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Abstract: The path planning problem has gained more attention due to the gradual popularization of
mobile robots. The utilization of reinforcement learning techniques facilitates the ability of mobile
robots to successfully navigate through an environment containing obstacles and effectively plan their
path. This is achieved by the robots’ interaction with the environment, even in situations when the
environment is unfamiliar. Consequently, we provide a refined deep reinforcement learning algorithm
that builds upon the soft actor-critic (SAC) algorithm, incorporating the concept of maximum entropy
for the purpose of path planning. The objective of this strategy is to mitigate the constraints inherent in
conventional reinforcement learning, enhance the efficacy of the learning process, and accommodate
intricate situations. In the context of reinforcement learning, two significant issues arise: inadequate
incentives and inefficient sample use during the training phase. To address these challenges, the
hindsight experience replay (HER) mechanism has been presented as a potential solution. The HER
mechanism aims to enhance algorithm performance by effectively reusing past experiences. Through
the utilization of simulation studies, it can be demonstrated that the enhanced algorithm exhibits
superior performance in comparison with the pre-existing method.

Keywords: mobile robot; path planning; reinforcement learning; soft actor-critic; hindsight
experience replay

1. Introduction

The proliferation of mobile robots across several industries is a direct consequence of
advancements in science and technology. The significance of path planning in enabling
mobile robots to achieve autonomous navigation has been widely recognized and has
experienced substantial advancements and increased attention in recent times [1]. The
primary objective of path planning is to identify a path that is both safe and free from
collisions, while also minimizing the distance traveled, within a complex environment. This
enables a robot to successfully navigate from its present state to a desired target state [2].

The issue of path planning can be categorized into two basic components: global path
planning and local path planning. These components rely on the robot’s acquisition of
information pertaining to its immediate surroundings. Global route planning refers to the
entirety of the environment information that is known to the robot, whereas local path
planning pertains to the knowledge about the environment that is only partially known
or completely unknown to the robot [3]. The primary algorithms for global path planning
can be categorized into two groups: traditional algorithms, such as the A* algorithm [4],
the Dijkstra algorithm [5], rapidly exploring random tree (RRT) [6], and probabilistic road
map (PRM) [7], and intelligent algorithms, including the ant colony optimization (ACO)
algorithm [8] and genetic algorithm (GA) [9], and the particle swarm optimization (PSO)
algorithm [10]. The primary algorithms utilized for local path planning can be classified
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into two categories: traditional algorithms, such as artificial potential field (APF) [11], the
dynamic window approach (DWA) [12], and the time elastic band (TEB) algorithm [13],
and artificial intelligence algorithms, including the neural network (NN) algorithm [14] and
the reinforcement learning (RL) algorithm, among others. Global path-planning algorithms
are particularly suitable for performing path searches in static environments, where it
is essential to have comprehensive knowledge of the environment’s map information.
Nevertheless, in intricate settings, these algorithms often exhibit extended and inefficient
planning durations, and they are susceptible to becoming trapped in local optima. In
real-world situations, it is frequently observed that environmental data may exhibit a
lack of comprehensiveness. Simultaneously, the computational complexity experiences
a significant augmentation as a result of the necessity to explore the entirety of the map,
rendering it incapable of fulfilling real-time demands. As a result, the need for real-
time path planning arises. Nevertheless, conventional local path-planning techniques
demonstrate shortcomings in terms of their capacity to adapt to the environment, efficiency,
and vulnerability to local optima. Consequently, they are unable to produce the path that is
globally optimal. Hence, the significance of a path-planning approach that incorporates
autonomous learning and decision-making capabilities cannot be overstated.

Reinforcement learning (RL) is an algorithm characterized by autonomous learning,
which has gained significant prominence in recent years. In contrast with conventional
algorithms that typically rely on the availability of complete or partial environmental
information, reinforcement-learning-based algorithms exhibit the unique characteristic of
not requiring prior knowledge of the environmental information. In order to adapt to unfa-
miliar surroundings, individuals have the ability to modify their activities by continuously
receiving feedback from interactions with the environment. From autonomous learning,
they are able to make informed judgments that lead to greater rewards, ultimately enabling
them to strategize and determine the most ideal path [15]. Duguleana et al. employed
a hybrid approach that integrated Q-learning and neural networks to accomplish path
planning for mobile robots [16]. The proposed approach successfully accomplishes au-
tonomous obstacle avoidance for both stationary and moving objects, regardless of whether
global information is available or not. Maoudj et al., introduced a novel approach to path
optimization using Q-learning. Their method involves equipping the robot with a priori
knowledge through the utilization of a new reward function. This approach facilitates ac-
celerated learning and enhances the optimization process, leading to fast convergence [17].
In their study, Pei et al. integrated a heuristic search strategy and simulated an annealing
mechanism into an enhanced version of the Dyna-Q algorithm. This integration resulted in
enhancements to both the global search rate and the learning efficiency of path planning, as
reported in their research [18]. Wen et al. introduced a hierarchical SARSA approach that
utilizes topological maps [19]. This method involves generating the topological area using
a dynamic growth algorithm. Additionally, the authors incorporate the artificial potential
field method and topological maps to initialize the Q-tables separately. This integration
results in improved convergence of the algorithm.

Deep reinforcement learning (DRL) is a more effective way of learning by combining
the neural network of deep learning with the reinforcement learning algorithm and using
the neural network as a function approximator to represent the value function or the policy
function so that the deep reinforcement learning (DRL) so constituted is a more effective
way of learning. Yang et al. solved the problem of a slow rate of convergence and high
randomness in path planning by adding prior knowledge and rules to the deep-Q network
(DQN) algorithm and improved the efficiency of path planning [20]. Yang et al. proposed
a global path-planning algorithm based on dual-deep-Q networks (DDQNs), which com-
bines the a priori knowledge and action masking methods, and adapts the optimized
paths by adjusting the reward functions for different tasks [21]. Sasaki et al. proposed
an asynchronous-advantage-based asynchronous advantage actor-critic (A3C) algorithm,
which is able to adapt to dynamic environments and thus perform path planning [22]. Chen
et al. combined the preferential experience replay (PER) technique with the soft actor-critic



Biomimetics 2023, 8, 481 3 of 15

(SAC) algorithm for deep reinforcement learning for path planning, which improves the
sample utilization rate and the success rate of path planning [23]. Xu et al. decoupled
the decoupled hybrid action space, reduced robot crosstalk using a centralized training
decentralized execution framework, and optimized the soft actor-critic (SAC) algorithm to
improve the convergence and robustness of the algorithm [24]. Tian et al. added hierar-
chical learning (HL) and particle swarm optimization (PSO) to an improved deep policy
gradient (DDPG) algorithm to improve path planning by setting the buffer to improve the
path accuracy, which, in turn, improves the convergence speed and accuracy of path plan-
ning [25]. Gao et al. combined the traditional algorithm probabilistic roadmap (PRM) with
twin-delayed depth deterministic policy gradient (TD3), which improves the adaptability
of the model and reduces the training time through dimensionality reduction to improve
the efficiency of path planning [26]. Cheng et al. used the deep policy gradient algorithm
(DDPG) to establish control laws for linear and steering speeds and implemented a tracking
obstacle avoidance control method by redesigning the state and reward functions [27].
Despite the advancements made in reinforcement learning, the aforementioned methods
still possess some limitations. These include unstable training, inadequate convergence,
incentive overestimation, limited adaptability to environmental conditions, and suboptimal
utilization of samples in real-world scenarios.

In this paper, we propose an improved deep reinforcement learning SAC method
to apply it to path planning for mobile robots. The main contributions of this paper are
summarized as follows:

• In this study, we provide a novel deep reinforcement learning method based on the
soft actor–critic (SAC) framework for the purpose of path planning in settings with
unknown characteristics. The algorithm has been modified to accommodate a continu-
ous action space and operates as an offline method. The introduction of maximum
entropy is employed to mitigate the issue of local optimality, hence enhancing the
system’s resistance to interference.

• Furthermore, the hindsight experience replay (HER) algorithm is proposed as a solu-
tion to address the challenges of reward scarcity and the sluggish training pace seen
in goal-oriented reinforcement learning algorithms. HER achieves this by recalcu-
lating reward values and efficiently using the knowledge gained from unsuccessful
experiences during the training process.

• Third, the simulation experiments of path planning with environmental maps verify
that the new algorithm HER-SAC can effectively perform path planning and improve
the training speed and convergence of the algorithm.

The subsequent sections of this paper are structured in the following manner. Section 2
provides an overview of the theoretical underpinnings of the path-planning method, en-
compassing two key components: reinforcement learning and the soft actor–critic (SAC)
algorithm. Section 3 provides an overview of the theoretical foundation and framework of
the enhanced algorithm, along with a detailed explanation of the design considerations
for the action space, state space, and reward function. Section 4 of this paper provides a
comparative analysis of various algorithms for path planning in a simulated environment.
The discussion and analysis of the simulation results for path planning are presented in
Section 5. Section 6 provides the concluding remarks for this research article.

2. Path-Planning Algorithm

The problem of path planning for mobile robots is framed within the context of
reinforcement learning. Additionally, an advanced deep reinforcement learning technique
called soft actor–critic (SAC) is introduced. This section will be utilized in the subsequent
phase to enhance the algorithm.

2.1. Enhanced Learning

Reinforcement learning, situated between the supervised and unsupervised learning
paradigms, enables the acquisition of knowledge through iterative interactions with the en-
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vironment, devoid of external supervision or direction. The field of reinforcement learning
incorporates concepts and principles derived from the field of bionics in order to develop
learning algorithms that are both more efficient and cleverer. One application of reinforce-
ment learning is training intelligent systems to acquire optimal behavioral strategies by
emulating the reward mechanisms observed in biological systems. Furthermore, reinforce-
ment learning is influenced by the field of bionics in order to develop learning algorithms
that exhibit enhanced adaptability in intricate environments and dynamic circumstances.
Hence, the utilization of reinforcement learning for addressing path-planning challenges in
unfamiliar contexts seems to be a highly efficient approach.

Reinforcement learning is an algorithm described using the Markov decision process
(MDP), so the path planning of a mobile robot can be reduced to a Markov decision
process. The process can be defined as a five-tuple (S, A, P, R, γ), where S denotes the
state space, A denotes the action space, P denotes the state transfer probability, R denotes
the reward function, and γ denotes the discount factor. Figure 1 shows the process of
reinforcement learning.
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Figure 1. Basic model of reinforcement learning.

The robot interacts with the environment as it completes its tasks, using a policy to
input actions at into the environment. The environment receives the action and changes its
state from st to st+1 and returns the reward to rt+1 the robot. The robot then chooses the
next action based on the reward, and the cycle continues to improve the policy. Eventually,
the optimal strategy with the largest cumulative reward is obtained through an iterative
loop process. The cumulative reward Gt for the whole learning process is defined as:

Gt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞

∑
k=0

γkrt+k+1 (1)

where γ ∈ [0, 1] is the variable that determines how future rewards are valued. The closer
to 1 the γ is means that future rewards are more important.

The strategy of a robot is usually denoted by π. In order to evaluate the value of states
and actions, the state value function Vπ(st) and the state–action value function Qπ(st, at)
are introduced as the expected payoffs of the strategy, defined as:

Vπ(st) = Eπ [Gt|st] (2)

Qπ(st, at) = Eπ [Gt|st, at] (3)

The Bellman expectation equation (BEE) for two value functions is defined as:

Vπ(st) = Eπ [rt+1 + γVπ(st+1)|st] (4)

Qπ(st, at) = Eπ [rt+1 + γQ(st+1, at+1)|st, at] (5)
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The purpose of reinforcement learning is to find the optimal strategy, and the corre-
sponding value function can be used to compare the advantages and disadvantages of the
strategy, so the optimal state value function and the optimal state–action value function
can be expressed as:

V∗(s) = maxπVπ(st) (6)

Q∗(st, at) = maxπQπ(st, at) (7)

The optimal policy can be obtained by maximizing the optimal value function, so the
value function and Bellman’s expectation equation are important components of reinforce-
ment learning on which subsequent reinforcement learning algorithms are based.

2.2. Soft Actor-Critic (SAC) Algorithm

The SAC algorithm is a reinforcement learning method that incorporates deep learning
techniques, specifically deep learning (DL), and integrates the maximum entropy frame-
work with the actor-critic (AC) framework through the utilization of offline and stochastic
strategies. The SAC algorithm possesses a significant advantage over other reinforce-
ment learning algorithms and deep reinforcement learning algorithms due to its notable
exploratory capabilities and its ability to adapt effectively to more intricate challenges.

2.2.1. Maximizing Entropy

Entropy is used to indicate the degree of randomness of a random variable, and in the
calculation, the variable x obeys the probability distribution P, so the entropy value H(P)
is defined as:

H(P) = E
x∼P

[− log P(x)] (8)

The goal of the SAC algorithm with the introduction of maximizing entropy is to not
only maximize the cumulative reward but also to make the strategy more random, i.e.,
maximize the entropy value of the strategy, with the objective function defined as:

J(π) =
T

∑
t=0

E(st ,at)∼ρπ
[r(st, at) + αH(π(· | st))] (9)

where π denotes the current policy of the network, ρπ denotes the distribution of actions
and states under the policy π, T denotes the total number of time steps for the robot
to interact with the environment, E denotes the reward expectation of the current state,
r denotes the reward value of the current state, H(·) denotes the entropy value, and α
denotes the temperature coefficient, which determines the relative importance of entropy
to the reward.

2.2.2. Soft Strategy Iteration

The soft strategy iteration is performed alternately between strategy evaluation and
strategy improvement. In strategy evaluation, the value of the strategy is calculated based
on maximizing the entropy, and for a fixed strategy, the modified Bellman backup operator
for the soft Q-value is:

τπQ(st, at) = r(st, at) + γEst+1∼p[V(st+1)] (10)

where the state value function is defined as:

V(st) = Eat∼π [Q(st, at)− logπ(at|st)] (11)

Ultimately, the soft policy evaluation converges to the soft Q-value of the policy π
through Qk+1 = τπQk iterations.
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In strategy improvement, the strategy is improved according to the soft strategy
enhancement formula:

πnew = arg min
π′∈Π

DKL(π
′(·|st)||

exp (Qπold(st, ·))
Zπold(st)

) (12)

where KL denotes the Kullback–Leibler scattering, Zπold(st) normalizes the distribution of
Q-values, and the strategies, π′ ∈ Π, are constrained to be in the parameter space Π, which
ensures that all new strategies are stronger than the old ones.

2.2.3. Soft Actor-Critic

The above soft policy iterative process is for the case of tabular setups, for environ-
ments with limited state and action spaces. For continuous space, function approximation
needs to be introduced. The SAC network consists of five neural networks: the policy
network πϕ(at

∣∣st) , the state value network Vψ(st), the target state value network Vψ(st),
and two soft Q-value networks Qθ(st, at), with corresponding parameters ϕ, ψ, θ. The use
of the double-Q structure alleviates the case of overestimation of the Q-value and applies
stochastic gradient descent to the objective function. Therefore, the objective function of
the soft state value function is defined as:

JV(ψ) = Est∼D

[
1
2

(
Vψ(st)− Eat∼πφ

[
Qθ(st, at)− log πφ(at | st)

])2
]

(13)

The gradient is:

∇̂ψJV(ψ) = ∇ψVψ(st)
(
Vψ(st)−Qθ(st, at) + logπϕ(at|st)

)
(14)

The objective function of the soft Q-value function is defined as:

JQ(θ) = E(st ,at)∼D

[
1
2

Qθ(st, at)− Q̂(st, at)
2
]

(15)

Of these,
Q̂(st, at) = r(st, at) + γEst+1∼p

[
Vψ(st+1)

]
(16)

The gradient is:

∇̂θ JQ(θ) = ∇θQθ(at, st)(Qθ(st, at) − r(st, at)− γVψ(st+1)
)

(17)

The objective function of the strategy update is:

Jπ(ϕ) = Est∼D

[
DKL

(
πϕ(·|st)||

exp(Qθ(st, ·))
Zθ(st)

)]
(18)

Since the SAC algorithm outputs Gaussian-distributed means and standard deviations
and the process of sampling the action is not derivable, the actions need to be sampled
using a reparameterization technique, denoted as:

at = fϕ(εt; st) (19)

where εt is the input noise vector, and bringing the above Equation (19) into the objective
function (18), the rewritten objective function is:

Jπ(ϕ) = Est∼D ,εt∼N
[
logπϕ

(
fϕ(εt; st)

∣∣st
)
−Qθ

(
st, fϕ(εt; st)

)]
(20)
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3. Improvement of SAC Algorithm

Since the SAC algorithm requires the robot to obtain the final reward after reaching
the goal, the reward is sparse, the sample sampling is less efficient, and the training time
is longer. In order to improve the efficiency of sample use, this paper designed the HER-
SAC algorithm, which introduces hindsight experience replay (HER) [28] into the SAC
algorithm. The hindsight experience replay algorithm incorporates the concept of bionics
to enhance the learning efficiency and decision-making capabilities of intelligent entities.
This is achieved by emulating the learning and memory mechanisms observed in biological
systems. The storage and playback mechanism employed in the hindsight experience
replay algorithm can be likened to the memory and recall process observed in biological
systems. Through the continuous playback of experiences, an intelligent entity can acquire
additional knowledge and experience, thereby enhancing its adaptability and optimization
capabilities. In the initial algorithm, if the robot does not reach the goal in a sequence, the
path sequence is a failure, and since the robot does not complete the task, this means that
the robot is unable to learn experience from this sequence. To solve this problem of wasted
experience, HER selects a new goal g′ reusing the whole trajectory.

The core idea of HER is that in the off-policy algorithm, the initial samples are first
collected through the interaction between the robot and the environment. A trajectory
sample obtained from an episode interaction s1, s2, · · · , sT is stored in the experience pool
as a transition. The transition is (st, at, rt, st+1), which is based on the original target g, and
can also be written as (st ‖ g, at, rt, st+1 ‖ g). Then, a set of additional targets G is sampled,
from which g′(g′ ∈ G) is selected, at which point the transition is changed from the original
to (st ‖ g′, at, r′t, st+1 ‖ g′) based on g′, and the new transition is stored in the experience
pool, and the strategy is trained using the newly obtained tuple. When obtaining a new
goal, the future method is used to select it, choosing some state that is in the same trajectory
as the rewritten tuple and after it in time as the new goal.

By replacing the experience pool of the original SAC with the experience pool con-
structed with HER, the new HER-SAC algorithm can utilize the experience of failures,
thus making the algorithm more learnable as a whole, and the network structure of the
algorithm is shown in Figure 2.

The network structure of the HER-SAC algorithm consists of Actor network, two Q
Critic networks and two V Critic networks. Among them, the Actor network interacts with
the environment and outputs the probability distribution of actions; the Q Critic network is
used to output the state action value function (Q-value); and the V Critic network is used
to output the state value function (V-value).The relationship between the Q network and
the V network can be described by the Bellman equation, which allows for simultaneous
updating of the networks and learning of the estimates of the Q-value and the V-value by
sharing parameters. The HER-SAC algorithm also includes an important component, the
HER module, which is used to extract experience from the experience playback buffer and
generate new experience by modifying the target state to take the old experience acquired
from the environment and then feeding it back to update the network.

Through a comparative analysis between the enhanced algorithm and the pre-existing
algorithm, an examination of their respective merits and drawbacks, as well as an assess-
ment of their complexities, revealed that the enhanced algorithm exhibits adaptability to
higher dimensions, the ability to dynamically regulate parameters, enhanced robustness,
and improved convergence and stability through the resolution of sparse rewards. Si-
multaneously, it effectively mitigates the issues arising from parameter sensitivity while
maintaining a modest level of complexity, as seen in Table 1.
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Table 1. Various algorithms for path planning.

Path-Planning Algorithm Dominance Drawbacks Complexity Theory

Q-learning
Simple and easy to implement,
and discrete states and action

spaces work better

Requires state–action–reward
transition tables, and

continuous state and action
space issues do not apply

The complexity of the algorithm
increases as the state and action

space increases

Dyna-Q

Combines model learning and
reinforcement learning to

improve learning efficiency
and stability

Requires additional
computational and storage
overhead to maintain the

environment model

Higher time complexity,
proportional to the number of
model learnings and planned

learnings

SARSA
Easy to implement, and better
results for discrete state and

action space problems

Not applicable for continuous
state and action space problems

Depends on the size of the
state–action space

DQN

Adaptation to continuous
state and action space

problems, expressive, and can
be trained offline

Instability in the training
process, long training time, and

large amount of sample data

Depends on the level of
dimensionality, neural network
size, number of iterations, and

buffer size

A3C Parallelization of training, fast
convergence, and adaptability

Training is unstable and
requires a large number of

training samples

Depends on the level of
dimensionality, the size of the
neural network, the number of
iterations, and the size of the

parallelized training
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Table 1. Cont.

Path-Planning Algorithm Dominance Drawbacks Complexity Theory

PPO
Fast convergence, efficient use

of samples, and good
algorithmic stability

Sensitive parameter selection
and demanding training

samples

Depends on the level of
dimensionality, the size of the
neural network, the number of
iterations, and the number of

trajectories sampled

SAC

Applicable to path planning
in high-dimensional space,

adaptive adjustment of
parameters, and good

robustness

Longer training time, large
sample data size, and may

require more computational
resources for complex tasks

Depends on neural network size
and number of iterations

HER-SAC

Solves sparse rewards,
improves convergence and

stability, and can handle
complex tasks

Requires additional
computation and storage

overhead

Depends on the level of
dimensionality, neural network
size, number of iterations, and

buffer size

DDPG

Applicable continuous state
and action space problems

with good convergence and
performance

Sensitive to initial conditions,
long training time, and need to

tune hyperparameters

Depends on the size of the
neural network and the number

of iterations of training

DDPG-HL

Ability to deal with problems
with multiple levels,

improving learning efficiency
and performance

Requires additional
computational and storage
overhead to maintain the

hierarchy

Depends on the size of the
neural network and the number
of iterations of training and the

number of levels

The motion of the robot generates actions and states, and by analyzing the robot, its
actions are decomposed into up and down and left and right. At each moment, the robot
can choose to move [−1, 1] in the vertical and horizontal directions, respectively, as an
action at that moment. As a result, the next state of the robot produces changes in the four
directions of up, down, left, and right relative to the previous state. The sizes of the action
space and state space are set as in Table 2.

Table 2. Setting of action space and state space size.

Action Space State Space Action Bound

2 4 [−1, 1]

Every movement and state of the robot generates rewards, and the reward function
is what determines how fast and how well the algorithm converges, and a proper reward
function helps to improve the performance of the algorithm. The rewards generated
throughout the robot’s movement are categorized into the following parts: (1) If an obstacle
or boundary is encountered, a large negative reward is given (r1). (2) A positive reward is
given if the goal is reached (r2). (3) A smaller negative reward is given if none of the above
occurs (r3).

Reward


r1, obstacles
r2, goal
r3, other

(21)

4. Path-Planning Simulation Experiment
4.1. Simulation Experiment Environment

To validate the feasibility of the algorithms, the environment maps and algorithms
were written in Python. The experimental equipment was a desktop computer with an
Intel(R) Core(TM) i7-6700 CPU @ 3.40 GHz 3.41 GHz and 8.00 GB of RAM. In this study, it
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was postulated that the experimental setting consisted of a 20 × 20 two-dimensional planar
space. Within this space, various static obstacles of varying sizes were distributed, each
occupying a fixed position and being immovable. The mobile robot under consideration
was assumed to be a two-dimensional mass point, with no consideration given to its
physical appearance or shape. Additionally, in order to simulate real-world conditions,
both the robot and the obstacles maintained a certain distance from each other during the
process of path planning.

As shown in Figure 3, there are two maps with different environments, where the
black rectangle is the obstacle, the yellow dot is the start point, the red dot is the target
point, the blue dot is the current state, and the blank area is the actionable area.
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The parameters of the improved HER-SAC algorithm are shown in Table 3.

Table 3. Relevant parameters of the HER-SAC algorithm.

Description Parameter Value

Actor network learning rate actor_lr 3 × 10−4

Critic network learning rate critic_lr 3 × 10−3

α parameter learning rate alpha_lr 3 × 10−4

Hidden layer dimensions hidden_dim 128
Discount factor gamma 0.98

Soft update parameters tau 0.005
Buffer size buffer_size 10,000

Minimal size minimal_size 500
Batch size batch_size 64

Total training episodes num_episodes 1000
Minimal training episodes minimal_episodes 200

Target entropy target_entropy −0.1
Number of training samples n_train 20

4.2. Comparison of Algorithms

In order to verify the feasibility of the algorithms, three algorithms, DDPG, SAC,
and HER-SAC, were used for path planning and a comparative analysis of the same
experimental environment.

The paths planned by the three algorithms after learning and training iterations are
shown in Figure 4, where the black dotted line is the path, the dot (1, 1) is the starting point,
and the dots (11, 17) and (18, 10) are the goal points. It can be seen that the three algorithms
finally make the state reach the goal point by avoiding obstacles from the starting point.
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As depicted in Figure 5, the graph displays the reward associated with each of the
1000 rounds, represented by the blue curve. The reward mechanism is designed in such a
way that it yields a negative reward. The initial stages of the reward curve exhibit minimal
variation as a result of encountering the maximum sequence length, failure to achieve the
objective, and encountering obstacles. Following multiple iterations of exploration, the
reward curve undergoes modifications as a consequence of distinct benefits associated with
approaching an obstacle versus reaching a goal. After undergoing numerous additional
iterations of learning, the reward curve gradually approaches a state of convergence and
ultimately tends to converge.

Upon doing a comparative analysis of various settings, it becomes evident that the
convergence of the deep deterministic policy gradient (DDPG) exhibits notable improve-
ment, although it remains incompletely converged. In contrast, both soft actor-critic (SAC)
and hindsight experience replay–soft actor-critic (HER-SAC) demonstrate considerably
stronger convergence in comparison with DDPG.

As shown in Figure 6, the blue arcs depicted in the graph represent the number of
steps associated with each of the 1000 rounds. The presentation can be considered as the
antithesis of the reward curve, with both ultimately converging.

The comparison of results obtained from the execution of three algorithms in varying
environments is presented in Table 4.

Table 4. Results of different path-planning algorithms.

Algorithm Environment Training Round Start to Converge Eventual Convergence Path Length

DDPG Map1 1000 200 / 21.26
SAC Map1 1000 241 800 21.31

HER-SAC Map1 1000 200 264 21.31
DDPG Map2 1000 200 850 21.89
SAC Map2 1000 204 632 21.90

HER-SAC Map2 1000 213 300 21.90
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5. Discussion

Our work focused on the examination of algorithms used in simulation environment
route planning. Specifically, the paths, reward curves, and step curves generated by three
algorithms, namely, DDPG, SAC, and HER-SAC, were observed and analyzed individually.
The efficacy of the three algorithms could be determined by examining the reward curves.
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Upon carrying out a comparative analysis of the reward curves pertaining to the DDPG
and SAC algorithms, it becomes evident that both algorithms exhibit similar convergence
rates over a given number of rounds. However, it is observed that the DDPG algorithm
demonstrates a slower convergence, whilst the SAC approach showcases a more rapid
convergence, ultimately leading to a superior final convergence outcome. To enhance
the efficacy of incentive utilization, the HER algorithm was incorporated to optimize the
SAC algorithm. Upon analyzing the reward curves of the SAC and HER-SAC algorithms,
it becomes evident that the optimized algorithm shows a significant reduction in the
number of rounds from the start of convergence to full convergence compared with the
pre-optimized algorithm, hence enhancing the pace of convergence. Simultaneously, the
ultimate convergence effect is enhanced compared with the pre-optimization state.

Based on empirical validation, it can be determined that the optimized algorithm
produces superior results in the field of path planning. The effective navigation of mobile
robots in real-world settings can be greatly enhanced by addressing the path-planning
challenge in complex and unfamiliar environments. From the results obtained from the
aforementioned trials, it can be inferred that the method under investigation demonstrates
effective path-planning capabilities inside 2D environments. Hence, the proposed method-
ology can be extended to encompass other 2D environments featuring diverse sorts of
obstacles. The algorithm’s effectiveness in real-time applications is diminished due to
its reliance on learning from past knowledge and subsequently planning global courses
mostly through hindsight experience replay. In the meantime, the subsequent phase can be
expanded to encompass the involvement of several robots in the process of multi-intelligent
body route planning. This can be achieved via the implementation of collaborative decision
making, effective communication and collaboration among the robots, the utilization of
group intelligence, and the ability to adapt to dynamic environmental conditions. Hence,
the experiment exhibits three primary constraints: firstly, the absence of real-time path plan-
ning in the presence of dynamic obstacles; secondly, the absence of intricate obstacle path
planning in a three-dimensional environment; and thirdly, the absence of multi-robot path
planning. Hence, our forthcoming research endeavors will focus on this particular issue.

6. Conclusions

This study presented a novel approach to address the path-planning challenge encoun-
tered by mobile robots operating in unfamiliar and intricate surroundings. The suggested
solution leverages deep reinforcement learning techniques to develop an algorithm for
efficient path planning. The suggested algorithm, soft actor-critic (SAC), aims to enhance
the learning and exploratory aspects of the system. Additionally, the usage rate of samples
is improved via the incorporation of the hindsight experience replay (HER) algorithm.
The simulation results provide evidence that the proposed algorithm is capable of effi-
ciently determining the shortest path between the initial and target points. Furthermore, it
demonstrates an enhanced convergence speed and effectiveness compared with alternative
algorithms, resulting in faster and more accurate path finding.

In forthcoming times, there will be a greater utilization of algorithms that exhibit
enhanced efficiency in the domain of path planning. Furthermore, the task of path plan-
ning will be executed across unfamiliar dynamic situations, encompassing both two-
dimensional and three-dimensional spaces, in order to enhance its compatibility with
real-world surroundings.
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