Light-Stimulated IGZO Transistors with Tunable Synaptic Plasticity Based on Casein Electrolyte Electric Double Layer for Neuromorphic Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Casein Electrolyte Solution Preparation
2.2. Device Fabrication
2.3. Devices Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; et al. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 2018, 362, 1140–1144. [Google Scholar] [CrossRef]
- Li, B.H.; Hou, B.C.; Yu, W.T.; Lu, X.B.; Yang, C.W. Applications of artificial intelligence in intelligent manufacturing: A review. Front. Inf. Technol. Electron. Eng. 2017, 18, 86–96. [Google Scholar] [CrossRef]
- Shenoy, R.; Tudor, A.; Nathan, D.; Deo, A.; Rong, Z.; Shaffer, C.M.; Danesh, C.D.; Suresh, B.; Chen, Y. An Adaptive Intelligent System Based on Energy-Efficient Synaptic Resistor Circuits with Fast Real-Time Learning. Adv. Intell. Syst. 2022, 4, 2200105. [Google Scholar] [CrossRef]
- Nawrocki, R.A.; Voyles, R.M.; Shaheen, S.E. A mini review of neuromorphic architectures and implementations. IEEE Trans. Electron. Devices 2016, 63, 3819–3829. [Google Scholar] [CrossRef]
- Yang, J.T.; Ge, C.; Du, J.Y.; Huang, H.Y.; He, M.; Wang, C.; Lu, H.B.; Yang, G.Z.; Jin, K.J. Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor. Adv. Mater. 2018, 30, 1801548. [Google Scholar] [CrossRef]
- Zhao, Y.; Su, C.; Shen, G.; Xie, Z.; Xiao, W.; Fu, Y.; Inal, S.; Wang, Q.; Wang, Y.; Yue, W.; et al. Donor engineering tuning the analog switching range and operational stability of organic synaptic transistors for neuromorphic systems. Adv. Funct. Mater. 2022, 32, 2205744. [Google Scholar] [CrossRef]
- Li, H.K.; Chen, T.P.; Liu, P.; Hu, S.G.; Liu, Y.; Zhang, Q.; Lee, P.S. A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnOx–Al2O3 thin film structure. J. Appl. Phys. 2016, 119, 244505. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, Y.; Mao, H.; He, Y.; Jiang, S.; Zhu, L.; Chen, C.; Wan, C.; Wan, Q. Recent advances in emerging neuromorphic computing and perception devices. J. Phys. D Appl. Phys. 2021, 55, 053002. [Google Scholar] [CrossRef]
- Strukov, D.; Indiveri, G.; Grollier, J.; Fusi, S. Building brain-inspired computing. Nat. Commun. 2019, 10, 4838-2019. [Google Scholar]
- Sun, B.; Guo, T.; Zhou, G.; Ranjan, S.; Jiao, Y.; Wei, L.; Zhou, Y.N.; Wu, Y.A. Synaptic devices based neuromorphic computing applications in artificial intelligence. Mater. Today Phys. 2021, 18, 100393. [Google Scholar]
- Monalisha, P.; Kumar, A.P.; Wang, X.R.; Piramanayagam, S.N. Emulation of synaptic plasticity on a cobalt-based synaptic transistor for neuromorphic computing. ACS Appl. Mater. Interfaces 2022, 14, 11864–11872. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Liu, Y.; Zhou, F.; Li, F.; Li, Y.; Huang, F. Linear Classification Function Emulated by Pectin-Based Polysaccharide-Gated Multiterminal Neuron Transistors. Adv. Funct. Mater. 2021, 31, 2102015. [Google Scholar] [CrossRef]
- Rehman, S.; Khan, M.F.; Rahmani, M.K.; Kim, H.; Patil, H.; Khan, S.A.; Kang, M.H.; Kim, D.K. Neuro-transistor based on UV-treated charge trapping in MoTe2 for artificial synaptic features. Nanomaterials 2020, 10, 2326. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Yang, J.J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 2019, 18, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Prezioso, M.; Merrikh-Bayat, F.; Hoskins, B.D.; Adam, G.C.; Likharev, K.K.; Strukov, D.B. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 2015, 521, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Kuzum, D.; Jeyasingh, R.G.; Lee, B.; Wong, H.S.P. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 2012, 12, 2179–2186. [Google Scholar] [CrossRef]
- Sebastian, A.; Le Gallo, M.; Burr, G.W.; Kim, S.; BrightSky, M.; Eleftheriou, E. Tutorial: Brain-inspired computing using phase-change memory devices. J. Appl. Phys. 2018, 124, 111101. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, Y.; Chen, Q.; Wang, Y.; Jiang, J.; Wang, Y.; Fu, Y.; Liu, Q.; Wang, Q.; He, D. A perovskite-based artificial photonic synapse with visible light modulation and ultralow current for neuromorphic computing. Microelectron. Eng. 2023, 274, 111982. [Google Scholar] [CrossRef]
- Mburu, M.M.; Lu, K.T.; Prine, N.L.; Au-Duong, A.N.; Chiang, W.H.; Gu, X.; Chiu, Y.C. Conjugated Polymer-Wrapped Single-Wall Carbon Nanotubes for High-Mobility Photonic/Electrical Fully Modulated Synaptic Transistor. Adv. Mater. Technol. 2022, 7, 2101506. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, J.; Cao, J.; Lu, C.; Yang, G.; Shi, X.; Chuai, X.; Gong, Y.; Su, Y.; Zhao, Y.; et al. Photoelectric plasticity in oxide thin film transistors with tunable synaptic functions. Adv. Electron. Mater. 2018, 4, 1800556. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, F.; Zhao, X.; Zhang, M.; Han, W.; Yu, H.; Wang, S.; Yang, Y.; Tong, Y.; Tang, Q.; et al. Natural polyelectrolyte-based ultraflexible photoelectric synaptic transistors for hemispherical high-sensitive neuromorphic imaging system. Nano Energy 2022, 95, 107001. [Google Scholar] [CrossRef]
- Hao, D.; Zhang, J.; Dai, S.; Zhang, J.; Huang, J. Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system. ACS Appl. Mater. Interfaces 2020, 12, 39487–39495. [Google Scholar] [CrossRef] [PubMed]
- Park, H.L.; Kim, H.; Lim, D.; Zhou, H.; Kim, Y.H.; Lee, Y.; Park, S.; Lee, T.W. Retina-inspired carbon nitride-based photonic synapses for selective detection of UV light. Adv. Mater. 2020, 32, 1906899. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Liang, R.; Tian, H.; Sun, C.; Jiang, C.; Wang, X.; Wang, J.; Ren, T.L.; Xu, J. Proton conductor gated synaptic transistor based on transparent IGZO for realizing electrical and UV light stimulus. IEEE J. Electron. Devices Soc. 2018, 7, 38–45. [Google Scholar] [CrossRef]
- Shen, C.; Gao, X.; Chen, C.; Ren, S.; Xu, J.L.; Xia, Y.D.; Wang, S.D. ZnO nanowire optoelectronic synapse for neuromorphic computing. Nanotechnology 2021, 33, 065205. [Google Scholar] [CrossRef]
- Guo, Y.B.; Zhu, L.Q.; Long, T.Y.; Wan, D.Y.; Ren, Z.Y. Bio-polysaccharide electrolyte gated photoelectric synergic coupled oxide neuromorphic transistor with Pavlovian activities. J. Mater. Chem. C 2020, 8, 2780–2789. [Google Scholar] [CrossRef]
- Ke, S.; Fu, C.; Lin, X.; Zhu, Y.; Mao, H.; Zhu, L.; Wang, X.; Chen, C.; Wan, C.; Wan, Q. BCM Learning Rules Emulated by a-IGZO-Based Photoelectronic Neuromorphic Transistors. IEEE Trans. Electron. Devices 2022, 69, 4646–4650. [Google Scholar] [CrossRef]
- Cho, S.W.; Kwon, S.M.; Kim, Y.H.; Park, S.K. Recent progress in transistor-based optoelectronic synapses: From neuromorphic computing to artificial sensory system. Adv. Intell. Syst. 2021, 3, 2000162. [Google Scholar] [CrossRef]
- Sarkar, A.; Lee, S.Y. Efficient UV-Sensitive Si-In-ZnO-Based Photo-TFT and Its Behavior as an Optically Stimulated Artificial Synapse. ACS Appl. Electron. Mater. 2023, 5, 1057–1066. [Google Scholar]
- Shi, P.; Xing, R.; Wu, Z.; Wang, D.; Xing, Y.; Ge, Y.; Song, H.; Qi, C.; Wei, L.; Yan, S.; et al. Solid-State Optoelectronic Synapse Transistor Using a LaF3 Gate Dielectric. Phys. Status Solidi RRL 2022, 16, 2200173. [Google Scholar] [CrossRef]
- Jang, Y.; Park, J.; Kang, J.; Lee, S.Y. Amorphous InGaZnO (a-IGZO) synaptic transistor for neuromorphic computing. ACS Appl. Electron. Mater. 2022, 4, 1427–1448. [Google Scholar] [CrossRef]
- Liang, K.; Wang, R.; Huo, B.; Ren, H.; Li, D.; Wang, Y.; Tang, Y.; Chen, Y.; Song, C.; Li, F.; et al. Fully printed optoelectronic synaptic transistors based on quantum dot–metal oxide semiconductor heterojunctions. ACS Nano 2022, 16, 8651–8661. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Lu, Q.; Liu, L.; Li, L.; Wang, Y.; Hao, M.; Cao, Z.; Wang, Z.; Wang, S.; Li, T.; et al. Bioinspired flexible, dual-modulation synaptic transistors toward artificial visual memory systems. Adv. Mater. Technol. 2020, 5, 1900888. [Google Scholar] [CrossRef]
- Liu, R.; He, Y.; Jiang, S.; Wang, L.; Wan, Q. Synaptic plasticity modulation and coincidence detection emulated in multi-terminal neuromorphic transistors. Org. Electron. 2021, 92, 106125. [Google Scholar] [CrossRef]
- Mativenga, M.; Haque, F.; Billah, M.M.; Um, J.G. Origin of light instability in amorphous IGZO thin-film transistors and its suppression. Sci. Rep. 2021, 11, 14618. [Google Scholar] [CrossRef] [PubMed]
- Catterall, W.A.; Few, A.P. Calcium channel regulation and presynaptic plasticity. Neuron 2008, 59, 882–901. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; He, Y.; Chen, C.; Zhu, Y.; Shi, Y.; Wan, Q. Synergistic modulation of synaptic plasticity in IGZO-based photoelectric neuromorphic TFTs. IEEE Trans. Electron. Devices 2021, 68, 1659–1663. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; He, Z.; Zhu, H.; Chen, L.; Sun, Q.; Zhang, D.W. Laterally coupled 2D MoS2 synaptic transistor with ion gating. IEEE Electron. Device Lett. 2020, 41, 1424–1427. [Google Scholar] [CrossRef]
- He, W.; Fang, Y.; Yang, H.; Wu, X.; He, L.; Chen, H.; Guo, T. A multi-input light-stimulated synaptic transistor for complex neuromorphic computing. J. Mater. Chem. C 2019, 7, 12523–12531. [Google Scholar] [CrossRef]
- Huang, B.; Li, N.; Wang, Q.; Ouyang, C.; He, C.; Zhang, L.; Du, L.; Yang, W.; Yang, R.; Shi, D.; et al. Optoelectronic Synapses Based on MoS2 Transistors for Accurate Image Recognition. Adv. Mater. Interfaces 2022, 9, 2201558. [Google Scholar] [CrossRef]
- Zucker, R.S.; Regehr, W.G. Short-term synaptic plasticity. Rev. Physiol. 2002, 64, 355–405. [Google Scholar]
- Yang, B.; Wang, Y.; Hua, Z.; Zhang, J.; Li, L.; Hao, D.; Guo, P.; Xiong, L.; Huang, J. Low-power consumption light-stimulated synaptic transistors based on natural carotene and organic semiconductors. Chem. Commun. 2021, 57, 8300–8303. [Google Scholar]
- Ou, Q.; Yang, B.; Zhang, J.; Liu, D.; Chen, T.; Wang, X.; Hao, D.; Lu, Y.; Huang, J. Degradable photonic synaptic transistors based on natural biomaterials and carbon nanotubes. Small 2021, 17, 2007241. [Google Scholar]
- Chen, P.X.; Panda, D.; Tseng, T.Y. All oxide-based flexible multi-folded invisible synapse as vision photo-receptor. Sci. Rep. 2023, 13, 1454. [Google Scholar]
- Kumar, M.; Abbas, S.; Kim, J. All-oxide-based highly transparent photonic synapse for neuromorphic computing. ACS Appl. Mater. Interfaces 2018, 10, 34370–34376. [Google Scholar] [PubMed]
- Yang, R.; Yin, L.; Lu, J.; Lu, B.; Pi, X.; Li, S.; Zhuge, F.; Lu, Y.; Shao, W.; Ye, Z. Optoelectronic Artificial Synaptic Device Based on Amorphous InAlZnO Films for Learning Simulations. ACS Appl. Mater. Interfaces 2022, 14, 46866–46875. [Google Scholar]
- Cao, Y.; Sha, X.; Bai, X.; Shao, Y.; Gao, Y.; Wei, Y.M.; Meng, L.; Zhou, N.; Liu, J.; Li, B.; et al. Ultralow Light-Power Consuming Photonic Synapses Based on Ultrasensitive Perovskite/Indium-Gallium-Zinc-Oxide Heterojunction Phototransistors. Adv. Electron. Mater. 2022, 8, 2100902. [Google Scholar]
- Wu, G.; Zhang, J.; Wan, X.; Yang, Y.; Jiang, S. Chitosan-based biopolysaccharide proton conductors for synaptic transistors on paper substrates. J. Mater. Chem. C 2014, 2, 6249–6255. [Google Scholar]
- Dai, S.; Wu, X.; Liu, D.; Chu, Y.; Wang, K.; Yang, B.; Huang, J. Light-stimulated synaptic devices utilizing interfacial effect of organic field-effect transistors. ACS Appl. Mater. Interfaces 2018, 10, 21472–21480. [Google Scholar]
- Wang, J.; Wang, J.; Zhang, J.; Huang, W.; Wang, X.; Zhang, M. Ultralow-Power Synaptic Transistors Based on Ta2O5/Al2O3 Bilayer Dielectric for Algebraic Arithmetic. Adv. Electron. Mater. 2022, 8, 2100922. [Google Scholar]
- Li, S.; Zeng, F.; Chen, C.; Liu, H.; Tang, G.; Gao, S.; Song, C.; Lin, Y.; Pan, F.; Guo, D. Synaptic plasticity and learning behaviours mimicked through Ag interface movement in an Ag/conducting polymer/Ta memristive system. J. Mater. Chem. C 2013, 1, 5292–5298. [Google Scholar]
- Ohno, T.; Hasegawa, T.; Tsuruoka, T.; Terabe, K.; Gimzewski, J.K.; Aono, M. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 2011, 10, 591–595. [Google Scholar] [PubMed]
- Kim, S.; Choi, B.; Lim, M.; Yoon, J.; Lee, J.; Kim, H.D.; Choi, S.J. Pattern recognition using carbon nanotube synaptic transistors with an adjustable weight update protocol. ACS Nano 2017, 11, 2814–2822. [Google Scholar]
- Wang, I.T.; Chang, C.C.; Chiu, L.W.; Chou, T.; Hou, T.H. 3D Ta/TaOx/TiO2/Ti synaptic array and linearity tuning of weight update for hardware neural network applications. Nanotechnology 2016, 27, 365204. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Li, X.; Liao, J.; Chen, Q. Ultralow power consumption and large dynamic range synaptic transistor based on α-In2Se3 nanosheets. ACS Appl. Electron. Mater. 2022, 4, 598–605. [Google Scholar]
- Jang, J.W.; Park, S.; Jeong, Y.H.; Hwang, H. ReRAM-based synaptic device for neuromorphic computing. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, VIC, Australia, 1–5 June 2014; pp. 1054–1057. [Google Scholar]
- Curley, D.M.; Kumosinski, T.F.; Unruh, J.J.; Farrell, H.M., Jr. Changes in the secondary structure of bovine casein by Fourier transform infrared spectroscopy: Effects of calcium and temperature. J. Dairy Sci. 1998, 81, 3154–3162. [Google Scholar] [PubMed]
- Shao, F.; Cai, M.L.; Gu, X.F.; Wu, G.D. Starch as ion-based gate dielectric for oxide thin film transistors. Org. Electron. 2017, 45, 203–208. [Google Scholar]
- Szyk-Warszyńska, L.; Raszka, K.; Warszyński, P. Interactions of casein and polypeptides in multilayer films studied by FTIR and molecular dynamics. Polymers 2019, 11, 920. [Google Scholar]
Reference | Active Layer | Device Type | Spike Wavelength | PPF Index | Energy Consumption |
---|---|---|---|---|---|
[25] | ZnO | Transistor | 365 nm | ~140% (NA) | ~1 μJ |
[44] | SnOx/HfOx | Memristor | 405 nm | ~138% (Δt = 5 s) | NA |
[45] | In2O3/ZnO/FTO | Memristor | 365 nm | ~180% (Δt = 1 s) | ~0.2 nJ |
[46] | IAZO | Transistor | 375 nm | ~155.9% (Δt = 200 ms) | ~2.3 pJ |
[47] | PNCs/IGZO | Transistor | 640 nm | ~180% (Δt = 2 s) | ~2.6 pJ |
This works | IGZO | Transistor | 395 nm | ~168% (Δt = 200 ms) | ~1.1 pJ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-S.; Park, H.; Cho, W.-J. Light-Stimulated IGZO Transistors with Tunable Synaptic Plasticity Based on Casein Electrolyte Electric Double Layer for Neuromorphic Systems. Biomimetics 2023, 8, 532. https://doi.org/10.3390/biomimetics8070532
Kim H-S, Park H, Cho W-J. Light-Stimulated IGZO Transistors with Tunable Synaptic Plasticity Based on Casein Electrolyte Electric Double Layer for Neuromorphic Systems. Biomimetics. 2023; 8(7):532. https://doi.org/10.3390/biomimetics8070532
Chicago/Turabian StyleKim, Hwi-Su, Hamin Park, and Won-Ju Cho. 2023. "Light-Stimulated IGZO Transistors with Tunable Synaptic Plasticity Based on Casein Electrolyte Electric Double Layer for Neuromorphic Systems" Biomimetics 8, no. 7: 532. https://doi.org/10.3390/biomimetics8070532
APA StyleKim, H. -S., Park, H., & Cho, W. -J. (2023). Light-Stimulated IGZO Transistors with Tunable Synaptic Plasticity Based on Casein Electrolyte Electric Double Layer for Neuromorphic Systems. Biomimetics, 8(7), 532. https://doi.org/10.3390/biomimetics8070532