
irregular directions toward different targets. Nevertheless, the CBMC performs a capable
result in the target-reaching task from the Cartesian trajectory as shown in Figure 7C and
the MSE in Table 3.

Finally, to demonstrate the effectiveness of the CBMC in dealing with unknown
dynamics changes, we compare it with a PD controller on joint space. The PD controller is
designed to have a similar (and even a little better) performance with CBMC on the inclined
circle trajectory-tracking task and with no payload, the condition in which the CBMC is
trained. Table 4 lists the MSE of different methods on inclined circle and with different
payloads, where the method “No CMCM” corresponds to our method but removing the
instructive input from CMCM. When the payload is added to the end-effector, we can see
the PD controller performs worse than the CBMC. Particularly for the payload of 2.5 kg, the
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MSE of PD increases about 52% compared to the CBMC. Combining the MSE of the “No
CMCM”, we can conclude that both the instructive inputs from CMCM and the dynamics
mechanism learned in cerebellum module cause the CBMC have a better performance on
this problem. In addition, the comparison between the CBMC and “No CMCM” implies
the contribution of the supervising mechanism from the CMCM to the cerebellum module.

Table 4. MSE of different payloads in inclined circle: comparing to different methods.

Methods No Payload
(×10−4)

0.5 kg (×10−4) 2.5 kg (×10−4)

No CMCM 7.845± 0.898 8.883± 1.021 14.064± 1.805
CBMC 7.134± 0.749 8.250± 1.075 12.825± 1.795

PD 7.036± 0.219 1 8.740± 0.356 19.496± 1.989
1 The bold number implies the minimum MSE under the corresponding payload condition.

5. Conclusions and Future Work

In this paper, inspired by the human control loop that outlines the CNS, we propose
the CBMC approach, which mainly consists of four parts: the cerebral motor cortex module,
the cerebellum module, the cerebral sensory cortex module, and the spinal cord module.
Mimicking the biological feature in the human motor control system, the cerebellum module
constructed by SNN aims to learn the dynamics feature of the robot, and it is supervised
by instructive inputs from the cerebral motor cortex module, which learns using RL. The
cerebral sensory cortex module deals with feedback information, including self-perception
and environment interaction, while the spinal cord module modulates torque commands.

The proposed method was applied to controlling a 7-DOF robotic arm and partially
simplified in the trajectory-tracking task, where the DDPG was used as the RL algorithm
in the cerebral motor cortex module and the cerebellum-like SNN was implemented in
the cerebellum module. To validate its effectiveness, we firstly trained the CBMC in a
specific inclined circle trajectory-tracking task with no payload on the end-effector, then
we verified its performances on the condition of different payloads and a new eight-like
trajectory. Finally, we compared it to a PD controller to demonstrate the effectiveness of the
supervising mechanism and the cerebellum-like SNN.

One limitation of this work is that the method is only validated in the simulation
because the spiking neuron model with Python is not feasible for temporary torque control
in the real robot manipulator. In the future, we will develop the proposed approach on real
robotic arms. In addition, the ability of the CMCM can be explored in more complex tasks
combining the cerebral sensory cortex module, like interacting with the environment, and
the spinal cord module can be considered to control the rhythmic motion as a part of the
whole motion control system.
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Abbreviations
The following abbreviations are used in this manuscript:

DoF Degree of Freedom
ANN artificial neuron network
CNS central nervous system
CBMC CNS-based Biomimetic Motor Control
SNN spiking neural network
RL reinforcement learning
STDP spiking timing-dependent plasticity
CMCM cerebral motor cortex module
LIF Leaky-Integrate-and-Fire
MF mossy fiber
GC granule cell
CF climbing fiber
PC Purkinje cell
DCN deep cerebellar nuclei
PF parallel fiber
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