Cytotoxicity, Differentiation, and Biocompatibility of Root-End Filling: A Comprehensive Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cells Culture
2.3. Cytotoxicity of Root-End Filling Materials
2.4. Assay for DNA Fragmentation
2.5. Assay for Apoptosis Caspase-3 Activation
2.6. Effect of Apoptosis and Autophagy Inhibitors
2.7. Odontoblast-like Cells Differentiation
2.8. Statistical Analysis
3. Results
3.1. Cytotoxicity of Root-Ending Cements
3.2. Assay for DNA Fragmentation
3.3. Assay for Caspase-3 Activation
3.4. Effect of Apoptosis and Autophagy Inhibitors
3.5. Odontoblast-like Cells Differentiation HPC
4. Discussion
4.1. Cytotoxicity of Root-Ending Cements
4.2. Assay for DNA Fragmentation
4.3. Caspase-3 Activation and Autophagy
4.4. Odontoblast-Like Cells Differentiation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, N.; Maher, N.; Amin, F.; Ghabbani, H.; Zafar, M.S.; Rodríguez-Lozano, F.J.; Oñate-Sánchez, R.E. Biomimetic Approaches in Clinical Endodontics. Biomimetics 2022, 6, 229. [Google Scholar] [CrossRef] [PubMed]
- Gutmann, J.L. Surgical endodontics: Past, present, and future. Endod. Topics. 2014, 30, 29–43. [Google Scholar] [CrossRef]
- Friedman, S. Retrograde approach in endodontic therapy. Dent. Traum. 1991, 7, 97–107. [Google Scholar] [CrossRef]
- Torabinejad, M.; Watson, T.F.; Pitt Ford, T.R. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J. Endod. 1993, 19, 591–595. [Google Scholar] [CrossRef]
- Yesilsoy, C.; Feigal, R.J. Effects of endodontic materials on cell viability across standard pore size filters. J. Endod. 1985, 11, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Torabinejad, M.; Hong, C.U.; Lee, S.J.; Pitt Ford, T.R. Investigation of mineral trioxide aggregate for root-end filling in dogs. J. Endod. 1995, 21, 603–608. [Google Scholar] [CrossRef]
- Torabinejad, M.C.; Hong, C.U.; Pitt Ford, T.R.; Kettering, J.D. Cytotoxicity of four root end filling materials. J. Endod. 1995, 21, 489–492. [Google Scholar] [CrossRef]
- Garcia-Contreras, R.; Chavez-Granados, P.A.; Jurado, C.A.; Aranda-Herrera, B.; Afrashtehfar, K.I.; Nurrohman, H. Natural Bioactive Epigallocatechin-Gallate Promote Bond Strength and Differentiation of Odontoblast-like Cells. Biomimetics 2023, 8, 75. [Google Scholar] [CrossRef]
- Koulaouzidou, E.A.; Papazisis, K.T.; Economides, N.A.; Beltes, P.; Kortsaris, A.H. Antiproliferative Effect of Mineral Trioxide Aggregate, Zinc Oxide-Eugenol Cement, and Glass-Ionomer Cement Against Three Fibroblastic Cell Lines. J. Endod. 2005, 31, 44–46. [Google Scholar] [CrossRef] [PubMed]
- Green, M.R.; Sambrook, J. Analysis of DNA by Agarose Gel Electrophoresis. Cold Spring. Harb. Protoc. 2019, 2019, 100388. [Google Scholar] [CrossRef] [PubMed]
- Salucci, S.; Burattini, S.; Battistelli, M.; Baldassarri, V.; Maltarello, M.C.; Falcieri, E. Ultraviolet B (UVB) Irradiation-Induced Apoptosis in Various Cell Lineages in Vitro. Int. J. Mol. Sci. 2012, 14, 532–546. [Google Scholar] [CrossRef]
- Guerlava, P.; Izac, V.; Tholozan, J.L. Comparison of Different Methods of Cell Lysis and Protein Measurements in Clostridium perfringens: Application to the Cell Volume Determination. Curr. Microbiol. 1998, 36, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Takano, S.; Shiomoto, S.; Inoue, K.Y.; Ino, K.; Shiku, H.; Matsue, T. Electrochemical Approach for the Development of a Simple Method for Detecting Cell Apoptosis Based on Caspase-3 Activity. Anal. Chem. 2014, 86, 4723–4728. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Y.; Liu, X.; Chen, Y.; Lui, P.; Zhao, L. Effect of SOX2 on odontoblast differentiation of dental pulp stem cells. Mol. Med. Rep. 2017, 16, 9659–9663. [Google Scholar] [CrossRef]
- Gregory, C.A.; Grady Gunn, W.; Peister, A.; Prockop, D. An Alizarin red-based assay of mineralization by adherent cells in culture: Comparison with cetylpyridinium chloride extraction. Anal. Biochem. 2004, 329, 77–84. [Google Scholar] [CrossRef]
- Rungby, J.; Kassem, M.; Eriksen, E.F.; Danscher, G. The von Kossa reaction for calcium deposits: Silver lactate staining increases sensitivity and reduces background. Histochem. J. 1993, 25, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Larsen, B.D.; Rampalli, S.; Burns, L.E.; Brunette, S.; Dilworth, F.J.; Megeney, L.A. Caspase 3/caspase-activated DNase promote cell differentiation by inducing DNA strand breaks. Proc. Natl. Acad. Sci. USA 2010, 107, 4230–4235. [Google Scholar] [CrossRef] [PubMed]
- Osorio, R.M.; Hefti, A.; Vertucci, F.J.; Shawley, A.L. Cytotoxicity of endodontic materials. J. Endod. 1998, 24, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Karimjee, C.K.; Koka, S.; Rallis, D.M.; Gound, T.G. Cellular toxicity of mineral trioxide aggregate mixed with an alternative delivery vehicle. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 2006, 102, e115–e120. [Google Scholar] [CrossRef]
- De Deus, G.; Ximenes, R.; Gurgel-Filho, E.D.; Plotkowski, M.C.; Coutinho-Filho, T. Cytotoxicity of MTA and Portland cement on human ECV 304 endothelial cells. Int. Endod. J. 2005, 38, 604–609. [Google Scholar] [CrossRef]
- Rezende, T.M.B.; Vargas, D.L.; Cardoso, F.P.; Sobrinho, A.P.; Vieira, L.Q. Effect of mineral trioxide aggregate on cytokine production by peritoneal macrophages. Int. Endod. J. 2005, 38, 896–903. [Google Scholar] [CrossRef]
- Tomás-Catalá, C.J.; Collado-González, M.; García-Bernal, D.; Oñate-Sánchez, R.E.; Forner, L.; Llena, C.; Lozano, A.; Castelo-Baz, P.; Moraleda, J.M.; Rodríguez-Lozano, F.J. Comparative analysis of the biological effects of the endodontic bioactive cements MTA-Angelus, MTA Repair HP and NeoMTA Plus on human dental pulp stem cells. Int. Endod. J. 2017, 50, e63–e72. [Google Scholar] [CrossRef]
- Ferreira, C.M.A.; Sassone, L.M.; Gonçalves, A.S.; de Carvalho, J.J.; Tomás-Catalá, C.J.; García-Bernal, D.; Oñate-Sánchez, R.E.; Rodríguez-Lozano, F.J.; Silva, E.J.N.L. Physicochemical, cytotoxicity and in vivo biocompatibility of a high-plasticity calcium-silicate based material. Sci. Rep. 2019, 9, 3933. [Google Scholar] [CrossRef] [PubMed]
- Kasugai, S.; Hasegawa, N.; Ogura, H. Application of the MTT Colorimetric Assay to Measure Cytotoxic Effects of Phenolic Compounds on Established Rat Dental Pulp Cells. J. Dent. Res. 1991, 70, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.-C.; Huang, F.-M.; Chang, Y.-C. Mechanisms of cytotoxicity of eugenol in human osteoblastic cells in vitro. Int. Endod. J. 2006, 39, 389–393. [Google Scholar] [CrossRef]
- Fujisawa, S.; Kadoma, Y.; Komoda, Y. 1H and 13C NMR Studies of the Interaction of Eugenol, Phenol, and Triethyleneglycol Dimethacrylate with Phospholipid Liposomes as a Model System for Odontoblast Membranes. J. Dent. Res. 1988, 67, 1438–1441. [Google Scholar] [CrossRef] [PubMed]
- Hume, W.R. In vitro studies on the local pharmacodynamics, pharmacology and toxicology of eugenol and zinc oxide-eugenol. Int. Endod. J. 2007, 21, 130–134. [Google Scholar] [CrossRef]
- Gerosa, R.; Borin, M.; Menegazzi, G.; Puttini, M.; Cavalleri, G. In vitro evaluation of the cytotoxicity of pure eugenol. J. Endod. 1996, 22, 532–534. [Google Scholar] [CrossRef]
- Mcdonald, J.W.; Heffner, J.E. Eugenol Causes Oxidant-mediated Edema in Isolated Perfused Rabbit Lungs. Am. Rev. Respir. Dis. 1991, 143, 806–809. [Google Scholar] [CrossRef]
- López-García, S.; Rodríguez-Lozano, F.J.; Sanz, J.L.; Forner, L.; Pecci-Lloret, M.; Lozano, A.; Murcia, L.; Sánchez-Bautista, S.; Oñate-Sánchez, R.E. Biological properties of Ceraputty as a retrograde filling material: An in vitro study on hPDLSCs. Clin. Oral. Investig. 2023, 27, 4233–4243. [Google Scholar] [CrossRef]
- Garcia-Contreras, R.; Sakagami, H.; Nakajima, H.; Shimada, J. Type of cell death induced by various metal cations in cultured human gingival fibroblasts. In Vivo 2010, 24, 513–517. [Google Scholar]
- Huang, T.H.; Ding, S.J.; Hsu, T.Z.; Lee, Z.D.; Kao, C.T. Root canal sealers induce cytotoxicity and necrosis. J. Mater. Sci. Mater. Med. 2004, 15, 767–771. [Google Scholar] [CrossRef]
- Chen, F.; Liu, C.; Mao, Y. Bismuth-doped injectable calcium phosphate cement with improved radiopacity and potent antimicrobial activity for root canal filling. Acta. Biomater. 2010, 6, 3199–3207. [Google Scholar] [CrossRef]
- Johnson, B.R. Considerations in the selection of a root-end filling material. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 1999, 87, 398–404. [Google Scholar] [CrossRef]
- Lei, X.; Wang, J.; Chen, J.; Gao, J.; Zhang, J.; Zhao, Q.; Tang, J.; Fang, W.; Li, J.; Li, Y.; et al. The in vitro evaluation of antibacterial efficacy optimized with cellular apoptosis on multi-functional polyurethane sealers for the root canal treatment. J. Mater. Chem. B 2021, 9, 1370–1383. [Google Scholar] [CrossRef] [PubMed]
- Viola, N.V.; Guerreiro-Tanomaru, J.M.; da Silva, G.F.; Sasso-Cerri, E.; Tanomaru-Filho, M.; Cerri, P.S. Biocompatibility of an experimental MTA sealer implanted in the rat subcutaneous: Quantitative and immunohistochemical evaluation. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100B, 1773–1781. [Google Scholar] [CrossRef] [PubMed]
- Min, K.; Kim, H.; Park, H.J.; Pi, S.H.; Hong, C.U.; Kim, E.C. Human Pulp Cells Response to Portland Cement In Vitro. J. Endod. 2007, 33, 163–166. [Google Scholar] [CrossRef]
- Lee, S.-K.; Lee, S.K.; Lee, S.I.; Park, J.H.; Jang, J.H.; Kim, H.W.; Kim, E.C. Effect of Calcium Phosphate Cements on Growth and Odontoblastic Differentiation in Human Dental Pulp Cells. J. Endod. 2010, 36, 1537–1542. [Google Scholar] [CrossRef] [PubMed]
- Min, K.S.; Lee, S.I.; Lee, Y.; Kim, E.C. Effect of radiopaque Portland cement on mineralization in human dental pulp cells. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 2009, 108, e82–e86. [Google Scholar] [CrossRef] [PubMed]
- Dreger, L.A.; Felippe, W.T.; Reyes-Carmona, J.F.; Felippe, G.S.; Bortoluzzi, E.A.; Felippe, M.C. Mineral Trioxide Aggregate and Portland Cement Promote Biomineralization In Vivo. J. Endod. 2012, 38, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-Z.; Lü, X.-Y.; Liu, G.-D. Effects of different radio-opacifying agents on physicochemical and biological properties of a novel root-end filling material. PLoS ONE 2018, 13, 0191123. [Google Scholar] [CrossRef] [PubMed]
- Sequeira, D.B.; Oliveira, A.R.; Seabra, C.M.; Palma, P.J.; Ramos, C.; Figueiredo, M.H.; Santos, A.C.; Cardoso, A.L.; Peça, J.; Santos, J.M. Regeneration of pulp-dentin complex using human stem cells of the apical papilla: In vivo interaction with two bioactive materials. Clin. Oral. Investig. 2021, 25, 5317–5329. [Google Scholar] [CrossRef] [PubMed]
Cell Line | Endodontic Cements | Toxicity IC50 = mg/mL | Kruskal–Wallis |
---|---|---|---|
Normal Cells | |||
HPLF | I | ND | - |
II | ND | - | |
III | ND | p = 0.018 | |
IV | ND | - | |
HGF | IV | ND | - |
I | ND | - | |
II | ND | - | |
III | ND | - | |
HPC | IV | 0.05 mg/mL | - |
II | ND | p = 0.026 | |
III | ND | - | |
I | ND | p = 0.044 | |
Cancer Cells | |||
HSC-2 | IV | 0.03 mg/mL | - |
I | 4.69 mg/mL | p = 0.056 | |
III | ND | - | |
II | ND | - | |
HSC-3 | IV | ND | p = 0.049 |
I | ND | - | |
II | ND | - | |
III | ND | - | |
HSC-4 | I | 4.2 mg/mL | - |
IV | ND | - | |
III | ND | p = 0.033 | |
II | ND | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jimenez-Bueno, I.; Garcia-Contreras, R.; Aranda-Herrera, B.; Sakagami, H.; Lopez-Ayuso, C.A.; Nakajima, H.; Jurado, C.A.; Nurrohman, H. Cytotoxicity, Differentiation, and Biocompatibility of Root-End Filling: A Comprehensive Study. Biomimetics 2023, 8, 514. https://doi.org/10.3390/biomimetics8070514
Jimenez-Bueno I, Garcia-Contreras R, Aranda-Herrera B, Sakagami H, Lopez-Ayuso CA, Nakajima H, Jurado CA, Nurrohman H. Cytotoxicity, Differentiation, and Biocompatibility of Root-End Filling: A Comprehensive Study. Biomimetics. 2023; 8(7):514. https://doi.org/10.3390/biomimetics8070514
Chicago/Turabian StyleJimenez-Bueno, Ignacio, Rene Garcia-Contreras, Benjamin Aranda-Herrera, Hiroshi Sakagami, Christian Andrea Lopez-Ayuso, Hiroshi Nakajima, Carlos A. Jurado, and Hamid Nurrohman. 2023. "Cytotoxicity, Differentiation, and Biocompatibility of Root-End Filling: A Comprehensive Study" Biomimetics 8, no. 7: 514. https://doi.org/10.3390/biomimetics8070514
APA StyleJimenez-Bueno, I., Garcia-Contreras, R., Aranda-Herrera, B., Sakagami, H., Lopez-Ayuso, C. A., Nakajima, H., Jurado, C. A., & Nurrohman, H. (2023). Cytotoxicity, Differentiation, and Biocompatibility of Root-End Filling: A Comprehensive Study. Biomimetics, 8(7), 514. https://doi.org/10.3390/biomimetics8070514