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Abstract: In this paper, a multi-strategy fusion enhanced Honey Badger algorithm (EHBA) is pro-
posed to address the problem of easy convergence to local optima and difficulty in achieving fast
convergence in the Honey Badger algorithm (HBA). The adoption of a dynamic opposite learning
strategy broadens the search area of the population, enhances global search ability, and improves
population diversity. In the honey harvesting stage of the honey badger (development), differen-
tial mutation strategies are combined, selectively introducing local quantum search strategies that
enhance local search capabilities and improve population optimization accuracy, or introducing
dynamic Laplacian crossover operators that can improve convergence speed, while reducing the odds
of the HBA sinking into local optima. Through comparative experiments with other algorithms on the
CEC2017, CEC2020, and CEC2022 test sets, and three engineering examples, EHBA has been verified
to have good solving performance. From the comparative analysis of convergence graphs, box plots,
and algorithm performance tests, it can be seen that compared with the other eight algorithms, EHBA
has better results, significantly improving its optimization ability and convergence speed, and has
good application prospects in the field of optimization problems.

Keywords: differential mutation operation; dynamic opposite learning strategy; dynamic Laplace
crossover; honey badger algorithm; quantum local search

1. Introduction

With the continuous innovation and development of technology in recent years, engi-
neering problems in various fields such as social life and scientific research have generated
many complex optimization solving needs [1–4], such as dynamic changes, nonlinearity,
uncertainty, and high-dimensional. Traditional methods, including the gradient descent
method, yoke gradient method, variational method, Newton’s method, and other meth-
ods, find it difficult to obtain optimal solutions to these problems within a certain time or
accuracy, and are no longer able to meet practical needs. In addition, their efficiency is
relatively low when solving real-world engineering problems with large search space and
non-linearity. On the contrary, meta-heuristics (MHs) are stochastic optimization methods
that do not require gradients. Due to their self-organizing, adaptive, and self-learning
characteristics, they have demonstrated their ability to solve real-world engineering design
problems in different fields. Therefore, with the continuous advancement of society and the
development of artificial intelligence, optimization methods based on an MHs algorithm
have been developed.

MHs methods solve optimization problems by simulating biological behavior, physical
facts, and chemical phenomena. They are divided into four categories: Swarm Intelligence
(SI) algorithms, Evolutionary Algorithms (EA) [5], Physics-based Algorithms (PhA) [6–8],
and human-based algorithms [9–11]. Recently, these behaviors have been widely modeled
in various optimization techniques, and their results are summarized in Table 1. Among
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them, SI is a kind of meta-heuristic algorithm that explores optimization by mimicking the
swarm intelligence pattern of behavior of biological and non-living systems in nature [12].
It has advantages such as good parallelism, autonomous exploration, easy implementation,
strong flexibility, and fewer parameters. In general, the structure of excellent SI optimization
algorithms is simple. The simple theories and mathematical models originate from nature
and solve practical problems by simulating nature. Additionally, it is easy to incorporate
its variant methods in line with state-of-the-art algorithms. Second, these optimization
algorithms can be considered as black boxes, which can solve optimization cases for a
series of output values and given input values. Furthermore, an important characteristic
of SI algorithms is their randomness, which means that they will find the entire variable
space and effectively escape local optima. They seek the optimal result through probability
search, without requiring too much prior knowledge or analyzing the internal laws and
correlations of the data. It only needs to learn from the data itself, self-organize, and
adaptively solve optimization problems, which are very suitable for solving NP complete
problems [13].

In the last few years, SI was designated as a small branch of artificial intelligence, is
widely used in areas like path planning, mechanical control, engineering scheduling, fea-
ture extraction, image processing, training MLP, etc. [14–21], and has achieved significant
development. The No Free Lunch (NFL) theorem proposed by Wolpert et al. [22] logically
proves that there is no algorithm that can solve all optimization problems. Therefore,
research in the field of SI algorithms is very active, with many experts and scholars conduct-
ing research on improvements to current algorithms and new algorithms. Typical examples
include Particle Swarm Optimization algorithms (PSO) [23] and Ant Colony Optimization
(ACO) [24], which have been inferred from by the cooperative foraging behavior of bird
and ant colonies, respectively. Over the past few years, a number of researchers have been
involved in the development of SI, proposing various algorithms that simulate the habits
of natural organisms. Yang et al. [25] presented the Bat Algorithm (BA) to simulate the bats’
behavior using sonar for detection and localization. Gandomi et al. [26] have developed
the Cuckoo Search algorithm (CS) according to the reproductive characteristics of cuckoo
birds; the reason why the optimal solution obtained by CS is much better than that ob-
tained by existing methods is because CS uses unique search features. References [27–29]
proposed the Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), and
Salp Swarm Algorithm (SSA) by simulating the hunting behavior of grey wolf, humpback
whale, and salp, respectively. Compared with well-known meta-heuristic algorithms, the
GWO algorithm can provide highly competitive results. The results of classical engineering
design problems and practical applications have shown that this algorithm is suitable for
challenging problems with unknown search spaces. Compared with existing meta-heuristic
algorithms and traditional methods, WOA has strong competitiveness. The SSA can ef-
fectively improve the initial random solution and converge to the optimal solution. The
results of actual case studies demonstrate the advantages of the proposed algorithm in
solving real-world problems with difficult and unknown search spaces.

Mirjalili et al. [30] proposed the Sea-horse Optimizer (SHO) from the motor, predatory,
and reproductive behavior of the sea-horse. These three intelligent behaviors are expressed
and constructed mathematically to balance the local development and global exploration
of SHO. The experimental results indicate that SHO is a high-performance optimizer with
positive adaptability for handling constraint problems. Abualigaha et al. [31] introduced the
Reptile Search Algorithm (RSA) derived from the hunting activity of crocodiles, the search
method of RSA is unique, and it achieves better results. Based on mathematical models of
sine and cosine functions, the Sine Cosine Algorithm (SCA) [32] is proposed, which can
effectively explore different regions of the search space, avoid local optima, converge to
global optima, and effectively utilize the promising regions of the search space during the
optimization process. The SCA algorithm has obtained smooth shapes of airfoils with very
low drag, indicating its effectiveness in solving practical problems with constraints and
unknown search spaces. Subsequently, Tunicate Swarm Algorithm (TSA) [33], Wild Horse
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Optimizer [34] (WHO), Archimedes Optimization Algorithm (AOA) [35], and Moth Flame
Optimization (MFO) [36] were successively proposed.

Table 1. A brief review of meta-heuristic algorithms.

Algorithms Abbrev. Inspiration

Particle Swarm Optimization PSO [23] The predation behavior of birds

Genetic algorithms GA [5] Darwin’s theory

Gravitational Search Algorithm GSA [6] The interaction law

Teaching Learning-Based Optimization TLBO [8] The effect of influence of a teacher on learners
Ant Colony Optimization ACO [24] The foraging behavior of ants

Bat Algorithm BA [25] The echolocation behavior of bats
Cuckoo Search algorithm CS [26] The reproductive characteristics of cuckoo birds

Gray Wolf Optimization GWO [27] The leadership hierarchy and hunting mechanism

Whale Optimization Algorithm WOA [28] The bubble-net hunting behavior of humpback whales

Salp Swarm Algorithm SSA [29] The swarming behaviour of salps when navigating and
foraging in oceans

Sea-horse Optimizer SHO [30] The movement, predation, and breeding behaviors of
sea horses

Reptile Search Algorithm RSA [31] The hunting behavior of crocodiles

Tunicate Swarm Algorithm TSA [33] The group behavior of tunicates in the ocean

Sine Cosine Algorithm SCA [32] Based on mathematical models of sine and cosine
functions

Wild Horse Optimizer WHO [34] The decency behaviour of the horse

Arithmetic Optimization Algorithm AOA [35] The main arithmetic operators in mathematics

Moth Flame Optimization MFO [36] The navigation method of moths

Honey Badger Algorithm HBA [37] The intelligent foraging behavior of honey badger

The basic framework of the MHs algorithm mentioned above is established in two stages,
namely the exploration and exploration stages. The MHs algorithm needs to achieve a
perfect balance between these stages in order to be efficient and robust, thereby ensuring
the best results in one or more specific applications. The exploration process involves
searching for regions of distant feasible solutions to ensure obtaining better candidate
solutions. After the exploration phase, exploring the search space is crucial. This algorithm
will converge to a promising solution and is expected to find the best solution through local
convergence strategy [19].

A good balance of exploration and exploitation and prevention of falling into local
solutions are the key requirements for MHs algorithms to solve engineering optimization
problems. They ensure a large search space and the acquisition of the optimal global solu-
tion. The summary results show that researchers mainly deal with (1) mixing two or more
other strategies. The improved meta-heuristic algorithm will introduce the advantages and
disadvantages of each algorithm, and refer to the corresponding strategies in a targeted
manner to improve optimization efficiency. (2) Propose new heuristic optimization algo-
rithms that are more adaptable to complex engineering optimization problems. However,
the newly proposed algorithm must be more mature and generalizable for optimization
problems when migrating to a new project.

The Honey Badger Algorithm (HBA) [37] was developed by Fatma et al. Firstly, the
special feature of HBA from other meta-heuristic algorithms lies in the use of two new
mechanisms to update individual positions: the foraging behavior of honey badgers in
both mining and honey picking modes, which possesses stronger searching ability and
performs well for the complex practical problems. The dynamic search behavior of honey
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badger with digging and honey finding approaches are formulated into exploration and
exploitation phases in HBA.

Secondly, compared with different algorithms such as PSO, WOA, and GWO, etc., HBA
has been widely noticed and used in various fields because of its high flexibility, simple
algorithm structure, high convergence accuracy, and operability. It has a stronger searching
ability and performs well for the complex practical problems. HBA has successfully solved
the speed reducer design problem, tension/compression spring design problem, and some
other constraint engineering problems.

Therefore, experts have made varying degrees of improvements to it in order to better
adapt to various problems in recent times. For example, Akdag et al. proposed a developed
honey badger algorithm (DHBA) to solve the optimal power flow problem [38]. Han et al.
proposed an improved chaotic honey badger algorithm to optimize and efficiently model
proton exchange membrane fuel cells [39]. The literature [40] proposes an enhanced HBA
(LHBA) based on Levy flight strategy and applies it to the optimization problem of robot
grippers, The results show that LHBA can obtain the minimum value of the difference
between the minimum force and the maximum force and successfully solve this optimiza-
tion problem. In order to improve the overall optimization performance of basic HBA,
literature [41] proposes an improved HBA named SaCHBA_PDN based on the Bernoulli
shift graph, segmented optimal decreasing neighborhood, and policy adaptive horizontal
crossing and applies it to solve the path planning problem of unmanned aerial vehicles
(UAVs). Test experimental results show that SaCHBA_PDN has a better performance than
other optimization algorithms. Simulation results show that SaCHBA_PDN can obtain
more feasible and efficient paths in different obstacle environments, etc. However, the HBA
still has limitations in falling into local optima and solving accuracy when facing multiple
local solution problems [37], while the experimental results in this paper also show that
there is some room for improvement in its performance such as optimization accuracy and
stability. Therefore, this paper attempts to improve some limitations of the HBA.

To further improve the performance of the original HBA, it was enhanced by combin-
ing four different strategies: dynamic opposite learning, differential mutation operations,
local quantum search, and dynamic Laplacian crossover operators, forming the enhanced
Honey Badger Algorithm (EHBA) to be studied in this paper. What is more, the EHBA has
been successfully introduced to a number of typical practical engineering problems. To
summarize, the main contributions made include:

(a) A dynamic opposite learning strategy was adopted for HBA initialization to enhance
the diversity of the population and quality of candidate solution for performance im-
provement of the original HBA, and increases the convergence speed of the algorithm.

(b) Combining differential mutation operations to increase the diversity of individual
populations, enhance the HBA’s capability to jump out of local optima, and to some
extent increase the precision of HBA.

(c) Local quantum search and dynamic Laplacian crossover operators are selectively used
in the mining and honey mining stages to balance the development and exploration
stages of the algorithm.

(d) Performance testing and analysis of EHBA were conducted on test sets CEC2017,
CEC2020, and CEC2022, respectively. The feasibility, stability, and high accuracy
of the proposed method have been verified through existing test sets. Improved
new algorithms EHBA were adopted to design and solve three typical engineering
practical cases, further verifying the practicality of EHBA.

The rest of the research content of this article is as outlined below: Section 2 outlines
the basic theory of the original honey badger algorithm, combining multiple strategies to
establish an enhanced honey badger algorithm (EHBA), and provides specific process steps
for improving the algorithm in Section 3; for the effectiveness of the developed EHBA,
calculated and statistical analyses were conducted in Section 4 using test sets CEC2017,
CEC2020, and CEC2022, respectively; Section 5 provides three specific engineering exam-
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ples and analysis to validate the engineering utility of EHBA; Finally, the conclusion and
future research of the entire article was made in Section 6.

2. Theoretical Basis of Honey Badger Algorithm

The HBA simulates the foraging behavior of honey badgers in both digging and
honey modes. In the previous mode, honey badger employs its olfactory capabilities to
approach the prey’s position. As it approaches, the honey badger moves around prey to
select suitable places to excavate and capture it. With the second option, the honey badger
directly tracks the honeycomb under the guidance of the honey guide bird. In theory,
HBA has both exploration and exploitation stages, so it can be called a global optimization
algorithm. The feeding activity of the honey badger exhibits the properties of powerful
optimization capacity and rapid convergence rate.

2.1. Population Initialization Stage

As with all meta-heuristics, HBA starts the optimization process by generating a
uniformly distributed randomized population within a set boundary range. According to
Equation (1), initialize the population and individual position of honey badgers.

Pi = r1 × (Upbi − Lobi) + Lobi, (1)

where r1 is a random value within [0, 1], Lobi and Upbi represent the lower and upper
bound of the problem to be solved, respectively.

Forming the initial population matrix P in below Equation (2).

P =



P1
P2
· · ·
...
· · ·
PN


=



p1,1 · · · p1,j p1,Dim−1 p1,Dim
p2,1 · · · p2,j · · · p2,Dim
· · · · · · pi,j · · · · · ·

...
...

...
...

...
pN−1,1 · · · pN−1,j · · · pN−1,Dim

pN,1 · · · pN,j pN,Dim−1 pN,Dim


, (2)

where Pi (i = 1, 2, . . ., N) represents the candidate solution position vector, and Pi,j represents
the position in the j-th direction of the i-th candidate honey badger.

As mentioned earlier, there are two parts to update the position process in the HBA,
namely the “digging stage” and the “honey stage”.

2.2. Digging Stage (Exploration)

Some honey badgers approach their prey through their sense of smell, and this unique
foraging behavior provides us with the direction of the digging stage. In addition to the
location update formula, the digging stage also defines three related concepts: intensity
operator, trend modifier, and density factor.

2.2.1. Definition of the Intensity I

The intensity I is proportional to the density of prey and the distance between it and
the honey badger, and is denoted by the inverse square law [42] in Equation (4).

S = (Pi − Pi+1)
2, (3)

Ii = r2
S

4πd2
i

, (4)

di = Pprey − Pi, (5)

where Ii is the intensity of the prey’s odor in Equation (4). If the odor is strong, the speed of
the movement will be rapid, and vice versa. S and di indicate the source or concentration
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intensity (location of prey) and the distance between the current honey badger candidate
and the prey, r2, is a random number between 0 and 1.

2.2.2. Update Density Factor α

The density factor (α) governs the time-varying stochasticity to guarantee a steady
shift from exploration to exploitation. The diminishing factor α is refreshed to lower the
stochasticity over time using Equation (6), which reduces with iterations.

α = C × exp
(
−t
T

)
, (6)

where T and t are the maximum number of iterations and the current number of iterations,
respectively. C default is 2.

2.2.3. Definition of the Search Orientation F

The next few steps are all used to jump out of the local optimum zone. Here, the
EHBA uses a flag F that switches the search orientation to take advantage of numerous
opportunities for individuals to strictly scan the search space.

F =

{
1, if r3 ≤ 0.5
−1, otherwise

, (7)

where r3 is random numbers in the range of 0–1.

2.2.4. Update Location of Digging Stage

During the digging period, honey badgers depend strongly on the scent intensity, the
distance between them, and search factors α. Badgers may be subject to any interference
during excavation activities; this can be a hindrance to their search for better prey sites.
The honey badger executes actions that resemble the shape of a heart-line. Equation (8) can
be used to mimic cardioid movement.

PNew = Pprey + F × β × Pprey + F × r3 × α × di × |cos(2πr4)× [1 − cos(2πr5)]|, (8)

among them, Pprey is the globally optimal prey location so far. β ≥ 1 (default to 6) is the
honey badger’s capacity to forage, di is shown in Equation (5). r4, r5, and r6 are three
different random numbers between 0 and 1, respectively. F is defined as a sign to change
the search direction.

2.3. Honey Harvesting Stage (Exploitation)

The situation where the honey badger follows the honey guide badger to the hive is
illustrated in Equation (9).

PNew = Pprey + F × r7 × α × di, (9)

where PNew and Pprey represent the current individual location and the location of the prey,
and r7 is random numbers in the range of 0–1. F and α are defined by Equations (8) and
(6), respectively. From Equation (9), it can be observed that the honey badger near Pprey is
based on variable di.

3. An Enhanced Honey Badger Algorithm Combining Multiple Strategies

To address the issue of inadequate precision in solving the original HBA, there is a
phenomenon of insufficient global exploration capability and difficulty in jumping out of
local extremes. An enhanced honey badger search algorithm is proposed by combining
dynamic opposite learning strategy, differential mutation strategy, Laplacian, and quantum
local strategy. Firstly, in terms of population initialization, dynamic opposite learning
strategies are utilized to enhance the richness of the initial population. The differential
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mutation operation is to increase the diversity of the population and prevent HBA from
falling into local optima. Simultaneously, introducing quantum local search or Laplacian
operators for dynamic crossover operations in the local development stage allows the
optimal honey badger individual to adopt different crossover strategies at different stages
of development, with a fine search range in the early stage and better jumping out of local
extremum in the later stage.

3.1. Dynamic Opposite Learning Strategy

Opposite learning is considered a new technology in intelligent computing, aims to
find corresponding opposite solutions based on the current solution, and then select and
save better solutions through fitness calculation. Initializing through opposite learning
strategies can effectively improve the diversity of the population and help it escape from
local optima.

In meta-heuristic optimization algorithms, the population initialization is usually
randomly produced, which can only ensure the distribution of the population, but cannot
assure the quality of the initial solution. Nevertheless, studies have shown that the quality
of the initialization significantly affects the convergence rate and precision of HBA. Based
on this issue, domestic and foreign scholars have introduced various strategies into the
initialization part to enhance the initial performance, commonly including chaotic initial-
ization, opposite learning, and Cauchy random generation, etc. This section introduces a
dynamic opposite learning strategy to stronger the quality of initialization solutions [43]
with Equation (10).

PDobl = PInit × r8 × (r9 × (Upb + Lob − PInit))− PInit, (10)

where PInit and PDobl are the population created at random and opposite initial population.
r8 and r9 are the different arbitrary number within (0, 1). Firstly, PInit and PDobl are produced,
respectively. Then, merge them into a new population PNew = {PDobl ∪ PInit}. Calculate the
objective function of PNew, and use a greedy strategy to fully compete within the population,
selecting the best N candidate honey badgers as the initial population. This allows the
population to near the optimal solution more quickly, thereby accelerating the convergence
of the HBA.

3.2. Differential Mutation Operation

Differential evolution algorithm (DE) is a new parallel evolutionary algorithm. It
consists of three operations: mutation, crossover, and selection [44–46]. The DE algorithm
keeps the best individuals and eliminates the worst individuals by means of successive
iterative operations, and leads the search process towards the global optimal solution. The
concrete procedures of the three operations are described below:

• Mutations. Mutation refers to calculating the weighted position difference between
two individuals in a population, then adding the position of a random individual to
generate a mutated individual. The specific mutation procedures can be described
with Equation (11).

vt+1
i = pt

r1
+ Fs × (pt

r2
− pt

r2
), (11)

where pt
r1

, pt
r2

, pt
r3

are individuals that are different from each other in the t-th iteration,
respectively, Fs represents the adaptive adjustment mutation operator.

• Crossover. By using some parts of the present population and corresponding parts
of the mutant population, and exchanging them in accordance with certain rules, it
is possible to make a cross population mt

i that can enrich the variety of the species in
the population.
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mt+1
i =

{
vt+1

i if rj < CR or j = jrand
pt

i otherwise
, (12)

where CR ∈ [0, 1] is the crossover probability, rj and jrand are random integer numbers in
the range [0, 1] and [1, Dim], respectively.

• Selection. If the fitness value of the cross vector mt
i is not inferior to the fitness value of

the target individuals pt
i , then replace the target individual with the cross vector in the

next generation.

pt+1
i =

{
mt

i if f (mt
i) < f (pt

i)
pt

i otherwise
, (13)

The DE algorithm uses the variation information between individuals to disturb them,
thereby increasing the variety of the individuals and searching for the optimum result. It
has the merits of simplicity of processing, stability of search, and ease of implementation.
In this contribution, the new individual obtained by the DE algorithm is substituted for
the optimal individual in the original HBA and then drives the evolution process of the
individuals. This not only enhances the precision and exploration, but also secures the
convergence rate of the HBA.

3.3. Quantum Local Search

First, calculate the adaptive expansion coefficient of the current generation [47]:

β(t) = (βmax − βmin)
T − t

T
+ βmin, (14)

where βmax = 1 and βmin = 0.5 are the maximum and minimum values of the preset adaptive
expansion coefficient. Generate an attraction point Qi based on individual historical average
optimal position and group historical optimal position:

Qi = φ · P + (1 −φ)Pb. (15)

Assuming that the position vector of each honey badger has quantum behavior, the
state of the position vector is described using the wave function φ(x, t). The position
equation of the new position vector obtained through Monte Carlo random simulation can
be seen in Equation (16).

P(t + 1) = Qi ± β

∣∣∣∣¯P − P
∣∣∣∣ · ln(1/u). (16)

In Equations (15) and (16), φ and u represents a D random number matrix that follows a
uniform distribution from 0 to 1. The introduced quantum local search strategy generates an
attraction point according to the Equation (15), and the honey badger population moves in a
one-dimensional potential well centered around this attraction point, expanding the variety
of new individuals and making sure the individuals of the honey badger population have
better distribution. Finally, the position is updated according to Equation (16) to decrease
the possibility of HBA entering local optima, making the HBA have better exploration
performance, which is beneficial for balancing exploration and development.

3.4. Dynamic Laplace Crossover

The Laplace crossover operator was proposed by Kusum et al. [48,49]. The density
function of the Laplace operator distribution can be described in Equation (17).

D(p) =
1
2b

exp(−|p − a|
b

). (17)
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In Equation (17), a∈R is the positional parameter, usually taken as 0, and b > 0 is
the proportional parameter. First, generate a random number equally distributed on the
interval [0, 1], and λ (random number) is generated by the Equation (18).

λ =

{
a − b loge(ε), ε ≤ 1

2
a + b loge(ε), ε > 1

2
, (18)

In Laplacian crossover, two offspring o(1) = o(1)1 , o(1)2 , · · · , o(1)n and o(2) = o(2)1 , o(2)2 , · · · , o(2)n

are generated by a pair of parents p(2) = p(2)1 , p(2)2 , · · · , p(2)n and p(1) = p(1)1 , p(1)2 , · · · , p(1)n
by Equations (19) and (20).

p(1)i = o(1)i + λ
∣∣∣o(1)i − o(1)i

∣∣∣, (19)

p(2)i = o(2)i + λ
∣∣∣o(2)i − o(2)i

∣∣∣. (20)

In order to match the iterative law of the algorithm, this article adopts a dynamic
Laplacian crossover strategy for cross mutation operations. Figure 1 shows the differences
in the Laplace cross density function curves under different values of b. In which, the solid
line and dashed line are represented as b = 1 and b = 0.5. From a vertical perspective, the
peak near the center value of the dashed line is greater than the solid line, and the peak
at both ends is smaller than the solid line; from a horizontal perspective, the solid line
descends more slowly as it approaches both ends of the horizontal axis, while the dashed
line approaches both ends of the horizontal axis.
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To make the algorithm easy to operate and universal, this article dynamically intro-
duces the Laplace crossover operator in the local discovery stage to help the honey badger
population break free from the constraints of local extremum and avoid premature con-
vergence. Because b = 1 is more likely to generate random numbers entering and leaving
the origin than b = 0.5, and has a wider distribution range, selecting b = 1 for Laplace
crossing in the early stage of local exploration allows honey badger individuals to search
the range of solutions with a larger step size and better break free from the constraints of
local extremum by Equation (21).

λ =

{
a − loge(ε), ε ≤ 1

2
a + loge(ε), ε > 1

2
, r ≤ 1 − t

T
. (21)

Due to the high probability of generating random numbers near the central value of
b = 0.5, in the later stage of local development, b = 0.5 is chosen for Laplacian crossover,
which allows honey badger individuals to walk around the optimal solution with a smaller
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step length, fine search region, and improve the probability of finding the global optimal.
The specific expression is defined with Equation (22).

λ =

{
a − 1

2 loge(ε), ε ≤ 1
2

a + 1
2 loge(ε), ε > 1

2
, r > 1 − t

T
. (22)

In Equations (21) and (22), 1 − t/T represents a monotonically decreasing function
between [0, 1]. In the early stages of development, t is small, so 1 − t/T is large. The
algorithm randomly selects a honey badger and the current optimal individual to perform
a crossover operation according to Equation (21) when 1 − t/T is greater than r. In the later
stage of development, t is large, so 1 − t/T is small. The algorithm randomly selects a honey
badger and performs a crossover operation with the current optimal individual according
to Equation (22) when it is less than r. The dynamic Laplacian crossover operation allows
for the generation of offspring in the early stage, which can better explore the search space
with a larger step size, increase the probability of jumping out of the local extremum, and
avoid premature convergence. In the later stage of development, offspring that are closer
to their parents are generated, which can finely search the space near the optimal solution
with a smaller step size, increasing the probability of finding the global optimal solution,
and helping the honey badger individuality converge to the global optimal at a faster speed.
Overall, the introduction of Laplace crossover operator in the development stage enables
the honey badger population to perform adaptive dynamic crossover operations according
to the iterative process, improving the convergence rate and solving ability.

3.5. The Specific Steps of the Enhanced Honey Badger Algorithm

Initialize the population using dynamic opposite learning, replace the random method
of HBA, and reduce the uncertainty of the algorithm. This initialization population strategy
can generate high-quality populations with good diversity, laying the foundation for
subsequent iterations. Introducing Laplacian crossover strategy or local quantum search
strategy in the local exploration stage forces the honey badger group to adaptively select and
update strategies during the iteration process, helping the honey badger group converge
to the global optimum faster and decreasing the probability of premature convergence of
the HBA.

Step One. Initialize the population by Equation (1), perform the dynamic opposite
learning population with Equation (10), and retain the optimal individuals according to the
greedy strategy to enter the main program iteration.

Step Two. Calculate the objective function value of each honey badger, and record the
optimal objective function value FBest and the optimal individual position XBest based on
the results.

Step Three. Define intensity I with Equation (4) and density factor by Equation (6).
Step Four. Perform differential mutation operation Equations (11)–(13).
Step Five. If r < 0.5, update the values through the digging stage with Equation (8).
Step six. If the random number r1 > 1 − t/T, update the individual position of the

population based on the quantum local search Equation (16); otherwise, if the random
number r2 > 1 − t/T, replace the individual position based on the dynamic Laplace
crossover Equation (22); if r2 ≤ 1 − t/T, update the individual position following the
Equation (21).

Step Seven. After updating, judge whether it exceeds the upper and lower bounds
of the position. If a certain dimension of the individual exceeds the upper bound, replace
its value with the upper bound Upb. If a certain dimension of the individual exceeds the
lower bound, replace its value with the lower bound Lob.

Step Eight. Evaluate the fitness value and judge whether is better than FBest; if it is
better than FBest, the fitness value of this candidate solution is recorded as a new FBest, and
the individual position is updated as PBest;

Step Nine. As the number of iteration increases, if t < T, return to Step Three;
otherwise, output the optimal value FBest and the corresponding position PBest.
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For the sake of expressing the EHBA more clearly, the pseudo-code of EHBA is listed
in Algorithm 1 and Figure 2 gives the flowchart of the EHBA.

Algorithm 1: The Proposed EHBA

Input: The parameters of HBA such as β, C, N, Dim, and maximum iterations T.
Output: Optimal fitness value.
Random Initialization
Construct the new population through dynamic opposite learning strategy.
For i = 1 to N do
r8 = rand(0,1), r9 = rand(0,1),
For j = 1 to Dim do
PDobl

i,j = PInit
i,j × r8 × (r9 × (Upbj + Lobj − PInit

i,j ))− PInit
i,j

Check the boundaries.
Using greedy algorithm to select the best initial population from 2N populations
Evaluate all fitness value F(Pi), i = 1, 2, . . ., N. Save best position PBest and FBest.

While (t < T) do
Renew the decreasing factor α by Equation (6).

For i =1 to N do
Calculate the intensity Ii by Equation (4).

Perform differential mutation operation with Equations (11)–(13):
For i = 1 to N do
Perform mutation by Equation (11); End
For i = 1 to N
For j = 1 to Dim do
Perform crossover by Equation (12);
End
End
For i = 1 to N
For j = 1 to Dim do
Perform selection by Equation (13);
End
End

If r < 0.5 then
Replace the location Pnew by Equation (8).

Else
Quantum Local Search:

Perform Equations (14)–(16)
Else

Dynamic Laplace Crossover:
if r1 < 1 − t/T then

Renewed the honey badger location with Equation (21).
Else
Renewed the honey badger location with Equation (22).
End if

End if
Evaluate new position
If Fnew ≤ F(Pi) then
Let Pi = Pnew and Fi = Fnew.
End if
If Fnew ≤ FBest then
Make PBest = Pnew and FBest = Fnew.
End if

End For
Verify the honey badger’s boundaries.
Refresh Honey Badger’s location and most best location (P*)

t = t + 1
End while
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3.6. The Complexity Analysis

The calculation complexity of EHBA is determined mainly by the following three
operations: dynamic opposite learning initialization, fitness evaluation, and population
position update. As the primary stage of the algorithm, the initialization stage is executed
only once at the beginning, while the other two steps are performed in each iteration cycle.
The complexity is calculated with a default population size of N, the iteration period is T,
and the dimension is defined D.

The calculation complexity of the HBA is of O(TND). The computational complexity of
initialization for dynamic directional learning is O(2N). Quantum local search and Laplace
crossover replace the honey harvesting stage of the original algorithm HBA, which is
only an order of magnitude operation with a constant multiple c, O(cTND). Constants
have little effect on large O. In summary, the total computational complexity of EHBA is
O(cTND + 2N).

4. Numerical Experiment and Analysis Results

In this section, we test the performance on the CEC2017, CEC2020, and CEC2022 test
sets for demonstrating the effectiveness of the EHBA. CEC2017 contains 30 single objective
optimization functions, which is a very classic functions set and also the most capable
function set for postgraduate intelligent algorithm optimization ability. The F2 function
in the CEC2017 was later removed, as officially declared. The optimization function test
kit for CEC2020 includes 10 benchmark problems, which are actually a combination of
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functions selected from CEC2014 and CEC2017. CEC2022 was also selected from the 2017
and 2014 function sets and is the latest test set for algorithm performance testing. These
three test sets contain different uni-modal, multi-modal, hybrid, and composition functions,
which can better measure the performance of the new EHBA method.

In this study, the experiment was run in a Windows 10 (64 bit) environment using
Intel (R) core (TM) i5-6500 processors, 3.2 GHz, and 8 GB of main memory. EHBA was
implemented in MATLAB R2019a to ensure the fairness of the algorithm.

The results were compared with the algorithm mentioned in the introduction contain-
ing SHO [30], AOA [35], WOA [28], MFO [36], HBA [37], TSA [32], SCA [33], GWO [27], etc.,
to verify the efficiency of the EHBA when evaluating test problems. These algorithms not
only include the earliest classical algorithms proposed, but also include algorithms with
better applicability and performance in recent years, which can better reflect the superiority
of EHBA in this paper.

Parameter settings for all comparison algorithms should be consistent with those in
the various literature; see Table 2. The maximum number of iterations T and population
size N for all methods are 1000 and 30, respectively.

Table 2. Parameters setting.

Algorithms Parameters Setting Value

HBA, EHBA
Coefficient of the logarithmic spiral shape β (the ability of a
honey badger to get food) 6

C 2

SHO
Logarithmic helix constant u = 0.05, v = 0.05
Constant parameters l l = 0.05

AOA Constant parameters c1 = 2, c2 = 6, c3 = 1, c4 = 2

WOA Control parameter a
Constant parameters b

a is linear decrease from 2 to 0
b = 1

MFO Shape constant of logarithmic spiral b b = 1

TSA Initial interaction velocity constant Pmin, Pmax Pmin = 1, Pmax = 4

SCA Constant parameters a a = 2

GWO Control parameter a a is linear decrease from 2 to 0

The randomness of meta-heuristics leads to unreliable results from a single run. To
ensure a fair comparison, all procedures are performed 30 times independently. Usually,
the average accuracy (Mean), standard deviation (Std), best value (Min), worst value (Max),
Rank, and Wilcoxon’s rank sum test are selected as the evaluation criteria, which best
highlight the effectiveness and feasibility of the algorithm. Here, “+” denotes that the
results of other methods are superior to EHBA, “—” defines the number of functions that
underperform in EHBA, “=” means that there is no significant difference between EHBA
and other methods. Also shown in bold are the minimum values obtained by the eight
algorithms listed above. Rank represents the ranking result of the average value of different
algorithm. The lower the rank, the better the performance of the algorithm in terms of
precision and stability.

4.1. Experiment and Analysis on the CEC2017 Test Set

The test function CEC2017 contains 29 functions that are often used to test the effective-
ness of algorithms, with at least half being challenging mixed and combined functions [50].
Table 3 presents the test results between EHBA and the other eight methods on the CEC2017.
The bold data in the table represent the optimal average data among all the comparison algo-
rithms. In addition, Table 4 shows the Wilcoxon rank sum test results of eight comparative
algorithms at a significance level of 0.05.
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Table 3. Comparison results of EHBA and other methods on CEC2017.

F Index
Algorithms

EHBA HBA SHO SCA TSA WOA MFO GWO AOA

F1

Ave 6.940 × 103 2.116 × 104 2.036 × 1010 1.776 × 1010 2.043 × 1010 1.875 × 109 1.044 × 1010 2.469 × 109 5.208 × 1010

Std 6.075 × 103 5.366 × 104 6.035 × 109 2.884 × 109 5.480 × 109 1.367 × 109 8.340 × 109 1.791 × 109 7.679 × 109

Best 4.300 × 102 9.124 × 102 6.912 × 109 1.246 × 1010 6.148 × 109 6.860 × 108 1.824 × 109 7.948 × 108 4.107 × 1010

Rank 1 2 7 6 8 3 5 4 9

F3

Ave 2.908 × 104 1.885 × 104 6.359 × 104 6.253 × 104 4.720 × 104 2.536 × 105 1.388 × 105 5.102 × 104 5.539 × 104

Std 6.627 × 103 5.071 × 103 9.618 × 103 1.100 × 104 9.274 × 103 7.388 × 104 6.077 × 104 1.381 × 104 9.598 × 103

Best 1.723 × 104 1.077 × 104 4.048 × 104 4.732 × 104 2.599 × 104 1.688 × 105 4.195 × 104 1.461 × 104 3.291 × 104

Rank 2 1 7 6 3 9 8 4 5

F4

Ave 5.049 × 102 5.151 × 102 3.487 × 103 2.466 × 103 3.914 × 103 8.298 × 102 1.263 × 103 6.419 × 102 1.096 × 104

Std 3.796 × 101 2.728 × 101 1.636 × 103 8.131 × 102 2.526 × 103 1.009 × 102 9.391 × 102 1.665 × 102 2.162 × 103

Best 4.046 × 102 4.733 × 102 1.118 × 103 1.545 × 103 8.272 × 102 5.865 × 102 5.877 × 102 5.272 × 102 7.314 × 103

Rank 1 2 7 6 8 4 5 3 9

F5

Ave 6.103 × 102 6.216 × 102 7.268 × 102 8.185 × 102 8.335 × 102 8.309 × 102 7.045 × 102 6.204 × 102 8.680 × 102

Std 1.664 × 101 2.609 × 101 2.710 × 101 2.758 × 101 4.902 × 101 5.581 × 101 3.487 × 101 4.249 × 101 2.702 × 101

Best 5.853 × 102 5.657 × 102 6.912 × 102 7.852 × 102 7.145 × 102 6.699 × 102 6.440 × 102 5.659 × 102 8.008 × 102

Rank 1 3 5 6 8 7 4 2 9

F6

Ave 6.002 × 102 6.141 × 102 6.485 × 102 6.581 × 102 6.833 × 102 6.801 × 102 6.428 × 102 6.104 × 102 6.768 × 102

Std 2.683 × 10−1 6.140 × 100 6.153 × 100 6.172 × 100 1.378 × 101 1.205 × 101 1.368 × 101 4.147 × 100 4.811 × 100

Best 6.000 × 102 6.066 × 102 6.352 × 102 6.455 × 102 6.597 × 102 6.537 × 102 6.194 × 102 6.018 × 102 6.682 × 102

Rank 1 3 5 6 9 8 4 2 7

F7

Ave 8.715 × 102 9.302 × 102 1.131 × 103 1.202 × 103 1.258 × 103 1.256 × 103 1.052 × 103 9.302 × 102 1.362 × 103

Std 3.822 × 101 5.782 × 101 5.359 × 101 6.706 × 101 1.000 × 102 1.216 × 102 1.466 × 102 5.838 × 101 5.943 × 101

Best 8.130 × 102 8.640 × 102 1.036 × 103 1.090 × 103 1.132 × 103 1.048 × 103 8.339 × 102 8.459 × 102 1.243 × 103

Rank 1 3 5 6 8 7 4 2 9

F8

Ave 8.985 × 102 9.036 × 102 9.781 × 102 1.081 × 103 1.111 × 103 1.059 × 103 1.016 × 103 8.991 × 102 1.100 × 103

Std 2.029 × 101 2.444 × 101 2.901 × 101 2.194 × 101 5.049 × 101 5.459 × 101 5.290 × 101 2.235 × 101 2.551 × 101

Best 8.701 × 102 8.557 × 102 9.206 × 102 1.040 × 103 1.031 × 103 9.860 × 102 9.466 × 102 8.705 × 102 1.049 × 103

Rank 1 3 4 7 9 6 5 2 8
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Table 3. Cont.

F Index
Algorithms

EHBA HBA SHO SCA TSA WOA MFO GWO AOA

F9

Ave 1.235 × 102 3.043 × 103 5.260 × 103 7.498 × 103 1.105 × 104 1.007 × 104 6.909 × 103 2.599 × 103 9.035 × 103

Std 4.100 × 102 9.862 × 102 8.810 × 102 1.349 × 103 3.400 × 103 3.877 × 103 1.678 × 103 1.874 × 103 9.305 × 102

Best 9.054 × 102 1.623 × 103 3.284 × 103 5.246 × 103 5.192 × 103 6.380 × 103 3.775 × 103 1.175 × 103 6.816 × 103

Rank 1 3 4 6 9 8 5 2 7

F10

Ave 4.970 × 103 5.513 × 103 5.693 × 103 8.736 × 103 7.183 × 103 7.257 × 103 5.657 × 103 4.575 × 103 8.405 × 103

Std 6.279 × 102 1.498 × 103 5.170 × 102 2.679 × 102 6.318 × 102 8.110 × 102 6.857 × 102 9.121 × 102 3.467 × 102

Best 2.817 × 103 3.856 × 103 4.769 × 103 8.208 × 103 5.945 × 103 5.750 × 103 4.122 × 103 3.673 × 103 7.486 × 103

Rank 2 3 5 9 6 7 4 1 8

F11

Ave 1.201 × 103 1.274 × 103 3.282 × 103 3.080 × 103 5.717 × 103 6.606 × 103 4.853 × 103 2.233 × 103 7.360 × 103

Std 3.024 × 101 5.679 × 101 1.494 × 103 7.678 × 102 2.695 × 103 3.322 × 103 8.710 × 103 9.032 × 102 1.705 × 103

Best 1.132 × 103 1.187 × 103 1.620 × 103 1.977 × 103 1.772 × 103 2.088 × 103 1.375 × 103 1.275 × 103 3.978 × 103

Rank 1 2 5 4 7 8 6 3 9

F12

Ave 1.169 × 107 1.096 × 107 1.983 × 1010 1.762 × 1010 2.455 × 1010 1.623 × 109 7.032 × 109 1.186 × 109 6.502 × 1010

Std 6.141 × 106 9.818 × 106 7.132 × 109 3.949 × 109 1.384 × 1010 5.255 × 108 5.918 × 109 1.111 × 109 9.469 × 109

Best 3.678 × 106 3.699 × 106 8.820 × 109 1.406 × 1010 8.337 × 109 6.302 × 108 1.132 × 109 1.201 × 108 5.259 × 1010

Rank 2 1 7 6 8 4 5 3 9

F13

Ave 2.862 × 104 4.082× 104 4.596 × 108 8.223 × 108 3.208 × 109 2.150 × 106 7.182 × 107 1.436 × 107 5.248 × 109

Std 6.761 × 104 3.591× 104 1.181 × 109 2.120 × 108 4.547 × 109 2.336 × 106 3.031 × 108 3.725 × 107 1.977 × 109

Best 2.462 × 103 7.882 × 103 8.005 × 105 5.302 × 108 4.076 × 107 2.296 × 105 2.883 × 104 2.902 × 104 1.371 × 109

Rank 1 2 6 7 8 3 5 4 9

F14

Ave 4.670 × 105 9.018 × 105 7.040 × 106 7.230 × 106 2.527 × 107 4.218 × 106 4.315 × 106 1.368 × 106 1.196 × 108

Std 2.301 × 105 2.423 × 106 5.367 × 106 5.031 × 106 4.207 × 107 2.794 × 106 4.907 × 106 1.205 × 106 5.024 × 107

Best 1.379 × 105 4.415 × 104 1.256 × 106 1.709 × 106 6.223 × 105 2.136 × 105 1.560 × 105 1.082 × 105 3.903 × 107

Rank 1 2 6 7 8 4 5 3 9

F15

Ave 1.124 × 104 1.65 × 104 2.910 × 105 3.238 × 107 1.373 × 108 3.773 × 106 4.010 × 104 3.399 × 106 2.103 × 108

Std 1.343 × 104 1.406 × 104 5.303 × 105 2.574 × 107 2.274 × 108 6.591 × 106 2.966 × 104 1.466 × 107 2.340 × 108

Best 1.836 × 103 3.024 × 103 1.386 × 106 1.754 × 106 9.574 × 104 1.417 × 105 6.000 × 103 2.200 × 104 6.277 × 106

Rank 1 2 4 7 8 6 3 5 9
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Table 3. Cont.

F Index
Algorithms

EHBA HBA SHO SCA TSA WOA MFO GWO AOA

F16

Ave 2.375 × 103 2.860 × 103 3.054 × 103 3.955 × 103 3.646 × 103 4.286 × 103 3.255 × 103 2.740 × 103 5.506 × 103

Std 2.289 × 102 4.421 × 102 3.268 × 102 2.684 × 102 6.790 × 102 7.032 × 102 4.167 × 102 4.395 × 102 8.078 × 102

Best 1.986 × 103 2.026 × 103 2.277 × 103 3.519 × 103 2.767 × 103 3.139 × 103 2.631 × 103 2.047 × 103 4.204 × 103

Rank 1 3 4 7 6 8 5 2 9

F17

Ave 1.944 × 103 2.214 × 103 2.408 × 103 2.672 × 103 2.595 × 103 2.808 × 103 2.602 × 103 2.018 × 103 3.334 × 103

Std 1.504 × 102 2.166 × 102 2.663 × 102 1.522 × 102 3.417 × 102 2.243 × 102 3.607 × 102 1.093 × 102 4.563 × 102

Best 1.759 × 103 1.859 × 103 1.886 × 103 2.432 × 103 2.043 × 103 2.439 × 103 1.957 × 103 1.832 × 103 2.615 × 103

Rank 1 3 4 7 5 8 6 2 9

F18

Ave 1.572 × 106 1.701 × 106 1.457 × 107 3.276 × 107 2.070 × 107 4.441 × 107 1.377 × 107 8.983 × 106 1.157 × 108

Std 1.083 × 106 1.540 × 106 1.733 × 107 1.154 × 107 2.021 × 107 2.813 × 107 1.061 × 107 1.183 × 107 3.164 × 107

Best 2.608 × 105 2.711 × 105 4.623 × 106 1.346 × 107 1.374 × 106 1.894 × 107 1.344 × 106 7.288 × 105 5.250 × 107

Rank 1 2 5 7 6 8 4 3 9

F19
Ave 6.171 × 103 1.205 × 104 1.056 × 107 5.981 × 107 3.992 × 108 1.648 × 107 6.896 × 107 1.677 × 106 5.337 × 108

Std 5.556 × 103 1.457 × 104 3.343 × 107 3.563 × 107 9.671 × 108 1.085 × 107 2.969 × 108 2.021 × 106 3.838 × 108

Best
Best 1.936 × 103 2.162 × 103 1.021 × 104 1.918 × 107 1.582 × 105 5.604 × 105 1.109 × 104 8.336 × 103 1.025 × 107

Rank 1 2 4 6 8 5 7 3 9

F20

Ave 2.240 × 103 2.547 × 103 2.638 × 103 2.865 × 103 2.808 × 103 2.853 × 103 2.750 × 103 2.421 × 103 2.868 × 103

Std 1.131 × 102 2.447 × 102 2.019 × 102 1.332 × 102 2.107 × 102 2.034 × 102 2.176 × 102 1.364 × 102 1.370 × 102

Best 2.149 × 103 2.222 × 103 2.305 × 103 2.601 × 103 2.460 × 103 2.451 × 103 2.320 × 103 2.171 × 103 2.568 × 103

Rank 1 3 4 8 6 7 5 2 9

F21

Ave 2.401 × 103 2.406 × 103 2.503 × 103 2.591 × 103 2.650 × 103 2.619 × 103 2.498 × 103 2.415 × 103 2.628 × 103

Std 2.010 × 101 3.290 × 101 2.864 × 101 2.077 × 101 4.877 × 101 6.677 × 101 5.385 × 101 4.413 × 101 2.389 × 101

Best 2.365 × 103 2.347 × 103 2.455 × 103 2.554 × 103 2.556 × 103 2.538 × 103 2.391 × 103 2.360 × 103 2.583 × 103

Rank 1 2 5 6 9 7 4 3 8

F22

Ave 2.502 × 103 4.053 × 103 6.678 × 103 9.760 × 103 8.438 × 103 7.757 × 103 6.669 × 103 4.752 × 103 9.449 × 103

Std 9.030 × 102 2.669 × 103 1.420 × 103 1.367 × 103 1.624 × 103 1.927 × 103 7.371 × 102 1.762 × 103 8.479 × 102

Best 2.300 × 103 2.300 × 103 3.574 × 103 4.487 × 103 3.731 × 103 2.585 × 103 5.660 × 103 2.396 × 103 7.570 × 103

Rank 1 2 5 9 7 6 4 3 8
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Table 3. Cont.

F Index
Algorithms

EHBA HBA SHO SCA TSA WOA MFO GWO AOA

F23

Ave 2.754 × 103 2.799 × 103 2.987 × 103 3.073 × 103 3.218 × 103 3.121 × 103 2.829 × 103 2.792 × 103 3.556 × 103

Std 2.395 × 101 5.438 × 101 4.057 × 101 3.885 × 101 1.546 × 102 9.451 × 101 3.803 × 101 4.361 × 101 1.205 × 102

Best 2.700 × 103 2.724 × 103 2.918 × 103 3.005 × 103 3.028 × 103 2.989 × 103 2.779 × 103 2.741 × 103 3.297 × 103

Rank 1 3 5 6 8 7 4 2 9

F24

Ave 2.960 × 103 3.086 × 103 3.300 × 103 3.227 × 103 3.365 × 103 3.229 × 103 2.991 × 103 2.923 × 103 3.772 × 103

Std 3.035 × 101 1.867 × 102 7.077 × 101 4.405 × 101 1.219 × 102 1.025 × 102 3.539 × 101 3.966 × 101 1.888 × 102

Best 2.902 × 103 2.851 × 103 3.195 × 103 3.156 × 103 3.158 × 103 3.060 × 103 2.940 × 103 2.867 × 103 3.467 × 103

Rank 2 4 7 5 8 6 3 1 9

F25

Ave 2.901 × 103 2.905 × 103 3.456 × 103 3.345 × 103 3.593 × 103 3.098 × 103 3.232 × 103 3.015 × 103 4.624 × 103

Std 1.828 × 101 1.957 × 101 2.252 × 102 1.121 × 102 3.408 × 102 5.812 × 101 4.286 × 102 8.485 × 101 4.476 × 102

Best 2.884 × 103 2.884 × 103 3.102 × 103 3.196 × 103 3.203 × 103 2.991 × 103 2.888 × 103 2.940 × 103 3.695 × 103

Rank 1 2 7 6 8 4 5 3 9

F26

Ave 4.555 × 103 4.504 × 103 7.303 × 103 7.551 × 103 8.400 × 103 8.546 × 103 6.068 × 103 4.891 × 103 1.029 × 104

Std 6.324 × 102 1.120 × 103 8.007 × 102 3.042 × 102 1.726 × 103 9.515 × 102 5.199 × 102 4.851 × 102 6.964 × 102

Best 2.800 × 103 2.811 × 103 5.649 × 103 7.043 × 103 3.796 × 103 7.109 × 103 5.081 × 103 4.087 × 103 9.013 × 103

Rank 2 1 5 6 7 8 4 3 9

F27

Ave 3.231 × 103 3.408 × 103 3.540 × 103 3.514 × 103 3.670 × 103 3.560 × 103 3.261 × 103 3.257 × 103 3.654 × 103

Std 2.172 × 101 2.140 × 102 1.374 × 102 8.689 × 101 2.326 × 102 2.318 × 102 2.638 × 101 3.699 × 101 6.057 × 102

Best 3.204 × 103 3.203 × 103 3.368 × 103 3.382 × 103 3.366 × 103 3.293 × 103 3.231 × 103 3.203 × 103 3.200 × 103

Rank 1 4 6 5 9 7 3 2 8

F28

Ave 3.253 × 103 3.233 × 103 4.160 × 103 4.262 × 103 4.721 × 103 3.544 × 103 3.783 × 103 3.451 × 103 5.352 × 103

Std 5.239 × 101 2.465 × 101 4.107 × 102 2.602 × 102 5.381 × 102 1.141 × 102 3.947 × 102 1.029 × 102 1.571 × 103

Best 3.206 × 103 3.203 × 103 3.590 × 103 3.942 × 103 3.898 × 103 3.403 × 103 3.304 × 103 3.310 × 103 3.300 × 103

Rank 2 1 6 7 8 4 5 3 9

F29
Ave 3.621 × 103 4.379 × 103 4.350 × 103 5.116 × 103 4.857 × 103 5.207 × 103 4.299 × 103 3.905 × 103 6.297 × 103

Std 1.801 × 102 8.364 × 102 2.871 × 102 3.841 × 102 4.141 × 102 4.619 × 102 3.061 × 102 2.067 × 102 7.947 × 102

Best
Best 3.393 × 103 3.643 × 103 3.758 × 103 4.436 × 103 4.251 × 103 4.427 × 103 3.709 × 103 3.655 × 103 4.940 × 103

Rank 1 5 4 7 6 8 3 2 9
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Table 3. Cont.

F Index
Algorithms

EHBA HBA SHO SCA TSA WOA MFO GWO AOA

F30

Ave 2.703 × 104 5.087 × 104 8.922 × 106 1.603 × 108 2.463 × 107 3.301 × 107 1.178 × 106 6.930 × 106 1.191 × 109

Std 1.575 × 104 6.900 × 104 9.825 × 106 8.697 × 107 1.589 × 107 2.176 × 107 2.038 × 106 5.327 × 106 5.720 × 107

Best 8.203 × 103 1.294 × 104 1.040 × 106 5.523 × 107 5.505 × 106 5.552 × 106 1.917× 104 2.344 × 106 2.332 × 107

Rank 1 2 5 8 6 7 3 4 9

Mean Rank 1.2069 2.4483 5.2759 6.5172 7.3793 6.3448 4.5862 2.6897 8.5517
Result 1 2 5 7 8 6 4 3 9

The bold data represent the optimal average data among all the comparison algorithms.

Table 4. Wilcoxon rank sum test values of each comparison algorithm (30-dimensional CEC2017 test set).

Result
Algorithms

HBA SHO SCA TSA WOA MFO GWO AOA

F1 4.09356 × 10−1 - - - - - - -
F3 2.30247 × 10−5 7.89803 × 10−8 - 2.06160 × 10−6 - 7.89803 × 10−8 1.10447 × 10−5 1.65708 × 10−7

F4 3.50702 × 10−1 - - - 7.89803 × 10−8 7.89803 × 10−8 7.94795 × 10−7 -
F5 9.09074 × 10−2 - - - - 7.89803 × 10−8 8.18149 × 10−1 -
F6 - - - - - - - -
F7 5.62904 × 10−4 - - - - 4.16576 × 10−5 1.95335 × 10−3 -
F8 4.56951 × 10−1 1.06457 × 10−7 - - - - 9.67635 × 10−1 -
F9 2.95975 × 10−7 - - - - - 1.80745 × 10−5 -
F10 5.79218 × 10−1 4.15502 × 10−4 - - - 3.63883 × 10−3 5.56046 × 10−3 -
F11 1.59972 × 10−5 - - - - - - -
F12 4.72676 × 10−1 1.82672 × 10−4 1.82672 × 10−4 1.82672 × 10−4 1.82672 × 10−4 1.82672 × 10−4 1.82672 × 10−4 1.82672 × 10−4

F13 5.11526 × 10−3 - - - 7.89803 × 10−8 1.20089 × 10−6 6.91658 × 10−7 -
F14 1.13297 × 10−2 1.82672 × 10−4 1.82672 × 10−4 4.39639 × 10−4 1.70625 × 10−3 3.76353 × 10−2 2.11339 × 10−2 1.82672 × 10−4

F15 3.60483 × 10−2 1.44383 × 10−4 - - - 1.44383 × 10−4 1.20089 × 10−6 -
F16 1.79364 × 10−4 1.20089 × 10−6 - 9.17277 × 10−8 - 1.65708 × 10−7 3.05663 × 10−3 -
F17 2.22203 × 10−4 1.57567 × 10−6 - 1.20089 × 10−6 - 1.04727 × 10−6 6.01106 × 10−2 -
F18 9.69850 × 10−1 1.82672 × 10−4 1.82672 × 10−4 5.82840 × 10−4 1.82672 × 10−4 1.31494E−03 5.79536 × 10−3 1.82672 × 10−4
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Table 4. Cont.

Result
Algorithms

HBA SHO SCA TSA WOA MFO GWO AOA

F19 2.73285 × 10−1 2.56295 × 10−7 - - - 1.91771 × 10−7 1.65708 × 10−7 -
F20 2.04071 × 10−5 4.53897 × 10−7 - 9.17277 × 10−8 9.17277 × 10−8 2.95975 × 10−7 2.22203 × 10−4 -
F21 6.55361 × 10−1 - - - - 2.06160 × 10−6 6.35945 × 10−1 -
F22 3.49946 × 10−6 1.65708 × 10−7 7.89803 × 10−8 9.17277 × 10−8 9.17277 × 10−8 1.91771 × 10−7 7.94795 × 10−7 -
F23 8.35717 × 10−4 - - - - 5.22689 × 10−7 1.78238 × 10−3 -
F24 9.78649 × 10−3 - - - - 9.04540 × 10−3 8.35717 × 10−4 -
F25 3.23482 × 10−1 - - - - 3.49946 × 10−6 7.89803 × 10−8 -
F26 1.19856 × 10−1 - - 1.20089 × 10−6 - 9.17277 × 10−8 1.55570 × 10−1 -
F27 1.29405 × 10−4 - - - 7.89803 × 10−8 4.68040 × 10−5 4.32018 × 10−3 2.85305 × 10−1

F28 9.09074 × 10−2 - - - 1.23464 × 10−7 1.43085 × 10−7 3.41558 × 10−7 1.91771 × 10−7

F29 1.80297 × 10−6 2.21776 × 10−7 - - - 2.56295 × 10−7 4.68040 × 10−5 -
F30 3.23482 × 10−1 - - - - 6.67365 × 10−6 - -

+/=/− 3/13/13 0/12/17 0/0/29 0/0/29 0/0/29 0/0/29 1/4/24 0/1/28

The bold data represent p values with a significance level greater than 0.05.
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From Table 3, we can observe that the average rank of EHBA is 1.2069, at the head of
their league. The overall solution results of the EHBA are better. Observing the bold data,
EHBA achieved smaller values on 86% of the test functions, which were distributed across
various functions (uni-modal, multi-modal, mixed, and combined). However, HBA and
GWO achieved smaller values on 3 and 1 functions, respectively. Therefore, the number of
smaller values obtained by EHBA was much better than that obtained by other comparison
algorithms. It is visible that the local quantum search and dynamic Laplacian crossover
strategy have improved the effective searching capabilities of the HBA in seeking the best
solution. The EHBA can find superior solutions with higher convergence speed based on
the original algorithm.

Based on the p-value results presented in Table 4, due to the fact that many val-
ues are the same, for the convenience of observation, “—” represents the same value
6.79562 × 10−8. Combined with Table 3, the final results show that the number of func-
tions of the comparison method that are superior/similar/inferior to EHBA are 3/13/13,
0/12/17, 0/0/29, 0/0/29, 0/0/29, 0/0/29, 1/4/24, and 0/1/28, respectively. It is possi-
ble to see that the better HBA in the comparison algorithm outperforms EHBA on 3 test
functions, and is inferior to EHBA on 13 test functions. Secondly, the second best GWO in
the comparison algorithm outperforms EHBA on function F10, and is inferior to EHBA on
24 test functions. Therefore, overall, the performance of EHBA outperforms the comparison
algorithm. Overall, from CEC 2017 test functions, the performance of EHBA is superior
to the other eight comparative algorithms. Thus, the experimental results show that the
proposed algorithm can effectively solve the CEC2017.

In order to display the optimization performance of the EHBA in a more intuitive
way, such as its convergence rate, and capability to escape from local optima, and the
convenience of observing the trend of curve changes, Figures 3 and 4 show the convergence
curves and box plots on some CEC2017 test functions, marking the iterations set as the
horizontal axis, the functions use log10(F) as the vertical axis. From the figure, it can be
seen that EHBA can converge to the optimal solution within 1000 iterations continuously,
indicating its strong exploration and development capability. The convergence curves
indicate that EHBA has a significantly improved convergence accuracy and speed compared
to other algorithms. It is evident that the iteration curve of EHBA is able to overcome the
local solution in the early stages of iteration and approaches the near-optimal solution; it
is close to the optimal solution in the subsequent development period. Specifically, in the
convergence curve, EHBA shows more significant convergence effects on F1, F6, F7, F9,
F16, F18, F20, F22, and F30, mainly because EHBA has the ability to jump out of the local
solution and find the optimal position quickly.

Box plot analysis shows the distribution of the data and helps to understand the
distribution of the results. Figure 4 shows the box plot of the results of the EHBA al-
gorithm and other recent optimization algorithms. The box plot is an excellent display
showing the distribution of the data based on the quartiles. The red lines of EHBA and
HBA show the lowest median, with EHBA being more pronounced. The narrow quar-
tile range of the results obtained by EHBA indicates that the distribution of the obtained
solutions is more clustered than other algorithms, and there are few outliers, further
demonstrating the stability of EHBA due to the incorporation of the improved strategy.
Overall, EHBA is a competitive algorithm that deserves further exploration in practical
engineering applications.
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Figure 3. Convergence curves of EHBA and other algorithms on CEC2017 partial test functions.
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Figure 4. Box plots of EHBA and other algorithms on CEC2017 partial test functions.
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4.2. Experiment and Analysis on the CEC2020 Test Set
4.2.1. The Ablation Experiments of EHBA

In order to verify the effectiveness of the different strategies of EHBA, EHBA is
compared with its six incomplete algorithms and HBA. The incomplete algorithms include
the dynamic opposite learning strategy, differential mutation strategy, quantum local search,
or dynamic Laplace crossover corresponding to EHBA1, EHBA2, EHBA3, and selecting the
combination strategies EHBA4 (the dynamic opposite learning strategy and differential
mutation strategy), EHBA5 (the dynamic opposite learning strategy and quantum local
search or dynamic Laplace crossover strategy), or EHBA6 (the differential mutation strategy
and quantum local search or dynamic Laplace crossover strategy) to evaluate their impact
on convergence speed and accuracy. Due to article space constraints, this paper only gives
the convergence curves of some test sets on the CEC2020 in Figure 5.
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Figure 5. Convergence curves of incomplete algorithms on CEC2020.

F4 in CEC2020 has almost the same convergence accuracy and speed for all compar-
ison algorithms, and has been recombined into a curve. Therefore, it is not shown here.
Figure 5a,d indicate that for functions F1 and F5, EHBA has a slower convergence speed
than EHBA2 and EHBA4, but has better convergence accuracy. Figure 5c,f–i indicate that for
F7–F10, although EHBA has a slightly faster convergence speed than other algorithms, its
convergence accuracy is significantly better than other algorithms. For F2, the convergence
speed of EHBA is lower than that of ehba1 and EHBA5 in the early stage of iteration, but
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in the later stage of iteration, the convergence speed and accuracy are significantly better
than other algorithms. In general, every improvement strategy of EHBA is effective and
its incomplete algorithms all improve HBA to different degrees in both exploration and
exploitation. Overall, applying all strategies has a better convergence effect on HBA than
its ablation algorithm, which further proves the effectiveness of the added strategies.

The experimental results show that these four strategies have a certain effect on
improving the performance of HBA, especially the quantum local search and dynamic
Laplace strategy introduced.

4.2.2. Comparison Experiment between Other HBA Variant Algorithms and EHBA

The proposed EHBA are compared with other HBA variants as well to verify its per-
formance. Here, two recently improved variant algorithms have been selected, LHBA [40]
and SaCHBA_PDN [41]. To save space, the convergence curve on CEC2020 is presented in
Figure 6.
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Figure 6. Convergence curves of other HBA variant algorithms and EHBA on CEC2020.

Figure 6 shows that for function F2, although the convergence speed is not as fast
as the two variant algorithms LHBA and SaCHBA_PDN in the early iteration, the speed
and accuracy are better than LHBA and SaCHBA_PDN in the later stage. Except for F2
in Figure 6, other test functions show that the convergence accuracy and speed of the
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improved algorithm in this paper are significantly better than other variant algorithms,
further indicating that the introduced strategy in this paper has a significant improvement
on the original algorithm and has high convergence efficiency. This also demonstrates the
effectiveness and high convergence of EHBA proposed in this article.

4.2.3. Comparison Experiments of EHBA and Other Intelligent Algorithms

Similarly, Table 5 presents the comparison results between EHBA and the other eight
methods on the test set CEC2020 [51]; it contains 10 functions. At this time, the bold data
in the table represent the optimal average data among all the comparison algorithms. In
addition, Table 6 lists the Wilcoxon rank sum test results of eight comparative methods
under the condition of significance level = 0.05.

From Table 5, we can observe that the average rank of EHBA is 1.4, at the head of
their league. The overall solution results of the EHBA algorithm are better. Observing
the data in bold, EHBA achieved better values on 80% of the test functions, which were
distributed across various functions. However, HBA and GWO achieved smaller values on
one function, respectively. Therefore, the number of smaller values obtained by EHBA was
much better than that obtained by other comparison algorithms. It is visible that the local
quantum search and dynamic Laplacian crossover strategy have improved the searching
capabilities of the HBA in seeking the best solution. The EHBA can find superior solutions
with higher convergence speed based on the original algorithm.

Based on the p-value results presented in Table 6, due to the fact that many values are
the same, for the convenience of observation, “—” represents the same value 6.7956 × 10−8.
Combined with the Table 5, the final results show that the number of functions of each
comparison methods better/similar/inferior to EHBA are 1/5/4, 0/2/8, 0/0/10, 0/0/10,
0/1/9, 0/1/9, 3/3/4, 0/1/9, respectively. It is possible to see that the better HBA outper-
forms EHBA on F5, and is inferior to EHBA on four test functions. Secondly, the second
best GWO in the comparison algorithm outperforms EHBA on three test functions, and is
superior to EHBA on four test functions. Therefore, overall, the performance of EHBA is
good at the other algorithm. Overall, from ten test functions, the performance of EHBA is
superior to the other eight comparative algorithms. Thus, the experimental results show
that the proposed algorithm can effectively solve the CEC2020.

Like CEC2017, the convergence curve and box plot are also provided in Figures 7 and 8.
The convergence curves indicate that EHBA has significantly improved convergence ac-
curacy and speed compared to other algorithms. It is observed that the iterative curve
of EHBA is able to slip away from the local solution in the early stages of iteration and
approach the near-optimal solution. It will be close to the optimum solution in the later
development phase. Specifically, the convergence curve of EHBA shows more significant
convergence effects on F1, F6, and F7. Therefore, the proposed strategy mainly improves
the convergence speed of the algorithm in solving the CEC2020 test function, avoiding local
stagnation in the optimization process as well as exploration and exploitation capabilities.
Overall, EHBA obtains competitive convergence results, and its overall convergence is
better than other comparative algorithms.

Figure 8 demonstrated that the box plot of the test function is in line with Table 5. The
red lines of EHBA and HBA show the lowest median, with EHBA being more pronounced.
The narrow quartile range of the results obtained by EHBA indicates that the distribution
of the obtained solutions is more concise than other methods, and there are few outliers,
further demonstrating the stability of the EHBA due to the strategy that will be improved.
Overall, EHBA is a competitive algorithm that deserves further exploration in practical
engineering applications.
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Figure 7. Convergence curves of EHBA and other algorithms on CEC2020 partial test functions.
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Figure 8. Box plots of EHBA and other algorithms on CEC2020 partial test functions.
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Table 5. Comparison results of EHBA and other methods on CEC 2020 test sets.

F Index
Algorithms

EHBA HBA SHO SCA TSA WOA MFO GWO AOA

F1

Ave 5.146 × 103 9.416 × 103 2.123 × 1010 1.776 × 1010 2.198 × 1010 1.568 × 109 8.572 × 109 2.396 × 109 4.962 × 1010

Std 5.482 × 103 1.051 × 104 7.070 × 109 2.384 × 109 1.096 × 1010 7.708 × 108 5.976 × 109 2.097 × 109 7.739 × 109

Best 1.275 × 102 3.130 × 102 5.350 × 109 1.228 × 1010 1.057 × 1010 8.104 × 108 2.115 × 104 3.908 × 107 3.301 × 1010

Rank 1 2 7 6 8 3 5 4 9

F2

Ave 5.005 × 103 5.007 × 103 5.549 × 103 8.775 × 103 7.437 × 103 7.134 × 103 5.347 × 103 4.694 × 103 8.418 × 103

Std 3.957 × 102 7.068 × 102 4.511 × 102 2.669 × 102 4.619 × 102 1.104 × 103 3.973 × 102 1.321 × 103 5.213 × 102

Best 4.235 × 103 4.055 × 103 4.440 × 103 8.167 × 103 6.495 × 103 5.392 × 103 4.772 × 103 3.285 × 103 7.589 × 103

Rank 2 3 5 9 7 6 4 1 8

F3

Ave 8.701 × 102 9.070 × 102 1.121 × 103 1.213 × 103 1.210 × 103 1.293 × 103 1.148 × 103 9.049 × 102 1.375 × 103

Std 2.882 × 101 6.115 × 101 6.218 × 101 6.894 × 101 9.149 × 101 6.968 × 101 1.793 × 102 5.734 × 101 6.906 × 101

Best 8.255 × 102 8.244 × 102 1.026 × 103 1.117 × 103 1.018 × 103 1.187 × 103 8.803 × 102 8.309 × 102 1.232 × 103

Rank 1 3 4 7 6 8 5 2 9

F4

Ave 1.900 × 103 1.900 × 103 1.900 × 103 1.912 × 103 1.919 × 103 1.900 × 103 4.454 × 104 1.900 × 103 1.900 × 103

Std 0.000 × 100 0.000 × 100 0.000 × 100 8.133 × 100 5.474 × 103 0.000 × 100 5.325 × 104 2.049E−01 0.000 × 100

Best 1.900 × 103 1.900 × 103 1.900 × 103 1.900 × 103 1.908 × 103 1.900 × 103 1.907 × 103 1.900 × 103 1.900 × 103

Rank 1 1 1 7 8 1 9 1 1

F5

Ave 2.524 × 106 3.533 × 105 9.756 × 106 1.139 × 107 1.433 × 107 1.085 × 107 5.594 × 106 2.112 × 106 8.184 × 107

Std 1.985 × 106 2.935 × 105 8.155 × 106 3.445 × 106 1.906 × 107 7.497 × 106 6.985 × 106 3.032 × 106 3.949 × 107

Best 1.437 × 105 4.945 × 104 3.006 × 106 5.768 × 106 2.692 × 105 1.752 × 106 2.402 × 105 1.549 × 105 2.854 × 107

Rank 3 1 5 7 8 6 4 2 9

F6

Ave 1.966 × 103 2.285 × 103 2.295 × 103 3.832 × 103 3.073 × 103 3.638 × 103 2.606 × 103 2.083 × 103 4.109 × 103

Std 1.016 × 102 3.105 × 102 2.523 × 102 2.371 × 102 7.328 × 102 6.569 × 102 4.053 × 102 1.803 × 102 7.046 × 102

Best 1.752 × 103 1.745 × 103 1.957 × 103 3.480 × 103 2.006 × 103 2.529 × 103 1.909 × 103 1.783 × 103 2.997 × 103

Rank 1 3 4 8 6 7 5 2 9

F7

Ave 4.674 × 105 1.039 × 106 1.575 × 106 4.186 × 106 3.523 × 106 1.018 × 107 1.409 × 106 2.254 × 106 2.817 × 107

Std 3.712 × 105 4.159 × 106 3.022 × 106 3.272 × 106 4.506 × 106 8.030 × 106 1.402 × 106 3.431 × 106 1.977 × 107

Best 1.085 × 105 1.666 × 104 9.209 × 104 6.239 × 105 8.674 × 104 7.705 × 105 8.947 × 104 1.207 × 105 5.958 × 106

Rank 1 2 4 7 6 8 3 5 9

F8

Ave 2.760 × 103 4.184 × 103 6.149 × 103 9.928 × 103 8.306 × 103 7.083 × 103 6.621 × 103 5.419 × 103 9.160 × 103

Std 1.418 × 103 2.438 × 103 1.242 × 103 1.196 × 103 1.604 × 103 1.933 × 103 1.109 × 103 2.042 × 103 1.592 × 103

Best 2.300 × 103 2.300 × 103 3.994 × 103 5.288 × 103 3.975 × 103 2.793 × 103 3.695 × 103 2.461 × 103 5.740 × 103

Rank 1 2 4 9 7 6 5 3 8



Biomimetics 2024, 9, 21 29 of 43

Table 5. Cont.

F Index
Algorithms

EHBA HBA SHO SCA TSA WOA MFO GWO AOA

F9

Ave 2.952 × 103 3.015 × 103 3.283 × 103 3.228 × 103 3.396 × 103 3.263 × 103 2.999 × 103 2.942 × 103 3.864 × 103

Std 3.252 × 101 1.594 × 102 6.334 × 101 3.797 × 101 1.185 × 102 9.144 × 101 3.562 × 101 6.694 × 101 1.991 × 102

Best 2.914 × 103 2.894 × 103 3.165 × 103 3.155 × 103 3.228 × 103 3.073 × 103 2.925 × 103 2.867 × 103 3.431 × 103

Rank 2 4 7 5 8 6 3 1 9

F10

Ave 2.899 × 103 2.904 × 103 3.520 × 103 3.451 × 103 3.602 × 103 3.135 × 103 3.398 × 103 3.013 × 103 4.774 × 103

Std 1.665 × 101 1.847 × 101 2.674 × 102 1.503 × 102 4.233 × 102 4.906 × 101 4.504 × 102 6.055 × 101 5.229 × 102

Best 2.884 × 103 2.884 × 103 3.117 × 103 3.186 × 103 3.086 × 103 3.054 × 103 2.896 × 103 2.933 × 103 3.875 × 103

Rank 1 2 7 6 8 4 5 3 9

Mean Rank 1.4 2.3 4.8 7.1 7.2 5.5 4.8 2.4 8
Result 1 2 4 6 7 6 4 3 9

The bold data represent the optimal average data among all the comparison algorithms.

Table 6. Wilcoxon rank sum test values of each comparison algorithm on CEC2020 test set.

Result
Algorithms

HBA SHO SCA TSA WOA MFO GWO AOA

F1 4.1124 × 10−2 - - - - - - -
F2 6.5536 × 10−1 4.1550 × 10−4 - - 2.2178 × 10−7 2.9441 × 10−2 1.4810 × 10−3 -
F3 7.2045 × 10−2 - - - - 1.9177 × 10−7 2.3903 × 10−2 -
F4 NaN NaN 8.0065 × 10−9 8.0065 × 10−9 NaN 8.0065 × 10−9 3.2162 × 10−6 NaN
F5 5.8736 × 10−6 1.4149 × 10−5 1.0646 × 10−7 4.3202 × 10−3 1.1045 × 10−5 1.4042 × 10−1 1.1986 × 10−1 -
F6 9.2091 × 10−4 7.5774 × 10−6 - 1.6571 × 10−7 - 1.0473 × 10−6 3.1517 × 10−2 -
F7 8.2924 × 10−5 6.7868 × 10−2 2.9598 × 10−7 3.0566 × 10−3 1.2346 × 10−7 1.1433 × 10−2 5.0751 × 10−1 -
F8 3.7499 × 10−4 2.6898 × 10−6 9.1728 × 10−8 1.2346 × 10−7 3.9388 × 10−7 1.5757 × 10−6 5.8736 × 10−6 1.6571 × 10−7

F9 2.2869 × 10−1 - - - - 6.6104 × 10−5 6.3892 × 10−2 -
F10 3.6484 × 10−1 - - - - 3.4156 × 10−7 1.0646 × 10−7 -

+/=/− 1/5/4 0/2/8 0/0/10 0/0/10 0/1/9 0/1/9 3/3/4 0/1/9

The bold data represent p values with a significance level greater than 0.05.
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4.3. Experiment and Analysis on the CEC2022 Test Set

In the same way, Table 7 presents the results between EHBA and other algorithms
on the test set CEC2022 [52]; it contains 12 functions. At this time, the bold data in the
table represent the optimal average data among all the comparison algorithms. Table 6
also shows the Wilcoxon rank sum test results of eight comparative algorithms with the
significance level of 0.05.

The average rank of EHBA is 1.25 from Table 5, top ranking. The overall solution of
the EHBA algorithm is better. Observing the bold data, EHBA achieved smaller values on
83% of the test functions, which were distributed across various functions. However, HBA
and GWO achieved smaller values on F11 and F4, respectively. Therefore, the number of
smaller values obtained by EHBA was much better than that obtained by other comparison
algorithms. It is possible to see that the local quantum search and dynamic Laplacian
crossover strategy have improved the effective searching capabilities of the HBA in seeking
the best solution. The EHBA can find superior solutions with a higher convergence speed
based on the original algorithm.

Based on the p-value results presented in Table 8. Due to the fact that many val-
ues are the same, for the convenience of observation, “—” represents the same value
6.79562 × 10−8. Combined with Table 7, the final results show that the number of functions
superior/similar/inferior to EHBA are 1/4/7, 0/0/12, 0/0/12, 0/0/12, 0/0/12, 1/1/10,
0/2/10, 0/1/11, respectively. It is possible to observe that the better HBA outperforms
EHBA on one test function, and is inferior to EHBA on seven test functions. Secondly, the
second best MFO in the comparison algorithm outperforms EHBA on one test function,
and is not good at EHBA on ten test functions. Therefore, overall, the performance of
EHBA is better than the comparison algorithm. Overall, looking at the 12 test functions,
the performance of EHBA is superior to the other 8 comparative algorithms. Thus, the
experimental results show that the proposed algorithm can effectively solve the CEC2022.

Like CEC2020, Figure 9 provided the convergence curve IYDSE compared to other
meta-heuristics. From the results in the figure, the convergence curves indicate that EHBA
has significantly improved convergence accuracy and speed compared to other algorithms.
The iterative curve of EHBA can avoid the local solution in the early stages of iteration
and converge to the approximate optimal solution. It will be found close to the optimum
solution in the subsequent development phase. Specifically, the convergence curve of EHBA
shows more significant convergence effects on F3, F5, and F10. Therefore, the proposed
strategy mainly improves the convergence speed of the algorithm in solving the CEC2022
test function, avoiding local stagnation in the optimization process as well as exploration
and exploitation capabilities.

The box plot of the test function in Figure 10, the compact box plot, indicates strong
data consistency. The red lines of EHBA and HBA show the lowest median, with EHBA
being more pronounced. The narrow quartile range of the results obtained by EHBA
indicates that the distribution of the obtained solutions is tighter. What is more, there are
few outliers, which is also proof of the stability of the EHBA. EHBA has a thinner box plot
compared to other algorithms, which indicates the improved performance of the HBA due
to the incorporation of the improved strategy. Overall, EHBA is a competitive algorithm
that deserves further exploration in practical engineering applications.

In summary, we can see that the EHBA has good convergence, stability, and effective-
ness, which provides a solid foundation for solving practical problems.
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Table 7. Comparison results of EHBA and other methods on CEC2022 test set.

F Index
Algorithms

EHBA HBA SHO SCA TSA WOA MFO GWO AOA

F1

Ave 5.364 × 103 1.104 × 104 1.617 × 104 1.497 × 104 1.579 × 104 2.766 × 104 3.116 × 104 1.430 × 104 1.954 × 104

Std 2.919 × 103 4.507 × 104 4.914 × 103 3.327 × 103 5.756 × 103 9.329 × 103 2.064 × 104 4.016 × 103 3.527 × 103

Best 1.098 × 103 3.200 × 103 9.519 × 103 8.203 × 103 9.326 × 103 1.648 × 104 5.139 × 103 6.364 × 103 1.039 × 104

Rank 1 2 6 4 5 8 9 3 7

F2

Ave 4.511 × 102 4.589 × 102 7.055 × 102 7.453 × 102 7.319 × 102 5.662 × 102 5.508 × 102 5.013 × 102 1.945 × 103

Std 8.416 × 100 1.438 × 101 1.190 × 102 8.521 × 101 1.745 × 102 5.987 × 101 1.236 × 102 4.262 × 101 5.160 × 102

Best 4.449 × 102 4.290 × 102 5.753 × 102 6.206 × 102 4.925 × 101 4.594 × 102 4.449 × 102 4.540 × 102 1.290 × 103

Rank 1 2 6 8 7 5 4 3 9

F3

Ave 6.001 × 102 6.053 × 102 6.383 × 102 6.462 × 102 6.630 × 102 6.666 × 102 6.221 × 102 6.055 × 102 6.646 × 102

Std 3.968 × 10−1 3.002 × 100 5.963 × 100 4.799 × 100 1.587 × 101 1.215 × 101 1.055 × 101 3.531 × 100 6.684 × 100

Best 6.000 × 102 6.013 × 102 6.247 × 102 6.367 × 102 6.289 × 102 6.340 × 102 6.092 × 102 6.008 × 102 6.528 × 102

Rank 1 2 5 6 7 9 4 3 8

F4

Ave 8.537 × 102 8.541 × 102 8.965 × 102 9.462 × 102 9.548 × 102 9.337 × 102 8.908 × 102 8.535 × 102 9.408 × 102

Std 1.346 × 101 1.574 × 101 1.796 × 101 1.282 × 101 2.473 × 101 3.202 × 101 2.209 × 101 2.206 × 101 1.269 × 101

Best 8.301 × 102 8.239 × 102 8.707 × 102 9.193 × 102 9.157 × 102 8.791 × 102 8.413 × 102 8.231 × 102 9.141 × 102

Rank 2 3 5 8 9 6 4 1 7

F5

Ave 1.053 × 103 1.401 × 103 2.403 × 103 2.488 × 103 4.692 × 103 3.664 × 103 2.987 × 103 1.193 × 103 2.843 × 103

Std 2.894 × 102 3.605 × 102 1.908 × 102 4.189 × 102 1.698 × 103 1.372 × 103 1.105 × 103 2.092 × 102 4.380 × 102

Best 9.008 × 102 9.116 × 102 2.047 × 103 1.663 × 103 2.126 × 103 1.901 × 103 1.241 × 103 9.158 × 102 2.082 × 103

Rank 1 3 4 5 9 8 7 2 6

F6

Ave 7.741 × 103 9.352 × 103 4.906 × 106 9.297 × 107 2.896 × 108 1.105 × 106 1.035 × 108 7.845 × 106 1.024 × 109

Std 6.441 × 103 8.701 × 103 9.685 × 106 6.017 × 106 7.746 × 108 1.472 × 106 4.192 × 108 1.549 × 107 6.891 × 108

Best 2.355 × 103 1.957 × 103 1.695 × 104 1.740 × 107 3.064 × 105 2.296 × 104 2.521 × 103 2.558 × 103 9.256 × 107

Rank 1 2 4 6 8 3 7 5 9

F7

Ave 2.046 × 103 2.062 × 103 2.120 × 103 2.149 × 103 2.267 × 103 2.230 × 103 2.123 × 103 2.074 × 103 2.174 × 103

Std 3.150 × 101 1.698 × 101 2.485 × 101 2.150 × 101 1.252 × 102 7.125 × 101 5.616 × 101 3.165 × 101 2.548 × 101

Best 2.024 × 103 2.039 × 103 2.065 × 103 2.110 × 103 2.127 × 103 2.098 × 103 2.03 × 103 2.034 × 103 2.128 × 103

Rank 1 2 4 6 9 8 5 3 7
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Table 7. Cont.

F Index
Algorithms

EHBA HBA SHO SCA TSA WOA MFO GWO AOA

F8

Ave 2.224 × 103 2.273 × 103 2.261 × 103 2.275 × 103 2.409 × 103 2.289 × 103 2.264 × 103 2.267 × 103 2.275 × 103

Std 1.569 × 100 6.082 × 101 4.657 × 101 2.134 × 101 4.029 × 102 6.970 × 101 4.653 × 101 5.435 × 101 8.732 × 101

Best 2.223 × 103 2.223 × 103 2.227 × 103 2.243 × 103 2.236 × 103 2.232 × 103 2.223 × 103 2.226 × 103 2.232 × 103

Rank 1 5 2 6 9 8 3 4 7

F9

Ave 2.481 × 103 2.481 × 103 2.595 × 103 2.599 × 103 2.674 × 103 2.579 × 103 2.513 × 103 2.522 × 103 3.173 × 103

Std 2.371 × 10−4 5.208 × 10−2 4.287 × 101 2.776 × 101 8.627 × 101 4.222 × 101 3.371 × 101 3.303 × 101 2.213 × 102

Best 2.481 × 103 2.481 × 103 2.514 × 103 2.551 × 103 2.580 × 103 2.524 × 103 2.481 × 103 2.481 × 103 2.826 × 103

Rank 1 2 6 7 8 5 3 4 9

F10

Ave 2.471 × 103 3.731 × 103 3.202 × 103 3.104 × 103 5.402 × 103 4.747 × 103 3.970 × 103 3.323 × 103 4.838 × 103

Std 4.709 × 101 1.164 × 103 6.864 × 102 1.293 × 103 8.277 × 102 1.097 × 103 1.087 × 103 8.470 × 102 1.671 × 103

Best 2.404 × 103 2.501 × 103 2.521 × 103 2.526 × 103 2.809 × 103 2.501 × 103 2.501 × 103 2.500 × 103 2.624 × 103

Rank 1 5 3 2 9 7 6 4 8

F11

Ave 2.900 × 103 2.900 × 103 5.207 × 103 4.542 × 103 5.785 × 103 3.788 × 103 3.756 × 103 3.430 × 103 7.983 × 103

Std 1.124 × 102 7.947 × 101 5.532 × 102 5.781 × 102 1.228 × 103 9.650 × 102 6.090 × 102 2.009 × 102 5.790 × 102

Best 2.600 × 103 2.600 × 103 4.054 × 103 3.742 × 103 3.961 × 103 2.866 × 103 2.900 × 103 3.131 × 103 7.016 × 103

Rank 2 1 7 6 8 5 4 3 9

F12

Ave 2.970 × 103 3.091 × 103 3.174 × 103 3.072 × 103 3.301 × 103 3.042 × 103 2.960 × 103 2.972 × 103 3.455 × 103

Std 4.170 × 101 1.030 × 102 9.535 × 101 3.083 × 101 1.789 × 102 6.701 × 101 1.533 × 101 2.737 × 101 4.983 × 102

Best 2.944 × 103 2.960 × 103 3.059 × 103 3.026 × 103 2.987 × 103 2.960 × 103 2.942 × 103 2.946 × 103 2.900 × 103

Rank 2 6 7 5 8 4 1 3 9

Mean Rank 1.2500 2.9167 4.9167 5.7500 8.0000 6.3333 4.7500 3.1667 7.9167
Result 1 2 5 6 8 7 4 3 9

The bold data represent the optimal average data among all the comparison algorithms.
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Table 8. Wilcoxon rank sum test values of each comparison algorithm on CEC2022 test set.

Result
Algorithms

HBA SHO SCA TSA WOA MFO GWO AOA

F1 7.5774 × 10−6 1.2346 × 10−7 1.6571 × 10−7 1.9177 × 10−7 - 1.8030 × 10−6 5.2269 × 10−7 7.8980 × 10−8

F2 4.0936 × 10−1 - - - 9.1728 × 10−8 1.2941 × 10−4 3.4156 × 10−7 -
F3 9.1728 × 10−8 - - - - - 1.0646 × 10−7 -
F4 8.6043 × 10−1 1.2346 × 10−7 - - - 3.9874 × 10−6 6.1677 × 10−1 -
F5 2.4706 × 104 1.0646 × 10−7 1.2346 × 10−7 7.8980 × 10−8 7.8980 × 10−8 1.9177 × 10−7 1.9533 × 103 7.8980 × 10−8

F6 8.3923 × 10−1 1.6571 × 10−7 - - 7.8980 × 10−8 9.7865 × 10−3 7.4064 × 10−5 -
F7 9.2780 × 10−5 1.2009 × 10−6 6.9166 × 10−7 1.9177 × 10−7 1.4309 × 10−7 1.1045 × 10−5 4.1658 × 10−5 3.9388 × 10−7

F8 7.4064 × 10−5 1.0646 × 10−7 - - - 1.8030 × 10−6 6.0148 × 10−7 -
F9 2.4706 × 10−4 - - - - - - -

F10 1.2505 × 10−5 9.1728 × 10−8 2.5629 × 10−7 - 2.5629 × 10−7 2.5629 × 10−7 1.1590 × 10−4 -
F11 7.6431 × 10−2 - - - 9.1266 × 10−7 1.5997 × 10−5 - -
F12 3.0691 × 10−6 2.2178 × 10−7 1.2009 × 10−6 2.2178 × 10−7 8.5974 × 10−6 4.9033 × 10−1 2.1841 × 10−1 1.1355 × 10−1

+/=/− 1/4/7 0/0/12 0/0/12 0/0/12 0/0/12 1/1/10 0/2/10 0/1/11

The bold data represent p values with a significance level greater than 0.05.
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Figure 9. Convergence curves of EHBA and other algorithms on CEC2022 partial test functions.
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5. The Application of EHBA in Engineering Design Issues

To verify its ability to solve practical problems, the EHBA was used to solve three
practical engineering design problems. Before using each algorithm to solve practical
engineering optimization problems, a penalty function [53] was used to transform the
constrained problem into an unconstrained problem.

5.1. Welding Beam Design Issues

Designing welded beams with the lowest manufacturing cost is an effective way to
achieve green manufacturing [26]; the schematic view can see the Figure 11. Notably,
thickness (b), length (l), height (t) of the electrode, and weld thickness (h) are defined
as the four optimize variables. At the same time, a load was imposed on the top of the
reinforcement; this will result in seven violated constraints, as detailed in Equation (24).
Let γ = [h, l, t, b]T = [γ1, γ2, γ3, γ4]

T , the formula expression of its mathematical model can
be seen in Equation (23). The meanings of relevant variables can be found in reference [26].

Min F(γ) = 1.10471γ2
1γ2 + 0.04811γ3γ4(14.0 + γ2). (23)
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101.021.0 4141 ≤≤≤≤ γγγγ , ,, .  (25)

Utilizing EHBA and HBA, SHO, SCA, TSA, WOA, MFO, GWO, and AOA to solve 
welding beam design problems, Table 9 shows the mean, standard deviation, worst case, 
and best values independently calculated 20 times in solving the welding beam design 
problem. Table 10 summarizes the best results in terms of the best results generated by 
the above algorithms. Simultaneously, the algorithm’s convergence curve diagram is pro-
vided in Figure 12; the vertical axis is the logarithm of numerical results, which indicates 
the efficiency of the EHBA developed in this paper. 

Table 9. Statistical Results of The Welded Beam Problem. 

Methods Optimum Mean Worst Std 
EHBA 1.4337819 1.4349374 1.4364151 0.0007941 
HBA 1.4338074 1.4338090 1.4338362 0.0000064 
SHO 1.4446079 1.5038656 1.5661039 0.0349623 
SCA 1.4831125 1.5398212 1.5972414 0.0277449 
TSA 1.4410437 1.4476576 1.4557406 0.0037096 

WOA 1.4666907 1.9728059 3.4551200 0.5119476 
MFO 1.4338074 1.4907124 1.8869767 0.1384304 
GWO 1.4345662 1.4379413 1.4472849 0.0036150 
AOA 1.6202084 1.9650833 2.3842840 0.2300621 
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The constraint conditions are listed in Equation (24).

s1(γ) = τ(γ)− τmax ≤ 0, g2(γ) = σ(γ)− σmax ≤ 0,
s3(γ) = x1 − x4 ≤ 0, s4(γ) = 0.1047γ2

1 + 0.04811γ3γ4(14 + γ2)− 5 ≤ 0,
s5(γ) = 0.125 − x1 ≤ 0, s6(γ) = δ(γ)− 0.25 ≤ 0, s7(γ) = P − Pc(γ) ≤ 0,

M = P(L + γ2/2), R =
√

γ2
2/4 + ((γ1 + γ2)/2)2, δ(γ) = 6PL3/Eγ2

3γ4,

J = 2
√

2γ1γ2

(
γ2

2/4 + ((γ1 + γ2)/2)2
)

, σ(γ) = 6PL/γ4γ2
3,

Pc(γ) = 4.013E
√

γ2
3γ6

4/36/L2(1 − γ3/2L
√

E/4G
)
,

τ(γ) =
√
(τ′)2 + 2τ′τ′′ (γ2/2R) + (τ′′ )2, τ′ = P/

√
2γ1γ2, τ′′ = MR/J.

(24)

The range of variable values is given below, in Equation (25).

0.1 ≤ γ1, γ4 ≤ 2, 0.1 ≤ γ1, γ4 ≤ 10. (25)

Utilizing EHBA and HBA, SHO, SCA, TSA, WOA, MFO, GWO, and AOA to solve
welding beam design problems, Table 9 shows the mean, standard deviation, worst case,
and best values independently calculated 20 times in solving the welding beam design
problem. Table 10 summarizes the best results in terms of the best results generated by the
above algorithms. Simultaneously, the algorithm’s convergence curve diagram is provided
in Figure 12; the vertical axis is the logarithm of numerical results, which indicates the
efficiency of the EHBA developed in this paper.

Table 9. Statistical results of the welded beam problem.

Methods Optimum Mean Worst Std

EHBA 1.4337819 1.4349374 1.4364151 0.0007941
HBA 1.4338074 1.4338090 1.4338362 0.0000064
SHO 1.4446079 1.5038656 1.5661039 0.0349623
SCA 1.4831125 1.5398212 1.5972414 0.0277449
TSA 1.4410437 1.4476576 1.4557406 0.0037096

WOA 1.4666907 1.9728059 3.4551200 0.5119476
MFO 1.4338074 1.4907124 1.8869767 0.1384304
GWO 1.4345662 1.4379413 1.4472849 0.0036150
AOA 1.6202084 1.9650833 2.3842840 0.2300621

Table 10. Optimal results of the welded beam problem.

Methods
Variables

Optimum
γ1 γ2 γ3 γ4

EHBA 0.2053846 1.3360529 9.0363311 0.2057430 1.4337819
HBA 0.2057298 1.3335605 9.0366239 0.2057296 1.4338074
SHO 0.1897981 1.4872939 9.0352177 0.2057937 1.4446079
SCA 0.1764307 1.5879257 9.1993613 0.2070625 1.4831125
TSA 0.2016789 1.3854980 9.0578041 0.2056496 1.4410437

WOA 0.1711888 1.7247850 9.0084039 0.2070206 1.4666907
MFO 0.2057298 1.3335604 9.0366239 0.2057296 1.4338074
GWO 0.2054924 1.3395471 9.0364999 0.2057456 1.4345662
AOA 0.1810423 1.5299606 10.0000000 0.2094384 1.6202084

From the data analysis in the table, the objective fitness values acquired by MFO and
HBA are the same and smaller, meaning that they have high solving precision. Observing
the bold data, it is clear that EHBA has performed well on the fourth indicator, with
small optimal values, worst values, average values, and standard deviations. Therefore,
overall, EHBA has high accuracy in solving this problem and the solution results are
relatively stable.
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5.2. Vehicle Side Impact Design Issues

The goal of the car side impact design problem is to minimize the weight of the car.
According to the mathematical model of car side impact established in reference [54], this
problem has 11 design elements γ = [γ1, γ2, · · · , γ10, γ11]; the mathematical expressions of
the objective problem is below.

Min F(γ) = 1.98 + 4.90γ1 + 6.67γ2 + 6.98γ3 + 4.01γ4 + 1.78γ5 + 2.73γ7. (26)

The constraint conditions that the objective function needs to meet are shown in
Equation (27).

s1(γ) = 1.16 − 0.3717γ2γ4 − 0.00931γ2γ10 − 0.484γ3γ9 + 0.01343γ6γ10 − 1 ≤ 0,
s2(γ) = 0.261 − 0.0159γ1γ2 − 0.188γ1γ8 − 0.019γ2γ7 + 0.0144γ3γ5 + 0.0008757γ5γ10

+ 0.08045γ6γ9 + 0.00139γ8γ11 + 0.00001575γ10γ11 − 0.32 ≤ 0,
s3(γ) = 0.214 + 0.00817γ5 − 0.131γ1γ8 − 0.0704γ1γ9 + 0.03099γ2γ6 − 0.018γ2γ7 + 0.0208γ3γ8

+ 0.121γ3γ9 − 0.00364γ5γ6 + 0.0007715γ5γ10 − 0.0005354γ6γ10 + 0.00121γ8γ11 − 0.32 ≤ 0,
s4(γ) = 0.74 − 0.061γ2 − 0.163γ3γ8 + 0.001232γ3γ10 − 0.166x7x9 + 0.227x2

2 − 0.32 ≤ 0,
s5(γ) = 28.98 + 3.818γ3 − 4.2γ1γ2 + 0.0207γ5γ10 + 6.63γ6γ9 − 7.7γ7γ8 + 0.32γ9γ10 − 32 ≤ 0,
s6(γ) = 33.86 + 2.95γ3 + 0.1792γ10 − 5.057γ1γ2 − 11γ2γ8 − 0.0215γ5γ10 − 9.98γ7γ8 + 22γ8γ9 − 32 ≤ 0,
s7(γ) = 46.36 − 9.9γ2 − 12.9γ1γ8 + 0.1107γ3γ10 − 32 ≤ 0,
s8(γ) = 4.72 − 0.5γ4 − 0.19γ2γ3 − 0.0122γ4γ10 + 0.009325γ6γ10 + 0.000191γ2

11 − 4 ≤ 0.

(27)

The range of variable values is as follows in Equation (28).{
0.5 ≤ γ1, γ2, γ3, γ4, γ5, γ6, γ7 ≤ 1.5,
0.192 ≤ γ8, γ9 ≤ 0.345,−30 ≤ γ10, γ11 ≤ 30.

(28)

EHBA was implemented to deal with this case and the calculation values were
compared with those of HBA, SHO, SCA, TSA, WOA, MFO, GWO, and AOA. Table 11
shows the best values and corresponding variable values for solving the car side impact
design problem.

The objective fitness values drawn by MFO, HBA, and EHBA are the same and smaller,
making it known that they have high solving accuracy. In addition, Table 12 presents the
statistical results running 20 times. The bold data in the table represent the optimal values
among all algorithms under each evaluation indicator. Observing the bold data, notably,
EHBA has achieved good solving results under the four indicators, with small optimal
values, worst values, average values, and standard deviations. Therefore, EHBA has high
accuracy and is relatively stable in solving this case. In addition, the convergence curve
figure in the above methods is provided in Figure 13; the vertical axis is the logarithm of
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the numerical solution, which also adds to the proof of the efficiency of EHBA developed
in this paper.

Table 11. Optimal results of side impact design problems for cars.

Methods
Variables

Optimum
γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10 γ11

EHBA 0.5000 1.0525 0.5000 0.5000 0.5000 1.5000 0.5000 0.3450 0.3450 −30.0000 0.0000 22.2383119
HBA 0.5000 1.0525 0.5000 0.5000 0.5000 1.5000 0.5000 0.3450 0.3450 −30.0000 0.0000 22.2383119
SHO 0.5167 1.0452 0.5000 0.5000 0.5000 1.4948 0.5000 0.3437 0.3309 −29.9994 −0.0346 22.2725325
SCA 0.5000 1.0589 0.5000 0.5000 0.5000 1.4546 0.5000 0.3450 0.3450 −30.0000 −0.1623 22.3236875
TSA 0.5000 1.0532 0.5000 0.5000 0.5000 1.5000 0.5000 0.3450 0.3450 −30.0000 −1.0450 22.2398005

WOA 0.5000 1.0525 0.5000 0.5000 0.5000 1.5000 0.5000 0.3450 0.3450 −30.0000 6.4878 22.2383130
MFO 0.5000 1.0525 0.5000 0.5000 0.5000 1.5000 0.5000 0.3450 0.3450 −30.0000 0.0000 22.2383119

GWO 0.5315 1.0386 0.5000 0.5000 0.5000 1.5000 0.5000 0.3450 0.3450 −29.9964 0.0384 22.2390089
AOA 0.5000 1.0964 0.5000 0.5000 0.5000 1.5000 0.5000 0.3450 0.1920 −26.8686 −0.0529 22.4954648

Table 12. Statistical results of vehicle side impact design issues.

Methods Optimum Mean Worst Std

EHBA 22.2383119 22.2383145 22.2383439 0.0000075
HBA 22.2383119 22.7318745 25.1456712 0.7577413
SHO 22.2725325 22.4135001 22.5908204 0.0807070
SCA 22.3236875 22.8925219 23.5196336 0.3130891
TSA 22.2398005 22.4264527 25.4375037 0.7089918

WOA 22.2383130 22.9663887 24.5497539 0.7826121
MFO 22.2383119 22.2832051 22.9923773 0.1680703
GWO 22.2390089 22.2508953 22.2878793 0.0159526
AOA 22.4954648 23.6330412 25.9671223 0.9988731
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5.3. Parameter Estimation of Frequency Modulated (FM) Sound Waves

Finding the optimal parameter combination of the six variables for frequency mod-
ulation synthesizers is the most critical issue in the problem of frequency modulation
sound waves [55]. This is a multi-modal problem. Here, the minimum sum of squared
errors between sound waves and target sound waves is defined as the target equation.
Let γ = (γ1, γ2, γ3, γ4, γ5, γ6) = (a1, ω1, a2, ω2, a3, ω3), the mathematical description of the
problem can be seen in Equation (29).

Min F(γ) =
100

∑
t=0

[o(t)− o0(t)]
2, (29)
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where {
o(t) = γ1 sin(γ2tθ + γ3 sin(γ4tθ + γ5 sin(γ6tθ)))
o0(t) = sin(5tθ − 1.5 sin(4.8tθ + 2.0 sin(4.9tθ)))

. (30)

In Equation (30), θ = 2π/100, o(t) and o0(t) are the estimating sound waves and target
sound wave.

The range of variable values is defined with Equation (31).

−6.4 ≤ a1, ω1, a2, ω2, a3, ω3 ≤ 6.35. (31)

EHBA is applied to deal with the issue of parameter estimation, and the results of
EHBA with the original HBA, SHO, SCA, TSA, WOA, MFO, GWO, and AOA are compared.
Table 13 lists the best results obtained by all comparison methods. From this, the result
obtained by the EHBA are relatively small, indicating that the algorithm has high solving
accuracy. In addition, Table 14 presents the statistical results of all methods running
20 times. The bold data are the best value calculated by comparing the algorithms under
each indicator (optimal value, worst value, average value, standard deviation). Observing
the bold data, it can be seen that although EHBA has a large standard deviation, it can
obtain smaller average values, optimal values, and worst values. Therefore, overall, the
solution effect of EHBA is relatively good. In addition, the convergence curve diagram for
the above methods is provided in Figure 14. The vertical axis is the logarithm of numerical
results, which also adds to the proof of the efficiency of EHBA developed in this paper.

Table 13. Optimal results for parameter estimation of FM sound waves.

Methods
Variables

Optimum
γ1 γ2 γ3 γ4 γ5 γ6

EHBA 0.9992900 5.0002498 −1.5010887 4.7998468 2.0002121 4.9000398 0.0000370
HBA 0.6268062 −0.0273601 4.3856049 −4.8936163 −0.1260477 −5.1736205 10.9422767
SHO 1.0962431 0.0355469 −0.6068540 −0.0416925 4.2924703 4.8843543 9.6438934
SCA −0.5006558 −0.0466897 4.4856557 4.8840717 −0.0002421 0.8250744 12.6418622
TSA 0.6205581 0.0240913 4.3344360 −4.7443413 4.0024033 −0.0372704 11.6162542

WOA 0.7647151 0.1268153 −1.1065172 −0.1419302 4.1776909 4.9035396 9.0496958
MFO 0.8563265 4.9215368 −1.1521163 2.4954631 4.9330869 2.4246832 11.2071984
GWO 0.8486533 5.0087885 1.4857537 −4.7910967 1.9845038 −4.9010655 0.7131581
AOA 0.7489891 0.0912872 0.9725311 0.0878281 4.4087630 −4.8947747 9.2791912
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Table 14. Statistical results of FM sound wave parameter estimation problem.

Methods Optimum Mean Worst Std

EHBA 0.0000370 9.4855667 20.1670529 6.7437197
HBA 10.9422767 17.6689836 23.1827480 3.4680614
SHO 9.6438934 19.3259034 25.1632318 6.4388645
SCA 12.6418622 21.7408845 24.9466231 2.6678648
TSA 11.6162542 19.4359242 25.2052649 4.2413626

WOA 9.0496958 19.3233360 25.0808811 4.7363808
MFO 11.2071984 19.7214875 27.4896812 6.7926567
GWO 0.7131581 16.0919444 25.0430495 6.4865698
AOA 9.2791912 25.6683935 29.8550028 5.6292789

6. Conclusions and Future Research

A multi-strategy fusion enhanced optimization algorithm (EHBA) is proposed based
on the dynamic opposite learning, differential variation and selectively, local quantum
search, or dynamic Laplacian crossover operators to address the issues of local optima
and slow convergence speed in the HBA. The adoption of a dynamic opposite learning
strategy broadens the search area of the population, enhances global search ability, and
improves population diversity and the quality of solutions. Differential mutation operation
not only enhances the precision and exploration, but also secures the convergence rate of
the HBA. Introducing a local quantum search strategy during the honey harvesting stage
(development), the local search capabilities are enhanced and the population optimization
precision is improved. Alternatively, introducing dynamic Laplacian crossover operators
can improve convergence speed, which reduces the probability of EHBA sinking into local
optima to a certain extent. Through comparative experiments with other algorithms on
the CEC2017, CEC2020, and CEC2022 test sets, along with three engineering examples,
EHBA has been verified to have good solving performance compared with other intelligent
algorithms and other variant algorithms. From the convergence curve, box plot, and
comparative analysis of algorithm performance testing, it will be on display that compared
with the other eight comparative methods, EHBA has significantly improved optimization
ability and convergence speed, and is expected to prove useful in optimizing problems.

Due to the superiority of EHBA, it may be implemented for multi-objective problems
in more scientific research areas, such as robot movement, missile trajectory, image seg-
mentation, predictive modeling, feature selection [56], geometry optimization [57], and
engineering design [58,59] in the future. In addition, effective improvements to the original
algorithm HBA can not only add different and good strategies, but also integrate other
excellent algorithms.
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38. Akdağ, O. A Developed Honey Badger Optimization Algorithm for Tackling Optimal Power Flow Problem. Electr. Power Compon.

Syst. 2022, 50, 331–348. [CrossRef]
39. Han, E.; Ghadimi, N. Model identification of proton-exchange membrane fuel cells based on a hybrid convolutional neural

network and extreme learning machine optimized by improved honey badger algorithm. Sustain. Energy Technol. Assess. 2022,
52, 102005. [CrossRef]

40. Zhong, J.Y.; Yuan, X.G.; Du, B.; Hu, G.; Zhao, C.Y. An Lévy Flight Based Honey Badger Algorithm for Robot Gripper Problem.
In Proceedings of the 7th International Conference on Image, Vision and Computing (ICIVC), Xi’an, China, 26–28 July 2022;
pp. 901–905. [CrossRef]

41. Hu, G.; Zhong, J.Y.; Wei, G. SaCHBA_PDN: Modified honey badger algorithm with multi-strategy for UAV path planning. Expert
Syst. Appl. 2023, 223, 119941. [CrossRef]

42. Kapner, D.; Cook, T.; Adelberger, E.; Gundlach, J.; Heckel, B.R.; Hoyle, C.; Swanson, H. Tests of the gravitational inverse-square
law below the dark-energy length scale. Phys. Rev. Lett. 2007, 98, 021101. [CrossRef]

43. Jia, H.M.; Liu, Q.G.; Liu, Y.X.; Wang, S.; Wu, D. Hybrid Aquila and Harris hawks optimization algorithm with dynamic
opposition-based learning. CAAI Trans. Intell. Syst. 2023, 18, 104–116. [CrossRef]

44. Hua, Y.; Sui, X.; Zhou, S.; Chen, Q.; Gu, G.; Bai, H.; Li, W. A novel method of global optimization for wavefront shaping based on
the differential evolution algorithm. Opt. Commun. 2021, 481, 126541. [CrossRef]

45. Li, X.; Wang, L.; Jiang, Q.; Li, N. Differential evolution algorithm with multi-population cooperation and multi-strategy integration.
Neurocomputing 2021, 421, 285–302. [CrossRef]

46. Cheng, J.; Pan, Z.; Liang, H.; Gao, Z.; Gao, J. Differential evolution algorithm with fitness and diversity ranking-based mutation
operator. Swarm Evol. Comput. 2021, 61, 100816. [CrossRef]

47. Xu, C.H.; Luo, Z.H.; Wu, G.H.; Liu, B. Grey wolf optimization algorithm based on sine factor and quantum local search. Comput.
Eng. Appl. 2021, 57, 83–89. [CrossRef]

48. Deep, K.; Bansal, J.C. Optimization of directional over current relay times using Laplace Crossover Particle Swarm Optimization
(LXPSO). In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India,
9–11 December 2009; pp. 288–293. [CrossRef]

49. Wan, Y.G.; Li, X.; Guan, L.Z. Improved Whale Optimization Algorithm for Solving High-dimensional Optimization Problems.
J. Front. Comput. Sci. Technol. 2021, 112, 107854.

50. Awad, N.H.; Ali, M.Z.; Liang, J.J.; Qu, B.Y.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC2017 Special
Session and Competition on Single Objective Bound Constrained Real-Parameter Numerical Optimization; Technical Report; Nanyang
Technological University: Singapore, 2016.

51. Yue, C.T.; Price, K.V.; Suganthan, P.N.; Liang, J.J.; Ali, M.Z.; Qu, B.Y.; Awad, N.H.; Biswas, P.P. Problem Definitions and Evaluation
Criteria for the CEC2020 Special Session and Competition on Single Objective Bound Constrained Numerical Optimization; Technical
Report; Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report; Nanyang
Technological University: Singapore; Glasgow, UK, 2020.

52. Yazdani, D.; Branke, J.; Omidvar, M.N.; Li, X.; Li, C.; Mavrovouniotis, M.; Nguyen, T.T.; Yang, S.; Yao, X. IEEE CEC 2022 Competi-
tion on Dynamic Optimization Problems Generated by Generalized Moving Peaks Benchmark. arXiv 2021, arXiv:2106.06174.
[CrossRef]

53. Wu, L.H.; Wang, Y.N.; Zhou, S.W.; Yuan, X.F. Differential evolution for nonlinear constrained optimization using non-stationary
multi-stage assignment penalty function. Syst. Eng. Theory Pract. 2007, 27, 128–133. [CrossRef]

54. Youn, B.D.; Choi, K.K.; Yang, R.J.; Gu, L. Reliability-based design optimization for crash worthiness of vehicle side impact. Struct.
Multidiscip. Optim. 2004, 26, 272–283. [CrossRef]

55. Gothania, B.; Mathur, G.; Yadav, R.P. Accelerated artificial bee colony algorithm for parameter estimation of frequency-modulated
sound waves. Int. J. Electron. Commun. Eng. 2014, 7, 63–74.

56. Hu, G.; Du, B.; Wang, X.F.; Wei, G. An enhanced black widow optimization algorithm for feature selection. Knowl.-Based Syst.
2022, 235, 107638. [CrossRef]

https://doi.org/10.1016/j.eswa.2021.116158
https://doi.org/10.1016/j.knosys.2015.12.022
https://doi.org/10.1016/j.engappai.2020.103541
https://doi.org/10.1007/s00366-021-01438-z
https://doi.org/10.1007/s10489-020-01893-z
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.1016/j.matcom.2021.08.013
https://doi.org/10.1080/15325008.2022.2136295
https://doi.org/10.1016/j.seta.2022.102005
https://doi.org/10.1109/ICIVC55077.2022.9887256
https://doi.org/10.1016/j.eswa.2023.119941
https://doi.org/10.1103/PhysRevLett.98.021101
https://doi.org/10.11992/tis.202108031
https://doi.org/10.1016/j.optcom.2020.126541
https://doi.org/10.1016/j.neucom.2020.09.007
https://doi.org/10.1016/j.swevo.2020.100816
https://doi.org/10.3778/j.issn.1002-8331.2012-0080
https://doi.org/10.1109/NABIC.2009.5393722
https://doi.org/10.48550/arXiv.2106.06174
https://doi.org/10.3321/j.issn:1000-6788.2007.03.019
https://doi.org/10.1007/s00158-003-0345-0
https://doi.org/10.1016/j.knosys.2021.107638


Biomimetics 2024, 9, 21 43 of 43

57. Zheng, J.; Ji, X.; Ma, Z.; Hu, G. Construction of Local-Shape-Controlled Quartic Generalized Said-Ball Model. Mathematics 2023,
11, 2369. [CrossRef]

58. Hu, G.; Guo, Y.X.; Wei, G.; Abualigah, L. Genghis Khan shark optimizer: A novel nature-inspired algorithm for engineering
optimization. Adv. Eng. Inform. 2023, 58, 102210. [CrossRef]

59. Hu, G.; Zheng, Y.X.; Abualigah, L.; Hussien, A.G. DETDO: An adaptive hybrid dandelion optimizer for engineering optimization.
Adv. Eng. Inform. 2023, 57, 102004. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/math11102369
https://doi.org/10.1016/j.aei.2023.102210
https://doi.org/10.1016/j.aei.2023.102004

	Introduction 
	Theoretical Basis of Honey Badger Algorithm 
	Population Initialization Stage 
	Digging Stage (Exploration) 
	Definition of the Intensity I 
	Update Density Factor  
	Definition of the Search Orientation F 
	Update Location of Digging Stage 

	Honey Harvesting Stage (Exploitation) 

	An Enhanced Honey Badger Algorithm Combining Multiple Strategies 
	Dynamic Opposite Learning Strategy 
	Differential Mutation Operation 
	Quantum Local Search 
	Dynamic Laplace Crossover 
	The Specific Steps of the Enhanced Honey Badger Algorithm 
	The Complexity Analysis 

	Numerical Experiment and Analysis Results 
	Experiment and Analysis on the CEC2017 Test Set 
	Experiment and Analysis on the CEC2020 Test Set 
	The Ablation Experiments of EHBA 
	Comparison Experiment between Other HBA Variant Algorithms and EHBA 
	Comparison Experiments of EHBA and Other Intelligent Algorithms 

	Experiment and Analysis on the CEC2022 Test Set 

	The Application of EHBA in Engineering Design Issues 
	Welding Beam Design Issues 
	Vehicle Side Impact Design Issues 
	Parameter Estimation of Frequency Modulated (FM) Sound Waves 

	Conclusions and Future Research 
	References

