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Abstract: One of the most used artificial intelligence techniques for maximum power point tracking
is artificial neural networks. In order to achieve successful results in maximum power point tracking,
the training process of artificial neural networks is important. Metaheuristic algorithms are used
extensively in the literature for neural network training. An important group of metaheuristic
algorithms is swarm-intelligent-based optimization algorithms. In this study, feed-forward neural
network training is carried out for maximum power point tracking by using 13 swarm-intelligent-
based optimization algorithms. These algorithms are artificial bee colony, butterfly optimization,
cuckoo search, chicken swarm optimization, dragonfly algorithm, firefly algorithm, grasshopper
optimization algorithm, krill herd algorithm, particle swarm optimization, salp swarm algorithm,
selfish herd optimizer, tunicate swarm algorithm, and tuna swarm optimization. Mean squared error
is used as the error metric, and the performances of the algorithms in different network structures are
evaluated. Considering the results, a success ranking score is obtained for each algorithm. The three
most successful algorithms in both training and testing processes are the firefly algorithm, selfish
herd optimizer, and grasshopper optimization algorithm, respectively. The training error values
obtained with these algorithms are 4.5 × 10−4, 1.6 × 10−3, and 2.3 × 10−3, respectively. The test
error values are 4.6 × 10−4, 1.6 × 10−3, and 2.4 × 10−3, respectively. With these algorithms, effective
results have been achieved in a low number of evaluations. In addition to these three algorithms,
other algorithms have also achieved mostly acceptable results. This shows that the related algorithms
are generally successful ANFIS training algorithms for maximum power point tracking.

Keywords: swarm intelligence; feed-forward neural network; maximum power point tracking;
metaheuristic algorithm

1. Introduction

Today, investments are being made in various energy production technologies to
meet the increasing demand for energy. Among these technologies, the interest and
demand for renewable energy sources, which are environmentally friendly and carbon-free,
is increasing day by day. Therefore, renewable energy generation is of great importance for
power generation. PV panels, one of the electric power generation systems that have these
characteristics, can absorb solar energy and convert it into electrical energy. PV systems
have the advantage of being easy to install and using a free energy source. However, the
efficiency of PV systems depends on some external factors, such as solar radiation and
ambient temperature.
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MPPT methods are used to optimize nonlinear power generation due to the mentioned
characteristics of photovoltaic. Thus, the objective is to generate the maximum amount
of electrical energy using MPPT, using a model to control a DCDC converter. An ANN is
one of the most commonly used models for MPPT [1,2]. On the other hand, training the
ANN model for MPPT using traditional backpropagation is not efficient [3]. To solve this
problem, metaheuristic algorithms could be used.

Metaheuristic algorithms are widely used due to their global search properties that
provide efficient solutions to complex problems. With their population-based search
properties, these algorithms can perform a detailed search in the search space that expresses
the solution to the problem without getting stuck in local minima. Bio-inspired algorithms,
which mimic the behavior of intelligent swarm intelligence in nature, construct a unique
interaction model between search agents. Thus, they not only perform local searches but
also contribute to global searches by communicating with other agents. Therefore, they are
often preferred in solving difficult optimization problems.

In this study, the MPPT of PV systems is modeled using ANN. Determining the optimal
parameters of this model is a challenging optimization problem for which bioinspired
swarm intelligence-based metaheuristic optimization algorithms could be used. Many
variants of swarm intelligent algorithms have been proposed, especially in the last 30 years.
PSO [4], ABC [5], FA [6], KHA [7], CSA [8], DA [9], GOA [10], SHO [11], BOA [12], TSA [13],
TSO [14], CS [15] and SSA [16] are some of them. A total of 13 of the well-known new and
old optimization algorithms from the literature were selected for this study. A comparative
analysis of the algorithms’ performance in optimizing the given model was performed.
The novelty of the study is that it is one of the most comprehensive studies using swarm
intelligence-based algorithms for MPPT. This study makes important contributions to the
literature. These contributions are presented below in substance:

• Metaheuristic algorithms are grouped according to how they occur. One of these
groups is swarm intelligence-based algorithms. In this study, 13 swarm intelligence-
based algorithms for FFNN training are compared. It is one of the first studies in the
literature in this context.

• Metaheuristic algorithms are used to solve the MPPT problem. It is one of the most
influential studies in the literature using thirteen metaheuristic algorithms for MPPT.

• The success of these algorithms in both FFNN training and MPPT will shed light on
future studies.

• In this study, the effect of network structure and population size on performance is
examined in detail.

The next sections of this study continue as follows: detailed related works on ANN
and MPPT are given in Section 2. In Section 3, optimization algorithms based on swarm-
intelligent used in this study and feed-forward neural network are introduced. Section 4
gives simulation results. The discussion is presented in Section 5. In the last section, the
conclusion is given.

2. Related Work

Thus far, numerous methods have been suggested and put into practice for effectively
supervising the MPP for PV systems. Yang et al. [17] performed four case studies, introduc-
ing the memetic SSA (MSSA), an advanced version of SSA, as a new optimization method
for MPPT. It showed improved performance over other algorithms by generating more
energy and reducing power fluctuations in changing weather conditions.

A Model Reference Adaptive Control (MRAC) approach was studied and compared
with several established techniques, including INC, P&O, ANFIS, and Variable Step Perturb
and Observe. According to the results, the MRAC approach outperformed other methods
and achieved MPP in just 4 milliseconds. Its tracking ability and effectiveness were also
found to be superior [18].

Kamarposhti et al. [19] employed the whale algorithm to optimize solar system pa-
rameters for enhanced MPP tracking accuracy and increased electrical power output.
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Their study introduced an adaptive fuzzy controller to achieve this goal. The researchers
performed multiple assessments under varying irradiation conditions, comparing the per-
formance of their proposed controller against the practical and high-performance P&O
algorithm. Upon analyzing simulation outcomes, they observed that their approach out-
performed the P&O algorithm.

Akram et al. [20] explored the utilization of FA for MPPT in solar PV systems. The
findings demonstrated that the FA technique outperformed other methodologies, such
as the P&O approach, PID control, and PSO, in relation to monitoring efficiency and
convergence velocity. In contrast to PSO, which required the tuning of three parameters,
the FA method only required the tuning of two parameters.

Vadivel et al. [21] focused their attention on executing the SGO algorithm. To evaluate
the effectiveness of the algorithm, the researchers made a comparison with other global
search MPPT techniques, including PSO, DA, and ABC. The outcomes of the simulation
demonstrated the superiority of SGO-MPPT, as evidenced by the ability to achieve rapid
global power tracking in under 0.2 s, coupled with a decrease in oscillations.

Conventional MPPT methods work well under stable conditions, but their effective-
ness decreases during rapid changes in irradiation; this requires a fast and accurate MPPT
method [22]. A few studies have compared the proposed method with conventional MPPT
techniques. Examples of these studies are given below.

Mirza et al. [23] conducted a study that introduced a novel MPPT technique utilizing
SSA. The SSA technique utilized the confined exploitation property of salps and improved
robustness and efficiency. Also, it reduced the oscillation and saved the computation time.
Comparative testing against conventional MPPT techniques showed that the SSA technique
successfully handled different weather conditions and achieved faster tracking and more
stable output.

Jamshidi et al. [24] presented a new technique for MPPT in solar panels utilizing
a Backstepping Sliding Mode Controller (BSMC) strategy. To guarantee the stability of
the proposed approach, they employed Lyapunov criteria and a fuzzy inference system.
Additionally, the parameters of the Fuzzy BSMC were optimized by means of a PSO
technique. The findings of the study showed that the recommended controller surpassed
conventional methodologies, indicating improved performance.

Pal et al. [25] conducted a comparative analysis of their study, which put forth a
novel algorithm, MPPT, in PV systems with other contemporary findings. Their outcomes
exhibited a reduction in iteration and tracking time, thereby augmenting the average
tracking efficiency of the proposed approach.

Mirza et al. [26] applied two new techniques for MPPT of PV systems and compared
the results of their research with the results of PSO, P&O, CS, and SSA. The results obtained
from their study in which they examined six distinct cases while keeping the steady-state
oscillation below a certain value, and they obtained the least tracking time.

Yan et al. [27] proposed an algorithm called the Adaptive PSO Back Propagation Neural
Network-Fuzzy Control (APSO-BP-FLC). The proposed algorithm consists of three stages.
The simulation results showed that the proposed algorithm surpasses the performance
of the APSO-BP, FLC, and P&O algorithms in terms of tracking accuracy, steady-state
oscillation rate, and efficiency. Specifically, the proposed algorithm yielded an improvement
compared to other algorithms.

Rezk et al. [28] introduced two optimization techniques, namely PSO and CS, in
their paper. The performance of both techniques was compared to that of a conventional
INR-based tracker. The findings of the study revealed that PSO and CS-based trackers
showed superior performance. Moreover, the CS-based tracker outperformed the PSO-
based tracker in terms of tracking time and the ability to converge to the global MPP in all
investigated cases.

In their study on solar PV MPPT controller optimization using gray wolf optimizer,
Aguila-Leon et al. [29] compared their proposed method with other techniques such as
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P&O and INC. Their results showed that the proposed controller works well under varying
weather conditions and has low oscillations.

Castaño et al. [30] compared their studies, which suggested using the ABC algorithm
for MPPT, with the traditional P&O method and revealed that the proposed method
outperforms the proposed method. The researchers stated that the proposed algorithm has
several advantages, such as high efficiency, no need for parameter knowledge, increased
flexibility and simplicity, and fast-tracking power.

Al-Majidi et al. [3] proposed an optimized FFNN technique based on real data for
predicting the MPP of PV arrays. The ANN model’s topology and initial weights were
optimized using the PSO algorithm. The proposed method exhibited hourly average
efficiencies of over 99.67% and 99.30% on sunny and cloudy days, respectively. The
proposed method surpassed the conventional ANN, FLC, and P&O methods.

Corrêa et al. [31] proposed a new MPPT method for PV systems, which combines
P&O with a modified version of the Fractional Open Circuit Voltage algorithm. This
method enabled direct duty cycle control, reduced efficiency losses due to steady-state
oscillations, and tracked the global MPP during PS. Validation via computer simulations
and practical experiments showed that the proposed method outperformed commonly
used MPPT algorithms.

Dagal et al. [32] investigated an enhanced version of the SSA that is based on the PSO
approach. The outcomes of the study demonstrated impressive results, with the proposed
algorithm achieving remarkable efficiencies of up to 99.99% and generating high power
outputs of up to 316.32 W and 428.6 W under optimal operating conditions.

Ahmed et al. [33] introduced an enhanced MPPT technique that integrated the prin-
ciples of the P&O method and the Fractional-Order Sliding-Mode Predictive Control
(FS-MPC). This technique eliminated all the drift loops associated with traditional methods.
Compared to the direct and FS-MPC methods, the proposed technique was more efficient,
required fewer sensors, and had a lower computational time.

Ibrahim et al. [34] introduced a hybrid MPPT algorithm that utilized PSO for optimiz-
ing the output power of PV systems. The effectiveness of this algorithm was compared to
conventional methods under various weather conditions using a grid-connected PV system.
The results showed that the hybrid MPPT algorithm outperformed conventional methods
with a fast-tracking time of 43.4 ms and a high efficiency of 99.07%.

Ibnelouad et al. [35] proposed a hybrid approach called ANN-PSO that utilized ANN
for the prediction of solar irradiation and cell temperature, along with PSO for power
generation optimization and solar power tracking. Simulation results demonstrated that
the ANN-PSO approach attained up to 97% efficiency, indicating its potential to extract
optimal power and enhance the performance of PV systems.

Kumar et al. [36] proposed a new hybrid algorithm that PSO-trained ML and flying
squirrel search optimization to achieve optimum efficiency. The proposed algorithm is
compared with other well-known methods. The findings of the study outperformed
well-known algorithms, improving efficiency and reducing settling time.

Mohebbi et al. [37] introduced a novel method that integrated PSO with variable
coefficients and P&O techniques. The proposed method was used to converge to the global
MPP, while the P&O method was used until significant changes occurred in the system.
In the study, in which the MPPT structure of the PV system is introduced under partial
shading conditions, it is stated that the proposed algorithm has a much better performance
than other methods, such as PSO and P&O.

Ngo et al. [38] proposed a hybrid method that combines the improved CSO and
the INC algorithm for a DC standalone PV energy conversion system. The proposed
method achieved the global MPP under uniform solar irradiance and PS effects, and it was
faster and simpler in calculation than other methods. Simulation and experimental results
demonstrated that this control strategy had been successful in searching the global region.

Nancy Mary et al. [39] presented a hybrid genetic-particle swarm-based (GA-PSO)
MPPT and optimized ZETA converter to maximize output power and reduce ripple current.
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The GA-PSO-based ZETA converter provides regulated load power from renewable energy
sources and reduces distortions in the output effectively. The total harmonic distortion
(THD) was also effectively lowered by 20%.

Al-Muthanna et al. [40] discussed the challenges of using PSO for MPPT in PV energy
systems, especially under PS circumstances. The paper proposes a hybrid PSO-PID algo-
rithm that combines PSO with a PID controller to enhance tracking efficiency, reduce power
ripples, and improve response time. The algorithm outperforms conventional PSO and
bat algorithm MPPT strategies. The proposed hybrid PSO-PID MPPT shows significant
improvement.

Kacimi et al. [22] implemented a new combined GOA-Model Predictive Controller
(MPC) based GMPPT technique. Experimental simulations showed that this method
outperformed traditional methods (PSO, PSO-MPC, and GOA). The integration of the
MPC controller with the GOA technique reduced the steady-state oscillations and overall
MPPT time.

Nisha and Nisha [41] proposed a new methodology for optimal tuning of PV sys-
tems under PS conditions by integrating hybrid MPPT algorithms. The proposed system
addresses issues caused by clouds, trees, dirt, and dust and computes MPPT using an
adaptive model-based approach. The hybrid optimization approach combined the CS-P&O
and INC-PSO algorithms to achieve MPPT with 99.5% efficiency.

Gong et al. [42] proposed a bionic two-stage MPPT control strategy to improve the
accuracy and rapidity of the MPPT controller for PV systems. The first stage used an
improved ABC algorithm to quickly identify the rough search region around the global
peak, while the second stage used the simultaneous heat transfer search algorithm to
accurately acquire the global MPP. The proposed strategy showed excellent performance
and outperformed all counterparts.

Babes et al. [43] developed an FFNN model, which is optimized with the ACO learning
algorithm to evaluate the MPP of a PV system. The voltage and current of the PV array
were set as the input layer of the model, and the duty cycle was set as the parameter of the
output layer. Six topologies were created to find the best structure, and the best model was
observed as a model with a single hidden layer and 20 neurons.

Avila et al. [44] proposed a deep reinforcement learning (DRL) algorithm to maximize
the efficiency of MPPT control. With this proposed neural network, sensory information
was taken as input, and the control signal was taken as output.

Saravanan et al. [45] proposed an RBFN-based MPPT algorithm, and the results were
compared with the conventional P&O and INC methods using MATLAB/Simulink soft-
ware. The results revealed that the RBFN algorithm is better than the conventional methods.

3. Materials and Methods
3.1. Optimization Algorithms Based on Swarm-Intelligent
3.1.1. Particle Swarm Algorithm

PSO is a metaheuristic swarm intelligence-based optimization algorithm that simulates
the social behavior of swarms, such as flocks of birds or schools of fish [4]. A particle in
a swarm searches for food using previous experiences and discoveries of all particles in
the swarm. The particles are initially randomly distributed in the search space and move
according to two values related to the fitness value. The first value is the local best solution
that the particle has found so far. The second value is the global best solution found by the
swarm. First, each particle orders its acceleration by distance as follows:

vi = vi + 2r1
(
xt

iBest − xt
i
)
+ 2r2

(
xt

Best − xt
i
)

(1)

Here, r1 and r2 are random values in [0, 1]. xt
iBest is the best solution of the i-th particle

and xt
Best is the best solution for the swarm so far. After that, each particle moves to the

next position by using the following equation.

xt+1
i = xt

i + vi (2)
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3.1.2. Artificial Bee Colony Algorithm

ABC algorithm is a metaheuristic algorithm inspired by the swarming behavior of bees
to find a food source [5]. Three types of artificial bees perform search operations in ABC.
The first type of bee is the employed bee, which searches the food area independently. Each
employed bee has a food source. Another type is onlooker bees, which select a food source
from employed bees. In ABC, the colony consists of the same number of employed bees
and onlooker bees, and a food source improved by only one employed bee and a random
number of onlooker bees. In a predetermined iteration, an employed bee that cannot find
a better food source transforms into the last type of bee, the scout bee, which performs
random exploration. At the initialization of ABC, the employed bees randomly take their
positions. After that, each type of bee performs exploration successively throughout the
iterations. First, the employed bees search for a better position at the neighboring food
source as a candidate solution as follows:

vt
i,j = xt

i,j + φi,j

(
xt

i,j − xt
k,j

)
(3)

where jε{1, 2, · · ·D} for D dimensional search space, and k is randomly selected bee
index. t is the iteration index. φi,j is a random number in [−1, 1]. If a new location is
better, the bee moves there. In the second step, onlooker bees choose a location with a
probability calculated depending on the fitness values of the employed bees and behave as
an employed bee. In the last step, an employed bee whose position has not changed for a
certain number of iterations moves randomly in the search space. This step is the scout bee
step. These three steps continue until the stop criterion is met.

3.1.3. Firefly Algorithm

FA is a metaheuristic algorithm that simulates the flashing behavior of fireflies to find
an optimal solution [6]. The objective function determines the brightness of a firefly with
which it attracts other fireflies. The attraction also depends on the distance between the
two fireflies. The greater the distance, the less the attraction. A firefly updates its position
relative to the brightest firefly in proportion to the distance. If the brighter firefly is not
found, it goes to a random position. The updating of the position of a firefly is formulated
as follows:

xt+1
i = xt

i + e−λr2(
xt

b − xt
i
)
+ αε (4)

where xt
i is the current location of the firefly and xt

b is the location of the brightest firefly. λ
is the light absorption coefficient, and r is the distance. α is a random value in [0, 1], and ε
is a random vector. The algorithm starts with randomly generated fireflies. The brightness
is calculated as a function of distance and fitness value as follows:

I(r) = I0e−λr2
(5)

where I0 is the fitness value of the other fireflies. A firefly selects the best I(r) value as
brightest and then flies toward it. If there is no brighter value, it flies randomly. These steps
continue until the algorithm stops.

3.1.4. Krill Herd Algorithm

KHA is a metaheuristic algorithm that simulates the density-dependent attraction
and foraging of krill populations [7]. Three operations determine the movement of a krill
in search space. The first is the movement influenced by other krill individuals and is
calculated as follows:

Nt+1
i = Nmaxαi + ωi Nt

i (6)

Here, αi = αlocal
i + α

target
i . αlocal

i is the local effect caused by the neighbor and α
target
i is

the direction determined by the best krill individual. Nmax is the maximum induced speed,
ωi is the inertia weight of induced motion in [0, 1], and Nt

i is the last induced motion. The
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second operation is the foraging motion, which is calculated based on the food location
and previous experience. The foraging motion is expressed as follows:

Ft+1
i = Vf βi + ω f Ft

i (7)

where βi = β
f ood
i + βbest

i which β
f ood
i is the attractiveness of the food and βbest

i is the effect
of best fitness. Vf is the speed of foraging and ω f is the inertia weight for foraging motion
in [0, 1]. The krill individuals move randomly in the search space at the last operation,
which is called physical diffusion, as follows:

Dt+1
i = Dmaxδ (8)

Here, Dmax is the maximum diffusion speed, and δ is a random vector. Using all three
motion operations above, the final motion of the krill is calculated as follows:

xt+∆t
i = xt

i + ∆t
(

Nt+1
i + Ft+1

i + Dt+1
i

)
∆t = Ct

n

∑
j=1

(
Uj − Lj

) (9)

where n is the dimension of the search space, Uj is the upper bound and Lj is the lower
bound of the jth dimension. Ct is a constant in [0, 2]. In the last step, for the sake of
improving the performance of the algorithm, genetic operators such as the crossover and
the mutation are implemented. All these steps form a KHA iteration that continues until
stopping conditions are met.

3.1.5. Chicken Swarm Optimization

CSO is a bio-inspired metaheuristic optimization algorithm that mimics the behaviors
of a chicken swarm [8]. The swarm is divided into groups consisting of one roaster, a
number of hens, and chicks. Chickens are ranked according to their fitness values. The best
RN individuals are assigned as roosters, the worst CN individual chicks, and the rest as
hens. The roster whose fitness value is better has a bigger probability of searching a wider
range of areas. The new position of a roster is calculated as follows:

xt+1
i = xt

i

(
1 + rand

(
0, σ2

))
(10)

Here, rand
(
0, σ2) is a Gaussian distribution in which the mean is 0 and standard

deviation is σ2. A, hence, is moved by following the roster in the same group, and this is
formulated as follows:

xt+1
i = xt

i + re
(

fi− fr1
| fi |+ε

)(
xt

r1 − xt
i
)
+ re( fr2− fi)

(
xt

r2 − xt
i
)

(11)

where r is a random value in [0, 1]. xt
r1 is the position of the roster while xt

r2 is a position
of any chicken in the group. The f is the fitness value of a chicken, and ε is smallest value a
computer can produce. The chicks search around their mother with the following formula.

xt+1
i = xt

i + F
(

xt
m − xt

i
)

(12)

where F is a constant in [0, 2] and xt
m is the position of the chick’s mother. After G iterations,

the status of chickens is rearranged, and each chicken moves depending on its status at
each iteration until CA stops because of stopping conditions.

3.1.6. The Dragonfly Algorithm

DA is one of the swarm intelligent optimization algorithms whose main inspiration
is the swarm behavior of dragonflies during hunting and migration [9]. Individuals in
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the swarm change their position based on five factors: separation, alignment, cohesion,
attraction, and distraction. Separation is expressed by the sum of the distances of an
individual location from other individual locations. Alignment is calculated by taking the
average of neighboring locations, and cohesion is the difference between the alignment and
the current individual location. Attraction is the distance to the food source, and distraction
is the sum of the enemy and current individual positions. The food source is the best
solution, while the enemy is the worst solution ever. The position is updated using the
following formula.

xt+1
i = xt

i + ∆xt+1
i (13)

where xt
i current position of ith individual, t is iteration counter and ∆xt+1

i is step vector
formulated as follows:

∆xt+1
i = (sSi + aAi + cCi + f Fi + eEi) + w∆xt

i (14)

where s, a, c, f, and e are, respectively, the separation coefficient, the alignment coefficient,
the cohesion coefficient, the attraction coefficient, and the distraction coefficient. w is
inertia weight. Si, Ai, Ci, Fi end Ei are the separation, alignment, cohesion, attraction, and
distraction values, respectively. A dragonfly has a neighborhood within a certain radius.
During iterations, the radius is increased to explore a global optimum. If there is no other
dragonfly in the neighborhood, the dragonfly uses a random walk as follows:

xt+1
i = xt

i + Levy(d)× xt
i (15)

where d is the dimension of the search space and levy(.) is the Levy flight function. Low
cohesion and high alignment weights are used with a small radius. During iteration, the
larger the radius, the smaller the alignment, the greater the cohesion. Accordingly, at each
iteration, parameters should be updated until the stopping criterion is met.

3.1.7. Grasshopper Optimization Algorithm

GOA is an optimization algorithm that simulates the behavior of grasshopper swarms [10].
First, the parameters of GOA, such as maximum iteration, population size, cmax, and cmin
are defined, and the fitness of each grasshopper is calculated. At each iteration, the c
coefficient is updated as follows:

c = cmax− l
cmax− cmin

L
(16)

where l is the current iteration, and L is the maximum iteration. cmax and cmin are the
maximum and minimum values for c, respectively. After implementing this formula, for
each grasshopper, the distances between grasshoppers are normalized into [1, 4], and the
new positions are calculated as follows:

xt+1
i,d = c

 N

∑
j=1
j 6=i

c
ubd − lbd

2

(
f e
−|xt

j,d−xt
i,d |

l − e−|x
t
j,d−xt

i,d |
)

xt
j − xt

i∣∣∣xt
j − xt

i

∣∣∣
+ T̂d (17)

Here, N is the total number of grasshoppers in the swarm, f is the intensity of attraction,
l is the attractive length scale. ubd and lbd are the upper and lower bounds of the dth
dimension of the search space. T̂d is the best position till now. The iterations continue until
the maximum iteration is reached, and finally, the best position is returned as the solution
of GHA.
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3.1.8. Selfish Herd Optimizer

SHO is a swarm optimization algorithm [11]. The population consists of two groups:
Pack predators (P) and Perd of Prey (H). Each member of the population has a survival
value computed by the following equation.

SVi =
fi − fbest

fbest − fworst
(18)

where fi is the fitness value of the position of the ith member. fbest and fworst are the
best and worst fitness values found so far by SHO. Through the SHO iterations, the herd
movement operator is first applied for each member in H, which consists of two types of
movements: herd’s leader movement and herd’s following and desertion movement. The
position of the leader of a herd, which is the best in H so far, is updated as follows:

xt+1
L =

{
xt

L + ct i f SVL = 1
xt

L + st i f SVL < 1
(19)

where ct is the motion vector that depends on the selfish repulsion experiment and st is the
motion vector that depends on the selfish attraction experiment. Within H, the members
except the leader are divided into groups of herd followers (HF) and herd deserters (HD),
and each member moves according to the equation below.

xt+1
i =

{
xt

i + f t
i i f i ∈ Ht

F
xt

i + dt
i i f i ∈ Ht

D
(20)

Here f t
i is the following movement vector and dt

i is the herd desertion vector in the
iteration t. Then, the predator movement operator is applied to each member in P.

xt+1
i = xt

i + 2ρ
(

xt
h − xt

i
)

(21)

Here xt
h is the position of a randomly selected member in H, ρ is a random number

in [0, 1]. The iteration of SHO ends after predation and restoration phases are performed.
In the predation phase, members of the herd are killed by predators with the probability
of being hunted. These members are removed from the population. In the restoration
phase, new herd members are generated from the remaining herd members with the mating
probability. After these phases, if the stop criterion is satisfied, the iteration is finished.

3.1.9. The Butterfly Optimization Algorithm

BOA is inspired by the food-foraging activities of butterflies [12]. The optimization
process consists of three phases: The initial phase, the iteration phase, and the final phase.
Each phase is executed sequentially. In the initial phase, randomly generated agents, called
butterflies, are created to represent a candidate solution. Also, in this phase, the solution
space and the fitness function are defined, and the algorithm parameters are initialized. The
butterflies use the fragrance of other butterflies to find nectar, and each butterfly generates
the fragrance according to its fitness value. The fragrance is calculated as follows:

f = cIa (22)

where c and a are the sensory modality and power exponent, respectively, and are in the
range [0, 1]. I is the fitness value of the solution and is referred to as the stimulus intensity.
In the second phase, iterations are performed until the stopping criteria are met. A new
position of each butterfly is computed by one of the two main operations: global search
and local search. A switch probability p determines whether the global search or the local
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search is used. In global search, the direction of movement to find the new position is
determined by using the best position g* as follows:

xt+1
i = xt

i +
(

r2 × g∗ − xt
i

)
× fi (23)

where xt
i is the solution of the ith butterfly and r is a random number in [0, 1]. If r is greater

than the switch probability, then the local search is performed instead, as follows:

xt+1
i = xt

i +
(

r2 × xt
j − xt

k

)
× fi (24)

where xt
j and d xt

k are the solution of the ith and jth butterflies. The final phase of BOA
indicates the achievement of the stopping criterion. In this phase, the best butterfly position
is determined as the solution.

3.1.10. Tunicate Swarm Algorithm

TSA is a bio-inspired metaheuristic optimization algorithm [13]. Jet propulsion and
swarm intelligence are two behaviors of tunicates used by TSA. Jet propulsion is modeled
by three conditions. Avoiding conflicts between search agents, the first condition uses a
vector to determine the new position of a tunicate as follows:

→
A =

c2 + c3 − 2c1

bPmin + c1Pmax − Pminc
(25)

Here c1, c2, and c3 are random numbers in [0, 1]. Pmin and Pmax give the speed limits
for social interaction. The second condition is the movement towards the best neighbor. For
this purpose, the distance between the tunicate and the food source is calculated as follows:

−→
PD =

∣∣∣−→FS− r
−−−→
Pp(x)

∣∣∣ (26)

where
−→
FS represents the optimal location, x indicates the current iteration, and

−−−→
Pp(x)

indicates the position of the agent. r is a random value in [0, 1]. Then, the last condition for
modeling the jet propulsion is performed by converging to the best search agent as follows:

−−−→
Pp(x) =

{−→
FS +

−→
A ·−→PD i f r ≥ 0.5

−→
FS−−→A ·−→PD i f r < 0.5

(27)

When modeling the swarm behavior of tunicates, the best solution is used to update
the positions of the agents in the swarm using the following equation.

−−−−−→
Pp(x + 1) =

−−−→
Pp(x) +

−−−−−→
Pp(x + 1)

2c1
(28)

At each iteration, the TSA algorithm updates the search accents and their position
with respect to the jet propulsion and swarm behavior and returns the best optimal position
so far as the solution.

3.1.11. Tuna Swarm Optimization

TSO is a swarm-based metaheuristic optimization algorithm based on the cooperative
foraging behavior of tuna schools [14]. The spiral and parabolic tuna foraging strategies
are adapted to the TSO algorithm. Which strategy is used in an iteration is determined
randomly. In the spiral strategy, the next position of the tunas is calculated as follows:

xt+1
i = (α + (1− α)t/tmax)

(
xt

best + β
∣∣xt

best − xt
i
∣∣)+ ((1− α)− (1− α)t/tmax)xt

i−1 (29)
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where β = ebl cos(2πb) and l = e3 cos (((tmax+1/t)−1)π). a is a constant, t is the number of
iterations, tmax is the maximum number of iterations, i is tuna, and b is a random number in
[0, 1]. To improve global exploration capability, a randomly generated position is swapped
with xt

best in the equation mentioned above, provided that a randomly generated value
from the interval [0, 1] is greater than the ratio of t/tmax. In the case of using parabolic
foraging to determine the next position in an iteration, the equation given below is used.

xt+1
i =

{
xt

best + r
(

xt
best − xt

i
)
+ TF(1− t/tmax)

2t/tmax
(
xt

best − xt
i
)

i f r < 0.5
TF(1− t/tmax)

2t/tmax xt
i i f r ≥ 0.5

(30)

where TF is a random value in [−1, 1]. The TSO iterations continue to search for optimum
results until the stopping criteria are met.

3.1.12. Cuckoo Search

CS is a metaheuristic optimization algorithm inspired by the obligate brood parasitic
behavior of some cuckoo species [15]. An egg is a solution produced by a cuckoo and
stored in a nest in CS. The initial population is created by randomly generated eggs for
each host nest. Only one cuckoo is placed in a nest, and a new solution is generated from a
randomly selected egg by the cuckoo as follows:

xt+1
i = xt

i + α× Levy(λ) (31)

Here, α is the step size. In most cases α = 1 and 1 < λ ≤ 3. Each cuckoo places its egg
in a randomly selected nest at a time if the new egg is better than the older one. The best
nests, containing high-quality eggs, are retained to pass on to the next generation, while
the pa potion of the remainder is reproduced. These steps are repeated until the stopping
criterion is met.

3.1.13. Salp Swarm Algorithm

SSA was proposed to solve engineering optimization problems using the navigation
and foraging behavior of salps as a model [16]. The salp that has the best position is called
the leading salp. The other members of the population are called follower salps, which
form a salp chain to chase the position of the leading salp. First, an SSA population is
randomly created, and the leading salp is determined. Then, the position of the leading
salp is updated as follows:

xt+1
1 =

{
xt

1 + c1((u− l)c2 + l) c3 ≥ 0
xt

1 − c1((u− l)c2 + l) c3 < 0
(32)

where xt
1 is the position of the leading salp at the t-th iteration. u and l are the upper and

lower bounds of the search space, respectively. c2 and c3 are random numbers in [0, 1]. The
value of c1 is updated at each iteration as follows:

c1 = 2e−(
4t

tmax )
2

(33)

Here, tmax is the maximum number of iterations, and t is the current iteration. After
the position of the leader has been determined, the position of the followers is determined
as follows:

xt+1
i = 1/2

(
xt

i + xt
i−1
)

(34)

Here, xt
i is the i-th position of the follower salp i ≥ 2. Until reaching the global

optimum or stopping criteria, these processes are repeated.
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3.2. Feed Forward Neural Network

While developing ANNs, as the name suggests, it was inspired by the nervous system
of humans. ANN is successfully used to solve many problems, such as pattern classification,
signal processing, image processing, and prediction. The most important feature that
distinguishes ANNs from classical computer programs is their ability to learn. ANNs, or in
short, neural networks, are classified under two main headings: FFNNs and RNNs. The
main difference between the two models is that there is no feedback in FFNNs [46]. FFNNs
can approximate any function assigned to it with targeted accuracy [47].

There are no closed paths in FFNN models. Input and output nodes are not intercon-
nected among themselves; all other nodes are hidden nodes. Once the input nodes are set,
the remaining points adjust their values by forward propagation. In FFNN, the output
node values are determined by optimizing the model according to the values given at the
input [48].

Artificial neurons are the heart of ANNs. We use many artificial neurons to form an
ANN. In a conventional FFNN, there are three layers: the input layer, the hidden layer,
and the output layer. As shown in Figure 1, a neuron produces an output by performing a
series of operations on the data applied to its input. A FFNN can be formed by connecting
the output of one neuron to the input of another neuron. The neuron model in Figure 1 has
many inputs but only one output. Activation and transfer functions have a key role in the
output [49].
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Figure 1. Conventional model of an artificial neuron.

Input values are weighted using w values. The bias value is denoted by b. The
activation function is denoted by f. The output of the artificial neuron is denoted by y.
There are different activation functions used in ANNs. One of the commonly used functions
among these functions is the sigmoid function. In this study, we use the sigmoid function.
The calculations performed in an artificial neuron are as follows:

y = f

(
m

∑
i=1

wixi + b

)
(35)

σ(x) =
1

1 + e−x (36)

Weights and bias values have a significant effect on the training of the network. The
total number of parameters to be optimized depends on the number of inputs, the total
number of neurons, and their weights.

4. Simulation Results

In this study, FFNN was trained by using swarm-intelligent-based metaheuristic
algorithms for MPPT, and their performances were analyzed. 13 algorithms were used for
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FFNN training. These algorithms are ABC, BOA, CS, CSO, DA, FA, GOA, KHA, PSO, SHO,
SSA, TSA, and TSO.

One of the most important techniques used to reach the maximum power of alternative
energy sources is MPPT. Although it is used in different energy sources, its most intensive
use is on wind turbines and solar panels [50]. This study is on the MPPT of the solar PV
system. The simplified electrical equivalent circuit of a PV cell is given in Figure 2. It is
possible to calculate the output current and output voltage of a PV cell via (37) and (38).
Here, pvcell is PV cell current depending on temperature and solar radiation. Id is diode
current. Ip is parallel resistor current. Vd is diode voltage drop. Ipv is the PV cell output
current. Rs is serial resistor [50]. In this study, the data of 250 W solar panels was used. The
inputs of the system are temperature (t) and solar radiation (s). The power value (p) is the
output of the system. As here, the data set is scaled in the range of [0, 1] due to the large
values. All analyses were performed according to the scaled data set.

Ipv = Ipvcell − Id− Ip (37)

Vpv = Vd− Ip ∗ Rs (38)

Biomimetics 2023, 8, x FOR PEER REVIEW 13 of 23 
 

 

2. It is possible to calculate the output current and output voltage of a PV cell via (37) and 
(38). Here, 𝑝𝑣𝑐𝑒𝑙𝑙 is PV cell current depending on temperature and solar radiation. 𝐼𝑑 
is diode current. 𝐼𝑝 is parallel resistor current. 𝑉𝑑 is diode voltage drop. 𝐼𝑝𝑣 is the PV 
cell output current. 𝑅𝑠 is serial resistor [50]. In this study, the data of 250 W solar panels 
was used. The inputs of the system are temperature (t) and solar radiation (s). The power 
value (p) is the output of the system. As here, the data set is scaled in the range of [0, 1] 
due to the large values. All analyses were performed according to the scaled data set. 𝐼𝑝𝑣 = 𝐼𝑝𝑣𝑐𝑒𝑙𝑙 − 𝐼𝑑 − 𝐼𝑝 (37) 𝑉𝑝𝑣 = 𝑉𝑑 − 𝐼𝑝 ∗ 𝑅𝑠 (38) 

 
Figure 2. The simplified electrical equivalent circuit of a PV cell [50]. 

Approximately 80% of the data set was used for the training process. The rest is de-
voted to the testing process. The block diagram of the training process to be carried out 
for MPPT is presented in Figure 3. As seen here, a training process is separately carried 
out with ABC, BOA, CS, CSO, DA, FA, GOA, KHA, PSO, SHO, SSA, TSA, and TSO algo-
rithms. The output p is obtained corresponding to the inputs t and s. The difference be-
tween the estimated output and the real output gives the error. It is aimed to minimize 
this error at the end of the training process. A zero error indicates that the real system is 
optimally modeled. 

  

Figure 2. The simplified electrical equivalent circuit of a PV cell [50].

Approximately 80% of the data set was used for the training process. The rest is
devoted to the testing process. The block diagram of the training process to be carried out
for MPPT is presented in Figure 3. As seen here, a training process is separately carried out
with ABC, BOA, CS, CSO, DA, FA, GOA, KHA, PSO, SHO, SSA, TSA, and TSO algorithms.
The output p is obtained corresponding to the inputs t and s. The difference between the
estimated output and the real output gives the error. It is aimed to minimize this error at the
end of the training process. A zero error indicates that the real system is optimally modeled.
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Each application was run at least 30 times in order to obtain statistical results. The
mean squared error was used as the error metric. In the training process, results for three
different population sizes were obtained for each algorithm. These values are 10, 20, and
50. The numbers of maximum generation corresponding to these population sizes are
100, 50, and 20, respectively. Other control parameters used for algorithms are as follows.
The “limit” value of the ABC algorithm is calculated as (NP×D)/2. NP is the number
of population size. D is the number of parameters of the problem to be optimized. The
probability switch, power exponent, and sensory modality values of BOA are 0.8, 0.1,
and 0.01, respectively. The discovery rate of alien eggs/solutions of CS is 0.25. The light
absorption coefficient, attraction coefficient base value, mutation coefficient, and mutation
coefficient damping ratio of FA are 1, 2, 0.2, and 0.98, respectively. The inertia weights of
PSO are 0.9 and 0.6. The constant (a) of TSO is 0.7.

The FFNN model, consisting of two inputs and one output, was created to solve the
related problem. The results obtained for models with 5, 10, and 15 neurons in the hidden
layer are examined. In other words, 2-5-1, 2-10-1, and 2-15-1 network structures were used
in the applications. Only three different network structures were taken into consideration,
especially due to the high number of algorithms, the fact that each application was run
30 times, and results in different population sizes were obtained. In other words, high
processing times are avoided. This is one of the limitations of this study. These results in
this study should be considered within limitations. The summing function is used as the
transfer function in FFNN. Sigmoid was chosen as the activation function. The optimized
parameter numbers for 2-5-1, 2-10-1, and 2-15-1 network structures are 21, 41, and 61,
respectively.

The results obtained with 13 metaheuristic algorithms for n = 10 are given in Table 1.
The most effective training and test error values of the ABC algorithm were found to be
2-5-1. The training and test error values obtained with the ABC algorithm are 5.0 × 10−3

and 5.1 × 10−3, respectively. The worst training and test results were achieved with the
BOA. Increasing the number of neurons in CS worsened the results. The best results in
both training and testing were obtained with the 2-5-1 network structure. These results
are 3.9 × 10−3 and 3.9 × 10−3, respectively. The best results in CSO were obtained with
the 2-10-1 network structure. The training error value of CSO is 3.7 × 10−3. The test
error value found is 3.8 × 10−3. Increasing the number of neurons in DA worsened the
performance. The best training and test error values were obtained in the 2-5-1 network
structure. Effective results were achieved in all network structures in FA. The best training
and test error values were found as 1.8 × 10−3 and 1.8 × 10−3, respectively, via a 2-10-1
network structure. Increasing the number of neurons in GOA improved performance. The
best training and test error values were obtained with 2-15-1. As in the GOA, the best
results were achieved with 2-15-1 in KHA. The training result of KHA is 5.5× 10−3. The test
is 5.6 × 10−3. Network structure with low neuron count was more effective in PSO. Better
results were found with 2-5-1. Effective results were achieved with all network structures
in SHO. The best training and test results are 3.5 × 10−3 and 3.6 × 10−3, respectively. The
2-15-1 network structure has been effective in SSA. The best training error value of SSA is
4.0 × 10−3. The test error value is 4.1 × 10−3. The most effective network structure in TSA
is 2-10-1. The training and test error values are 2.5 × 10−3 and 2.6 × 10−3, respectively. As
in TSA, the 2-10-1 network structure is more effective in TSO.
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Table 1. Comparison of the results obtained for n = 10.

System Network
Structure

The Results
Train Test

Mean Std. Mean Std.

ABC

2-5-1 5.0 × 10−3 2.4 × 10−3 5.1 × 10−3 2.4 × 10−3

2-10-1 1.2 × 10−2 4.3 × 10−2 1.8 × 10−2 7.6 × 10−2

2-15-1 6.0 × 10−3 3.2 × 10−3 6.0 × 10−3 3.1 × 10−3

BOA

2-5-1 5.2 × 10−2 4.1 × 10−2 5.2 × 10−2 4.1 × 10−2

2-10-1 3.8 × 10−2 3.5 × 10−2 3.8 × 10−2 3.5 × 10−2

2-15-1 4.1 × 10−2 3.8 × 10−2 4.1 × 10−2 3.8 × 10−2

CS

2-5-1 3.9 × 10−3 1.1 × 10−3 3.9 × 10−3 1.1 × 10−3

2-10-1 4.0 × 10−3 1.2 × 10−3 4.1 × 10−3 1.2 × 10−3

2-15-1 4.3 × 10−3 1.6 × 10−3 4.4 × 10−3 1.6 × 10−3

CSO

2-5-1 5.3 × 10−3 2.9 × 10−3 5.3 × 10−3 2.9 × 10−3

2-10-1 3.7 × 10−3 2.6 × 10−3 3.8 × 10−3 2.6 × 10−3

2-15-1 4.6 × 10−3 2.6 × 10−3 4.7 × 10−3 2.6 × 10−3

DA

2-5-1 5.0 × 10−3 2.9 × 10−3 5.0 × 10−3 2.9 × 10−3

2-10-1 5.3 × 10−3 3.4 × 10−3 5.4 × 10−3 3.5 × 10−3

2-15-1 5.7 × 10−3 3.5 × 10−3 5.7 × 10−3 3.4 × 10−3

FA

2-5-1 2.0 × 10−3 2.0 × 10−3 2.0 × 10−3 2.0 × 10−3

2-10-1 1.8 × 10−3 1.9 × 10−3 1.8 × 10−3 1.9 × 10−3

2-15-1 1.9 × 10−3 1.7 × 10−3 1.9 × 10−3 1.8 × 10−3

GOA

2-5-1 1.3 × 10−2 3.4 × 10−2 1.3 × 10−2 3.5 × 10−2

2-10-1 1.2 × 10−2 4.0 × 10−2 1.2 × 10−2 4.0 × 10−2

2-15-1 4.9 × 10−3 3.1 × 10−3 4.9 × 10−3 3.2 × 10−3

KHA

2-5-1 5.6 × 10−3 7.3 × 10−3 5.6 × 10−3 7.3 × 10−3

2-10-1 6.9 × 10−3 8.7 × 10−3 7.0 × 10−3 9.0 × 10−3

2-15-1 5.5 × 10−3 5.8 × 10−3 5.6 × 10−3 6.0 × 10−3

PSO

2-5-1 6.5 × 10−3 2.6 × 10−3 6.5 × 10−3 2.6 × 10−3

2-10-1 9.0 × 10−3 3.0 × 10−3 9.1 × 10−3 3.1 × 10−3

2-15-1 8.6 × 10−3 3.0 × 10−3 8.6 × 10−3 3.0 × 10−3

SHO

2-5-1 3.7 × 10−3 2.5 × 10−3 3.7 × 10−3 2.6 × 10−3

2-10-1 3.5 × 10−3 2.1 × 10−3 3.6 × 10−3 2.1 × 10−3

2-15-1 3.6 × 10−3 3.3 × 10−3 3.7 × 10−3 3.3 × 10−3

SSA

2-5-1 4.7 × 10−3 3.2 × 10−3 4.7 × 10−3 3.2 × 10−3

2-10-1 4.1 × 10−3 2.3 × 10−3 4.1 × 10−3 2.2 × 10−3

2-15-1 4.0 × 10−3 3.1 × 10−3 4.1 × 10−3 3.1 × 10−3

TSA

2-5-1 1.5 × 10−2 3.4 × 10−2 1.5 × 10−2 3.4 × 10−2

2-10-1 2.5 × 10−3 1.6 × 10−3 2.6 × 10−3 1.7 × 10−3

2-15-1 2.9 × 10−3 1.4 × 10−3 2.9 × 10−3 1.4 × 10−3

TSO

2-5-1 3.3 × 10−3 1.9 × 10−3 3.3 × 10−3 1.8 × 10−3

2-10-1 2.7 × 10−3 1.5 × 10−3 2.8 × 10−3 1.5 × 10−3

2-15-1 3.0 × 10−3 1.7 × 10−3 3.1 × 10−3 1.7 × 10−3
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The results obtained with 13 metaheuristic algorithms for n = 20 are given in Table 2. 2-
5-1 is the most effective network structure in the ABC algorithm. As with n = 10, the results
of BOA are ineffective at n = 20. 2-5-1 is more effective in CS. The training and test results of
CS are 5.5 × 10−3 and 5.6 × 10−3, respectively. The training error value found in the CSO is
3.9 × 10−3. The test error value is 4.0 × 10−3. An increase in the number of neurons in DA
improved performance. The most effective results were achieved with the 2-5-1 network
structure in FA. The training and test results of the FA are 5.0 × 10−4 and 5.2 × 10−4,
respectively. Effective and similar results were achieved with all network structures in
GOA. The increasing population size in KHA worsened performance. Unsuccessful results
were found with all network structures. The most effective results in PSO were achieved
with 2-10-1. For n = 20, SHO is successful. Increasing the number of neurons in SHO
improved performance. Effective results were achieved with 2-15-1 in SHO. The training
and test error values found are 1.6 × 10−3 and 1.6 × 10−3, respectively. In SSA, 2-15-1 is
more effective than other network structures. Effective results were achieved with 2-10-1 in
TSA. Training and test results of TSA are 2.5 × 10−3 and 2.5 × 10−3, respectively. 2-10-1
and 2-15-1 network structures are successful in TSO.

Table 2. Comparison of the results obtained for n = 20.

System Network
Structure

The Results

Train Test

Mean Std. Mean Std.

ABC

2-5-1 7.0 × 10−3 2.3 × 10−3 7.1 × 10−3 2.4 × 10−3

2-10-1 8.9 × 10−3 8.2 × 10−3 8.9 × 10−3 8.5 × 10−3

2-15-1 1.3 × 10−2 1.4 × 10−2 5.6 × 10−2 1.2 × 10−1

BOA

2-5-1 3.7 × 10−2 3.1 × 10−2 3.7 × 10−2 3.1 × 10−2

2-10-1 2.1 × 10−2 1.8 × 10−2 2.2 × 10−2 1.8 × 10−2

2-15-1 2.6 × 10−2 2.5 × 10−2 2.6 × 10−2 2.5 × 10−2

CS

2-5-1 5.5 × 10−3 1.6 × 10−3 5.6 × 10−3 1.6 × 10−3

2-10-1 5.8 × 10−3 1.7 × 10−3 5.8 × 10−3 1.7 × 10−3

2-15-1 6.5 × 10−3 2.1 × 10−3 6.6 × 10−3 2.2 × 10−3

CSO

2-5-1 3.9 × 10−3 2.3 × 10−3 4.0 × 10−3 2.4 × 10−3

2-10-1 4.7 × 10−3 1.4 × 10−3 4.8 × 10−3 1.5 × 10−3

2-15-1 6.9 × 10−3 2.3 × 10−3 7.1 × 10−3 2.5 × 10−3

DA

2-5-1 4.3 × 10−3 3.3 × 10−3 4.4 × 10−3 3.4 × 10−3

2-10-1 4.0 × 10−3 3.2 × 10−3 4.1 × 10−3 3.3 × 10−3

2-15-1 3.5 × 10−3 2.1 × 10−3 3.5 × 10−3 2.1 × 10−3

FA

2-5-1 5.0 × 10−4 3.9 × 10−4 5.2 × 10−4 4.0 × 10−4

2-10-1 8.0 × 10−4 9.6 × 10−4 8.3 × 10−4 1.0 × 10−3

2-15-1 5.4 × 10−4 4.6 × 10−4 5.4 × 10−4 4.7 × 10−4

GOA

2-5-1 3.5 × 10−3 2.3 × 10−3 3.6 × 10−3 2.4 × 10−3

2-10-1 3.4 × 10−3 2.5 × 10−3 3.5 × 10−3 2.5 × 10−3

2-15-1 3.7 × 10−3 3.1 × 10−3 3.7 × 10−3 3.1 × 10−3
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Table 2. Cont.

System Network
Structure

The Results

Train Test

Mean Std. Mean Std.

KHA

2-5-1 1.5 × 10−2 1.2 × 10−2 1.5 × 10−2 1.2 × 10−2

2-10-1 1.5 × 10−2 7.4 × 10−3 1.5 × 10−2 7.3 × 10−3

2-15-1 1.9 × 10−2 1.4 × 10−2 1.9 × 10−2 1.4 × 10−2

PSO

2-5-1 1.0 × 10−2 4.4 × 10−3 1.0 × 10−2 4.5 × 10−3

2-10-1 9.0 × 10−3 3.7 × 10−3 9.0 × 10−3 3.7 × 10−3

2-15-1 9.4 × 10−3 3.2 × 10−3 9.5 × 10−3 3.2 × 10−3

SHO

2-5-1 2.7 × 10−3 1.7 × 10−3 2.8 × 10−3 1.7 × 10−3

2-10-1 1.9 × 10−3 9.9 × 10−4 2.0 × 10−3 1.0 × 10−3

2-15-1 1.6 × 10−3 6.3 × 10−4 1.6 × 10−3 6.5 × 10−4

SSA

2-5-1 5.0 × 10−3 2.9 × 10−3 5.0 × 10−3 3.0 × 10−3

2-10-1 5.6 × 10−3 3.6 × 10−3 5.7 × 10−3 3.7 × 10−3

2-15-1 4.4 × 10−3 2.7 × 10−3 4.5 × 10−3 2.7 × 10−3

TSA

2-5-1 5.1 × 10−3 8.5 × 10−3 5.1 × 10−3 7.9 × 10−3

2-10-1 2.5 × 10−3 1.3 × 10−3 2.6 × 10−3 1.3 × 10−3

2-15-1 2.9 × 10−3 1.5 × 10−3 3.0 × 10−3 1.9 × 10−3

TSO

2-5-1 3.6 × 10−3 2.4 × 10−3 3.6 × 10−3 2.3 × 10−3

2-10-1 3.2 × 10−3 1.8 × 10−3 3.3 × 10−3 1.8 × 10−3

2-15-1 3.3 × 10−3 1.5 × 10−3 3.4 × 10−3 1.6 × 10−3

The results obtained with 13 metaheuristic algorithms for n = 50 are given in Table 3.
The results obtained for n = 50 in the ABC algorithm are unsuccessful. The training and test
error values found in the 2-10-1 network structure with BOA are 1.5 × 10−2 and 1.5 × 10−2,
respectively. In CS and CSO, 2-10-1 network structures are more effective than other
network structures. The training error value found with the 2-5-1 network structure in DA
is 3.8 × 10−3. Its test error value is 3.9 × 10−3. Effective results have been achieved with
all network structures in FA. The most effective network structure is 2-5-1. The training
and test error values found are 4.5 × 10−4 and 4.6 × 10−4, respectively. Successful training
and test results were achieved with 2-10-1 in GOA. The results found for n = 50 in KHA
and PSO are unsuccessful. Successful results were achieved in SHO. The 2-10-1 network
structure is effective. The best training and test error values found are 1.9 × 10−3 and
2.0 × 10−3, respectively. The training and test error values found with 2-10-1 in the SSA
are 5.3 × 10−3 and 5.4 × 10−3, respectively. Effective results were found with the 2-15-1
network structure in TSA. The training and test error values found with the 2-5-1 network
structure in TSO are 4.1 × 10−3.
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Table 3. Comparison of the results obtained for n = 50.

System Network
Structure

The Results
Train Test

Mean Std. Mean Std.

ABC

2-5-1 1.2 × 10−2 1.0 × 10−2 1.3 × 10−2 1.0 × 10−2

2-10-1 1.1 × 10−2 5.0 × 10−3 1.1 × 10−2 5.0 × 10−3

2-15-1 1.3 × 10−2 6.2 × 10−3 1.3 × 10−2 6.0 × 10−3

BOA

2-5-1 2.5 × 10−2 1.6 × 10−2 2.5 × 10−2 1.6 × 10−2

2-10-1 1.5 × 10−2 1.2 × 10−2 1.5 × 10−2 1.2 × 10−2

2-15-1 1.8 × 10−2 1.2 × 10−2 1.8 × 10−2 1.2 × 10−2

CS

2-5-1 8.2 × 10−3 2.3 × 10−3 8.3 × 10−3 2.3 × 10−3

2-10-1 7.5 × 10−3 2.4 × 10−3 7.6 × 10−3 2.4 × 10−3

2-15-1 8.1 × 10−3 3.0 × 10−3 8.2 × 10−3 2.9 × 10−3

CSO

2-5-1 7.3 × 10−3 2.9 × 10−3 7.3 × 10−3 2.9 × 10−3

2-10-1 7.0 × 10−3 2.6 × 10−3 7.1 × 10−3 2.6 × 10−3

2-15-1 7.6 × 10−3 2.8 × 10−3 7.8 × 10−3 2.8 × 10−3

DA

2-5-1 3.8 × 10−3 3.0 × 10−3 3.9 × 10−3 3.0 × 10−3

2-10-1 4.6 × 10−3 3.5 × 10−3 4.7 × 10−3 3.5 × 10−3

2-15-1 4.1 × 10−3 2.5 × 10−3 4.2 × 10−3 2.6 × 10−3

FA

2-5-1 4.5 × 10−4 2.3 × 10−4 4.6 × 10−4 2.3 × 10−4

2-10-1 5.5 × 10−4 2.8 × 10−4 5.7 × 10−4 2.8 × 10−4

2-15-1 8.6 × 10−4 5.5 × 10−4 8.9 × 10−4 5.8 × 10−4

GOA

2-5-1 2.7 × 10−3 1.9 × 10−3 2.8 × 10−3 1.9 × 10−3

2-10-1 2.3 × 10−3 1.6 × 10−3 2.4 × 10−3 1.7 × 10−3

2-15-1 3.3 × 10−3 2.2 × 10−3 3.4 × 10−3 2.3 × 10−3

KHA

2-5-1 1.6 × 10−2 6.9 × 10−3 1.6 × 10−2 6.8 × 10−3

2-10-1 1.8 × 10−2 7.2 × 10−3 1.8 × 10−2 7.2 × 10−3

2-15-1 1.6 × 10−2 5.6 × 10−3 1.6 × 10−2 5.6 × 10−3

PSO

2-5-1 1.1 × 10−2 4.0 × 10−3 1.1 × 10−2 4.1 × 10−3

2-10-1 1.0 × 10−2 3.9 × 10−3 1.0 × 10−2 3.9 × 10−3

2-15-1 1.1 × 10−2 3.8 × 10−3 1.1 × 10−2 3.7 × 10−3

SHO

2-5-1 2.3 × 10−3 1.4 × 10−3 2.3 × 10−3 1.5 × 10−3

2-10-1 1.9 × 10−3 8.4 × 10−4 2.0 × 10−3 8.9 × 10−4

2-15-1 3.3 × 10−3 4.2 × 10−3 3.3 × 10−3 4.1 × 10−3

SSA

2-5-1 7.4 × 10−3 3.8 × 10−3 7.6 × 10−3 3.8 × 10−3

2-10-1 5.3 × 10−3 2.8 × 10−3 5.4 × 10−3 2.8 × 10−3

2-15-1 5.7 × 10−3 3.8 × 10−3 5.8 × 10−3 3.9 × 10−3

TSA

2-5-1 3.7 × 10−3 2.6 × 10−3 3.7 × 10−3 2.6 × 10−3

2-10-1 3.4 × 10−3 2.3 × 10−3 3.5 × 10−3 2.3 × 10−3

2-15-1 3.1 × 10−3 1.3 × 10−3 3.2 × 10−3 1.4 × 10−3

TSO

2-5-1 4.1 × 10−3 2.5 × 10−3 4.1 × 10−3 2.6 × 10−3

2-10-1 5.3 × 10−3 2.8 × 10−3 5.3 × 10−3 2.8 × 10−3

2-15-1 5.7 × 10−3 2.6 × 10−3 5.9 × 10−3 2.6 × 10−3



Biomimetics 2023, 8, 402 19 of 23

5. Discussion

Network structure and population size significantly affect the performance of 13 algo-
rithms. Some algorithms are more effective at low population sizes, while others are more
effective at higher population sizes. The same is true for the network structure. The change
in the number of neurons in the hidden layer affects the performance. Information on the
best train mean error values obtained using related metaheuristic algorithms is given in
Table 4. The best results with ABC, CS, CSO, KHA, PSO, SSA, TSA, and TSO algorithms
were obtained when n = 10. The most effective results with DA and SHO were found
when n = 20. BOA, FA, and GOA achieved more effective results with n = 50. In other
words, the most successful results in 8 of 13 algorithms were obtained when n = 10. This
number was 2 for n = 20, while this value was 3 for n = 50. The most effective results with
ABC, CS, FA, and PSO were obtained with the 2-5-1 network structure. On the other hand,
BOA, CSO, GOA, TSA, and TSO achieved better results in the 2-10-1 network structure.
Other algorithms found their best results with a 2-15-1 network structure. In other words,
the most effective results of the five algorithms were achieved with the 2-10-1 network
structure. For other network structures, this value is four. Information on the best test
mean error values obtained using related metaheuristic algorithms is given in Table 5. All
of the evaluations made for Table 4 are valid for Table 5. In other words, the parameters in
the training and testing processes showed parallelism with each other.

Table 4. Information on the best train mean error values obtained using related metaheuristic
algorithms.

Algorithm
Train

Network
Structure Population Size Mean Std.

ABC 2-5-1 10 5.0 × 10−3 2.4 × 10−3

BOA 2-10-1 50 1.5 × 10−2 1.2 × 10−2

CS 2-5-1 10 3.9 × 10−3 1.1 × 10−3

CSO 2-10-1 10 3.7 × 10−3 2.6 × 10−3

DA 2-15-1 20 3.5 × 10−3 2.1 × 10−3

FA 2-5-1 50 4.5 × 10−4 2.3 × 10−4

GOA 2-10-1 50 2.3 × 10−3 1.6 × 10−3

KHA 2-15-1 10 5.5 × 10−3 5.8 × 10−3

PSO 2-5-1 10 6.5 × 10−3 2.6 × 10−3

SHO 2-15-1 20 1.6 × 10−3 6.3 × 10−4

SSA 2-15-1 10 4.0 × 10−3 3.1 × 10−3

TSA 2-10-1 10 2.5 × 10−3 1.6 × 10−3

TSO 2-10-1 10 2.7 × 10−3 1.5 × 10−3

According to the results in Tables 4 and 5, the success rankings of 13 swarm intelligent-
based training algorithms in the training and testing process were compared for the solution
of the MPPT problem in Table 6. The most effective result was found with FA in both
training and testing processes. The training and test error values obtained are 4.5 × 10−4

and 4.6 × 10−4, respectively. After FA, the most successful algorithm is SHO. The best
training and testing values found with SHO are 1.6 × 10−3. The third most successful
algorithm is GOA. The best training error achieved with GOA is 2.3 × 10−3. The test error
value of GOA is 2.4 × 10−3. The fourth successful algorithm is TSA. The fifth algorithm
is TSO. The next ranks according to performance are as follows: DA, CSO, CS, SSA, ABC,
KHA, PSO, and BOA.
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Table 5. Information on the best test mean error values obtained using related metaheuristic algorithms.

Algorithm
Test

Network
Structure Population Size Mean Std.

ABC 2-5-1 10 5.1 × 10−3 2.4 × 10−3

BOA 2-10-1 50 1.5 × 10−2 1.2 × 10−2

CS 2-5-1 10 3.9 × 10−3 1.1 × 10−3

CSO 2-10-1 10 3.8 × 10−3 2.6 × 10−3

DA 2-15-1 20 3.5 × 10−3 2.1 × 10−3

FA 2-5-1 50 4.6 × 10−4 2.3 × 10−4

GOA 2-10-1 50 2.4 × 10−3 1.7 × 10−3

KHA 2-15-1 10 5.6 × 10−3 6.0 × 10−3

PSO 2-5-1 10 6.5 × 10−3 2.6 × 10−3

SHO 2-15-1 20 1.6 × 10−3 6.5 × 10−4

SSA 2-15-1 10 4.1 × 10−3 3.1 × 10−3

TSA 2-10-1 10 2.6 × 10−3 1.7 × 10−3

TSO 2-10-1 10 2.8 × 10−3 1.5 × 10−3

Table 6. General success scores according to the best results of related metaheuristic algorithms.

Order Algorithm Train Ranking Score Test Ranking Score Total
Score

1 FA 1 1 2

2 SHO 2 2 4

3 GOA 3 3 6

4 TSA 4 4 8

5 TSO 5 5 10

6 DA 6 6 12

7 CSO 7 7 14

8 CS 8 9 17

9 SSA 9 8 17

10 ABC 10 10 20

11 KHA 11 11 22

12 PSO 12 12 24

13 BOA 13 13 26

6. Conclusions

In this study, the performance of thirteen swarms of intelligence-based algorithms in
FFNN training for MPPT was evaluated. These algorithms are ABC, BOA, CS, CSO, DA,
FA, GOA, KHA, PSO, SHO, SSA, TSA, and TSO. Three different network structures are
used to analyze the effect of the network structure of the ANN on the results. They are
2-5-1, 2-10-1 and 2-15-1. At the same time, the effect of population size, which is one of the
important control parameters, on the results was investigated. The results are obtained for
values of 10, 20 and 50. The general results of this study are as follows:

• In general, all algorithms were found to be effective for MPPT. The three most effective
algorithms are FA, SHO, and GOA.
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• Network structure affects the performance of training algorithms. The network struc-
ture in which each algorithm is more successful may be different from each other.

• As with the network structure, the population size affects the performance of the
training algorithms in solving the related problem. The population size in which each
algorithm is more successful may differ.

• In general, the training and test results for each algorithm were close to each other.
This shows that the learning process is successful.

This study is one of the most comprehensive studies based on swarm intelligence,
and the performance of thirteen algorithms is compared specifically to MPPT. However,
there are many problems in the real world, and the results of this study will shed light on
future studies. We will evaluate the performances of metaheuristic algorithms based on
swarm intelligence in the future in solving problems in many fields, such as engineering,
economics, social sciences, educational sciences, and medicine.
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Abbreviations
The following abbreviations are used in this manuscript:

BOA Butterfly optimization algorithm
SSA Salp swarm algorithm
FA Firefly algorithm
ABC Artificial bee colony
PSO Particle swarm optimization
KHA Krill herd algorithm
CS Cuckoo search
FFNN Feed-forward neural network
ANN Artificial neural network
GOA Grasshopper optimization algorithm
ANFIS Adaptive Network Fuzzy Inference System
DA Dragonfly algorithm
SHO Selfish herd optimizer
TSA Tunicate swarm algorithm
TSO Tuna swarm optimization
CSO Chicken swarm optimization
MPP Maximum power point
MPPT Maximum power point tracking
PV Photovoltaic
P&O Perturb and observe
INC Incremental Conductance
PID Proportional Integral Derivative
FLC Fuzzy Logic Control
PS Photovoltaic System
SGO Social group optimization
SMO Slime mould optimization
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RNNs Recurrent neural networks
ACO Ant colony optimization
RBFN Radial basis function network
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