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Abstract: In this paper, we propose a reinforcement learning-based end-to-end learning method
for the autonomous driving of a mobile robot in a dynamic environment with obstacles. Applying
two additional techniques for reinforcement learning simultaneously helps the mobile robot in
finding an optimal policy to reach the destination without collisions. First, the multifunctional
reward-shaping technique guides the agent toward the goal by utilizing information about the
destination and obstacles. Next, employing the hindsight experience replay technique to address the
experience imbalance caused by the sparse reward problem assists the agent in finding the optimal
policy. We validated the proposed technique in both simulation and real-world environments. To
assess the effectiveness of the proposed method, we compared experiments for five different cases.

Keywords: deep deterministic policy gradient; multifunctional reward shaping; hindsight experience
replay; mobile robot; autonomous driving

1. Introduction

Mobile robots have recently played a key role in the field of autonomous driving [1–5],
and in application fields such as delivery and service operations in buildings, hospitals, and
restaurants [6–8]. To fulfill these roles, three essential processes are required: perception of
the surrounding environment, a decision-making process to generate a path to the desti-
nation, and a control process for the motion of the robot. First, in the perception process,
the robot obtains information about its surroundings using sensors, such as cameras or
LiDAR. Next, the decision-making process involves a path-planning procedure. One of the
representative techniques is Simultaneous Localization and Mapping (SLAM), allowing the
robot to navigate based on the surrounding map [9]. Finally, in the control process, SLAM
regulates its motions by following the reference path generated in the decision-making
process. Many studies have been conducted on SLAM-based autonomous driving [10];
however, there is a limitation in the complexity of implementation due to the necessity of
multiple sensors or deep learning for accurate surrounding perception and navigation in
environments with unexpected dynamic obstacles. To alleviate the issue associated with
dynamic obstacles, Dang et al. [11] modified the SLAM by implementing sensor fusion
and dynamic object removal methods. They achieved accurate position estimation and
map construction through integrated sensor-based dynamic object detection and removal
techniques, including radar, cameras, LiDAR, and more. However, if an error occurs in
the process of estimating the position and motion of the dynamic object, it may be difficult
to remove the object accurately. In addition, the complexity of implementation due to the
necessity of synchronizing multiple sensors remains, making it challenging to apply even
when improving dynamic environments. Xiao et al. [12] proposed the Dynamic-SLAM
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technology, which combines SLAM and deep learning. The authors of [12] proposed a
method using a single-slot detector based on a convolutional neural network (CNN) to de-
tect dynamic objects. They enhanced the detection recall through a compensation algorithm
for missed objects. As a result, this method demonstrated an improved performance in the
presence of dynamic obstacles based on a visual SLAM. However, this approach still has
limitations in that an environment map must be drawn and CNN requires a large amount
of data. To address these issues, many researchers have studied the use of reinforcement
learning for autonomous driving. Unlike SLAM technology, which requires additional ad-
justments to handle dynamic obstacles, reinforcement learning-based autonomous driving
has the advantage of adapting to changes in the environment by utilizing the optimal policy.
Applying reinforcement learning allows finding the optimal policy needed for autonomous
driving with just a single sensor. Even when considering the additional burden associated
with deep learning, it can reduce the tasks required for data collection. Therefore, it can be
considered less complex to implement than SLAM. These advantages have attracted the
interest of many researchers [13–20].

Reinforcement learning is akin to mimicking the direct engagement and experiential
type of learning found in humans. Generally, humans employ two types of learning
methods: indirect learning through observation and direct learning through hands-on
experience. Traditionally, machine learning, which simulates the indirect learning method,
has produced outstanding results in object recognition and image classification. Similarly,
just as people develop the ability to make split-second decisions through experience,
research is ongoing to develop neural networks capable of quick decision-making through
reinforcement learning, aimed at handling complex tasks. The main goal of reinforcement
learning is to find an optimal policy that achieves an objective through the interaction
of an agent with the environment. The agent observes the environment and determines
the optimal action. After executing the action, the agent receives a reward as feedback.
Based on these processes, the agent finds the optimal policy that guarantees the maximal
cumulative reward. Generally, the rewards obtained during experience collection can
only provide meaningful information after the episode has ended. Therefore, in this case,
finding the optimal policy can be difficult because most rewards are meaningless. This
problem is referred to as the sparse reward problem and becomes more pronounced in
the autonomous driving of mobile robots in environments with dynamic obstacles. It is
challenging to simultaneously achieve the goals of reaching the destination and avoiding
obstacles, as these goals are included. Two techniques can be applied to alleviate this
problem. The first approach, reward shaping, is a method of complementing the reward
system with a specific one that can provide sufficient information about the goals based on
domain knowledge of the task. Jesus et al. [21] successfully implemented reward shaping
for the indoor autonomous driving of mobile robots. However, there was a limitation of not
adequately addressing the goal of obstacle avoidance by reflecting only information about
the destination in the reward function. The second technique is the hindsight experience
replay (HER) method, which generates alternate success episodes by extracting partial
trajectories from failed episodes [22]. The HER can increase the number of successful
experiences in the learning database by reevaluating failed experiences as alternate success
experiences with virtual objectives. Consequently, it promotes the exploration of various
routes, increasing the probability of reaching the actual destination. In our previous study,
we employed the HER to implement the autonomous driving of a mobile robot based on
reinforcement learning. The agent was trained in a simple driving environment within
the simulation. We demonstrated that the proposed method operates effectively in both
simulated and actual environments [23]. The HER has also been widely applied in the fields
of mobile robotics and robot arm control [24–28]. Both reward shaping and the HER have
individually been used to implement reinforcement learning-based autonomous driving
schemes in dynamic environments. However, to the best of our knowledge, no attempts
have been made to utilize both methods for handling dynamic environments, which was
the objective of the present study.
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We designed a reinforcement learning method for dynamic environments with mov-
ing obstacles by considering the concepts of both multifunctional reward shaping and
the HER. First, by adopting the concept of reward shaping, specific information about
the environment is reflected in the reward function to guide the agent toward goals. For
navigation to the destination, the reward function was designed based on destination infor-
mation, and for obstacle avoidance, the reward function was designed based on obstacle
information. Additionally, we employed the HER, which involves the re-generation of
successful episodes, addressing the data imbalance issue between successful and failed
episodes. Consequently, the proposed method can improve the policy optimization pro-
cess. To validate the effectiveness of the proposed method, we performed an autonomous
driving experiment to compare the following methods based on the deep deterministic
policy gradient (DDPG):

(1) Only DDPG [29].
(2) Only reward shaping (goal-based) [21].
(3) Only reward shaping (proposed method).
(4) Only HER [23].
(5) Proposed method.

2. Preliminaries
2.1. Deep Deterministic Policy Gradient

The DDPG is a reinforcement learning algorithm that can handle continuous action
spaces, with a deterministic policy µ used to determine agent behavior [30]. Most policy
gradient algorithms used to handle continuous action spaces utilize the policy directly
instead of using a value function. In this case, the stochastic policy π is used to determine
the agent’s behavior using a probability distribution. However, the basic algorithm of
DDPG, the deterministic policy gradient (DPG) algorithm, demonstrated that the policy
gradient method can be used even when µ is used instead of π [31]. The DPG not only
offers the advantage of increasing convergence in the learning process to find the optimal
action policy but also plays an effective role in the continuous action space. The DDPG
algorithm employs two prominent techniques of the deep Q-network (DQN) to increase the
efficiency and stability of learning based on the actor-critic structure of the DPG [32]. The
first prominent technique of DQN is the experience replay, which stores experience data
transitions in memory for reuse. This technique increases learning efficiency owing to data
reuse and mitigates adherence to suboptimal policies by reducing the correlation between
data owing to the random selection of training data. The second technique is a target
network separation that generates target networks with the same structure as the critic
and actor networks. This technique enables the stable updating of network parameters by
reducing the instability of reclusively generated target values. Each set of target network
parameters—including the critic network parameter θQ and target critic network parameter
θ−µ , as well as the actor network parameter θµ and target actor network parameter θ−Q—is
updated using the soft update method with a ratio parameter τ:

θ−Q ← τθQ + (1− τ)θ−Q , (1)

θ−µ ← τθµ + (1− τ)θ−µ . (2)

In the process of determining the action, the DDPG accounts for Ornstein–Uhlenbeck
noise [33], and Nt in the output of the actor network:

at= µ(st) +Nt. (3)

Lei et al. [29] implemented the DDPG algorithm for mapless navigation for a mobile
robot in both simulations and the real world. It demonstrates satisfactory performance in
reaching the intended destination compared to traditional map-based navigation. However,
the considerable number of episodes needed to find the optimal policy raises a potential
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cost concern. Therefore, this study applied a technique to quickly find a policy that
can adapt to dynamic environments by simultaneously employing the HER and reward
shaping methods.

2.2. Hindsight Experience Replay

The HER is a technique that generates positive experiences by re-evaluating failed
episodes. Generally, as an agent collects training data through exploration, most of these
data correspond to failed episodes. It may be challenging to optimize a policy that fits
the objective. The HER can be used to overcome these difficulties. After an episode
ends, parts of the trajectories of failed episodes are extracted and converted into success
trajectories. In this process, a specific state is selected from the extracted trajectory as the
new virtual destination. Then, starting from the initial state of the extracted trajectory
to the new destination, the reward for the new successful trajectory is recalculated and
stored in memory as if the goal had been achieved. As successful trajectories are added
to the database, it has the effect of exploring new spaces. These experiences promote
actual exploration, increasing the likelihood of reaching the real destination and ultimately
improving the probability of finding the optimal policy.

The technology applied in this study was previously introduced in the authors’ earlier
work [23]. In [23], a method integrating the HER technique to assist in finding the optimal
policy was proposed and demonstrated its effectiveness in both simulation and real-world
environments without obstacles. However, we recognize the limitations in handling
dynamic obstacles and further extend the previously applied HER technique by integrating
reward shaping. The proposed method in this study not only helps in finding the optimal
policy but also adapts to dynamic environments.

2.3. Reward Shaping

Reward shaping is a technique used to design or adjust a reward system for rein-
forcement learning. The reward system, which provides feedback according to the action
executed by the agent, can be either sparse or dense according to the specificity of the
reward. The sparse reward system does not provide specific information regarding the
goals in the process of finding an optimal action policy. For example, the sparse reward
system in a chess game offers a reward of 0 for each individual move, and only the final
reward provides positive or negative information based on the game outcome. In this
case, it may be necessary to add a specific reward function that accounts for the values
of individual pieces. In this way, domain knowledge about the task is required to induce
the intended action in reward shaping. The specific update of the reward system based
on domain knowledge is referred to as a dense reward system. In such a reward system,
the rewards are explicitly specified for actions taken by the agent at each state, providing
sufficient information about the goals. This process is defined by Equation (4), where r′

is an updated reward system using reward shaping, r is the original reward system, and
f(s, a) is a reward function based on the state and action of the reward-shaping technique.

r′= r + f(s, a) (4)

There is a study that applied reward shaping to the autonomous driving of mobile
robots based on reinforcement learning [21]. Jesus et al. [21] proposed a reward-shaping
technique based on destination distance to complement the reward system. The pro-
posed approach was validated in experimental environments divided into three stages:
stage 1 (obstacle-free environment), stage 2 (environment with fixed obstacles), and stage 3
(environment with additional walls and moving obstacles). The proposed approach ef-
fectively operated in stage 1; however, in stage 2 and stage 3, the presence of additional
obstacles led to an increase in the required learning episodes to find the optimal policy
or failure to find the optimal policy. Therefore, in environments with many dynamic
obstacles like the real world, it is anticipated that the efficiency of the proposed technique
may be compromised. In this study, recognizing the necessity of obstacle handling, we
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propose a method that simultaneously applies the HER and reward shaping by adding
obstacle-related reward functions.

3. Materials and Methods
3.1. Mobile Robot and Environmental Configuration

In this study, we used the TurtleBot 3 Burger, as shown in Figure 1a. The robot is
equipped with two Dynamixel motors on the left and right sides, which transfer power to
the two wheels. The OpenCR controller is used to control these wheels. Additionally, a
laser distance sensor is mounted at the top of the robot, allowing it to measure distances
around the robot in a 360◦ range. The detection distance range of this sensor is 0.12 m to
3.5 m. The system is controlled using a Raspberry Pi 3b+ board.
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represent the scope of the LDS.

ROS (Robot Operating System) is a software platform for developing robot applications
and serves as a meta-operating system used in traditional operating systems such as Linux,
Windows, and Android. Communication in ROS is generally categorized into three types:
topics, services, and actions. Specifically, topic communication involves one-way message
transmission, service communication entails a bidirectional message request and response,
and action communication employs a bidirectional message feedback mechanism.

Figure 1b illustrates the Turtlebot3 and the experimental environment within the 3D
simulator Gazebo. In this environment, the destination is randomly set when the driving
starts. The starting point of the driving is the center of the space, except when reaching the
destination, where the navigation restarts from that point. The dynamic obstacles consist
of 4 cylindrical structures that rotate with a fixed radius. The Gazebo allows the creation
of environments similar to the real world, reducing time and cost in development and
enhancing convenience. Moreover, it has good compatibility with ROS.

In this study, as shown in Figure 2, a reinforcement learning system was implemented
in the Gazebo simulation using the ROS, utilizing sensor values of the mobile robot and
topic communication between nodes. A step is defined as the process in which the robot
executes the action determined by the reinforcement learning algorithm, receives a reward,
and completes the transition to the next state. As a result of this process, a single transition
(st, at, rt+1, st+1) is generated, consisting of the current state st, action at, reward rt+1, and
the next state st+1. An episode is defined as the trajectory observed when driving begins
until the goal is achieved or when failure (collision or timeout) is observed during this
process. Success is defined as reaching the destination, while failure includes collisions with
obstacles and not reaching the destination within a limited number of actions (timeout). A
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trajectory is defined as a connected form of transition resulting from the steps performed
within an episode.
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3.2. Reinforcement Learning Parameters

For reinforcement learning, it is necessary to define the state, action, and rewards. The
states and actions are described in this subsection, and the reward system is described in
detail in Section 3.3. Figure 3 illustrates the states used in the experiments.
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The state st ∈ R16 can be expressed by Equation (5), where dl
t ∈ R10 is a value

measured in front of the robot using a laser distance sensor (LDS) every 18 degrees, over a
total of 180 degrees:

st =

(
dl

t, dg
t , φg

t , at−1, do
t ,
→
D

o

t

)
. (5)

The variable dg
t denotes the linear distance between the robot’s current coordinates

P = (P x, Py
)

and the destination coordinates Pg= (P g
x , Pg

y

)
as follows:

dg
t =

√(
Pg

x − Px

)2
+
(

Pg
y − Py

)2
. (6)
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The variable φg
t denotes the angular difference between the robot’s yaw value φyaw

and the destination:

φ
g
t = tan−1

(P g
y − Py

)
(P g

x − Px
) −φyaw. (7)

The variable at−1 ∈ R2 denotes the immediate previous action, defined as follows:

at−1 = (vt−1, ωt−1). (8)

where vt−1 andωt−1 denote the robot’s linear and angular velocities for that action, respec-
tively. The variable do

t denotes the linear distance between the coordinates of the robot

(P x, Py
)

and those of the closest obstacle Po= (P o
x, Po

y

)
:

do
t =

√
(Po

x − Px)
2 +

(
Po

y − Py

)2
. (9)

The variable
→
D

o

t denotes the direction of the obstacle closest to the robot:

→
D

o

t = argmin
θ

(
dl

t

)
. (10)

Figure 4 demonstrates the components of action, and the action at ∈ R2 is constructed
from vt andωt, along with noise Nt:

at = (vt, ωt) +Nt. (11)
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3.3. Design of Reward System

A sparse reward system can be expressed as in Equation (12). If the distance between
the robot and its destination is less than 0.15 m after performing an action, it is defined as a
success, and a reward value of +500 is returned. On the other hand, if the robot collides with
a wall or obstacle, a reward value of −550 is returned instead. In cases where no special
state transitions occur, as above, all other state transitions following an action receive a
reward of −1.

Rsparse
t (st, at) =


500, if dg

t < 0.15 m
−550, if do

t < 0.135 m
−1, otherwise

. (12)
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The proposed reward system expressed in Equation (13) is augmented with reward
shaping that includes specific information related to the destination and obstacles. To
provide detailed information about the destination, an additional reward is introduced
based on the change in distance to the destination. When the distance decreases, a positive
reward proportional to the change in distance is generated, whereas when the distance
increases, a fixed negative reward is applied instead.

Rg
t (st, at, Pg) =

{
αt if

(
dg

t−1 − dg
t ) > 0

−8 otherwise
, (13)

where αt= 200
(

dg
t−1 − dg

t

)
. Distance information associated with obstacles is also included

in the reward, ensuring that an optimal policy would avoid moving obstacles:

Ro
t (st, at, Po) =

{
βt if

(
do

t−1 − do
t
)
> 0

−βt otherwise
, (14)

where βt= 550 exp[−70(do
t − 0.2)]. By introducing reward shaping, the final reward sys-

tem ensures that the rewards for reaching the destination and collisions remain the same as
in Equation (13), whereas those for other individual actions are expressed by the sum of
the following reward functions:

RDense
t (st, at) =


500, if dg

t < 0.15 m
−550, if do

t < 0.135 m
Rg

t + Ro
t , otherwise

. (15)

As shown in Figure 5a, it can be observed that negative rewards increase rapidly
when the distance from the current state to the obstacle becomes closer than in the past
state. In contrast, as shown in Figure 5b, it can be observed that positive rewards increase
rapidly when the distance from the current state to the obstacle becomes farther than in the
past state.
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ward proportional to the change in distance is generated, whereas when the distance in-
creases, a fixed negative reward is applied instead. 

Rt
gሺst, at, Pgሻ= ൜αt−8

if (dt-1
g − dt

g) > 0
otherwise

, (13) 

where αt = 200൫dt-1
g − dt

g൯. Distance information associated with obstacles is also included 
in the reward, ensuring that an optimal policy would avoid moving obstacles: 

Rt
oሺst, at, Poሻ = ቊ βt−βt

if (dt-1
o − dt

o) > 0
otherwise

, (14) 

where βt = 550 expሾ−70ሺdt
o − 0.2ሻሿ. By introducing reward shaping, the final reward sys-

tem ensures that the rewards for reaching the destination and collisions remain the same 
as in Equation (13), whereas those for other individual actions are expressed by the sum 
of the following reward functions: 

Rt
Denseሺst, atሻ = ቐ 500,−550,

Rt
g + Rt

o,

if dt
g < 0.15 m

if dt
o < 0.135 m

otherwise
. (15) 

As shown in Figure 5a, it can be observed that negative rewards increase rapidly 
when the distance from the current state to the obstacle becomes closer than in the past 
state. In contrast, as shown in Figure 5b, it can be observed that positive rewards increase 
rapidly when the distance from the current state to the obstacle becomes farther than in 
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past and current states. 

Figure 5. (a) A graph of penalty based on the change in distance to the obstacle between past and
current states. (b) A graph of advantage based on the change in distance to the obstacle between past
and current states.

Remark 1: Assigning an intentional weight to the reward of −550 upon collision
emphasizes the significance of the least desirable event (collision) commonly encountered
in dynamic environments. This weighting aims to instill a recognition of the risk associated
with collision states during the learning process. Additionally, in designing functions
related to the destination, a fixed penalty is used. This is intended to continuously impose
penalties of a magnitude similar to the maximum positive reward +8.8, aiding in policy
formulation for reaching the destination. In the process of designing rewards related to
obstacles, we use the exponential functions for both the advantage and penalty in a similar
form. This aims to introduce a step-wise perception of the risk associated with collisions.
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Additionally, the use of a large-scale function is employed due to the limited conditions and
time in which the function operates, seeking to exert a robust influence during operation.

3.4. Constituent Networks of the DDPG

The DDPG consists of an actor network, which approximates the policy, and a critic
network, which evaluates the value of the policy. Both networks are based on a multilayer
perceptron (MLP) structure comprising fully connected layers. To ensure learning stability,
target networks are also constructed for each network. Figure 6 illustrates the structure
of the actor network. This network uses state st as an input, which passes through two
hidden layers, each consisting of 500 nodes, to generate two values representing linear and
angular velocities.
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Figure 7 illustrates the critic network. The input consists of two components: state
st and action at. After passing through the hidden layers, each containing 250 nodes, the
intermediate output is incorporated into the second hidden layer with 500 nodes. Finally,
the network generates a single value as the output, namely the Q-value for the given state
and action. This value is used to evaluate the policy.
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The actor network is trained to maximize the Q-value, i.e., the output of the critic
network. The network parameters are updated using the gradient ascent method with the
loss function La

i defined as follows:

La
i = −∑

i
Q(s i, µθµ(si); θQ), (16)

where µθµ denotes the deterministic policy and θQ, θµ denote the weights of the critic
and actor networks, respectively. Although the critic network also updates its parameters



Biomimetics 2024, 9, 51 10 of 16

using the gradient descent method, the loss function is defined as a smooth L1 loss using
the Q-value and labeled as follows:

li= Q
(
si, ai; θQ

)
− yi (17)

Lc
i =


1
n ∑

i
0.5l2i if |li| < 1

1
n ∑

i
|li| − 0.5 otherwise

, (18)

where yi= ri+γQ
(

si+1, µθ−µ (si+1); θ−Q
)

, γ is the discounting factor, and θ−µ and θ−Q denote
the weights of the target actor and target critic networks, respectively.

3.5. Generating Alternate Data with HER

In reinforcement learning, the common approach to collecting training data is to store
transitions (st, at, rt+1, st+1) in a memory buffer. These transitions are generated after the
agent performs an action. The learning process is initiated after a certain number of data
transitions are accumulated in the memory buffer. In this process, finding the optimal
policy is challenging due to the low probability of achieving the goal through exploration.
This difficulty is exacerbated, especially in environments with sparse rewards. To address
this issue, we implement the HER by re-evaluating failed episodes to create successful
trajectories. Algorithm 1 illustrates the detailed process of implementing the HER. G is a
set of states to be re-evaluated as new destination states selected from failed trajectories.
A failed episode occurs when the robot collides with walls or obstacles or experiences a
timeout. In each failed case, HER is applied three times. In the case of a collision, the states
corresponding to steps 5, 25, and 50 before the final state of the trajectory are designated as
the new destinations. As shown in Figure 8, trajectories from the initial position to these
new destinations are extracted. The white trajectory represents the original unsuccessful
path, while the blue, green, and yellow trajectories signify new successful paths, each
setting the state 5, 25, and 50 steps before as the updated destination. Rewards are then
recalculated, contributing to the generation of successful experiences.
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Algorithm 1. The Hindsight experience replay algorithm applied in this study. Suc-
cess and failure episodes are each applied three times, generating diverse paths for new
successful experiences to enhance diversification.

Algorithm 1. Hindsight Experience Replay

1: terminate time T
2: after episode terminate,
3: G =∅
4: if sT is collision
5: G ={sT−5, sT−25, sT−50}
6: if sT is timeout
7: G ={sT−50, sT−150, sT−250}
8: for g′ ∈ G do
9: for t = 0, T do

10: r′ := R
(

st, at, Pg′
)

11: if r′ is 550
12: Break
13: Store the transition (st ‖ g′, at, r′, st+1 ‖ g′) » || denotes concatenation
14: end for
15: end for

When a timeout state occurs, the states 50, 150, and 250 steps before the terminal
state are designated as the new destination, as illustrated in Figure 9. The white trajectory
denotes the original failed path, while the blue, green, and yellow paths represent successful
trajectories. Each trajectory sets the state 50, 150, and 250 steps before as the new destination,
respectively, and the trajectories are extracted. Rewards are then recalculated, contributing
to the generation of successful experiences.
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4. Experimental Results
4.1. Experimental Progress

To evaluate the effectiveness of the proposed method, we conducted identical experi-
ments for each method by repeating the experiment 10 times.
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(1) Case 1: Only the DDPG algorithm is used with the simplest reward system. This case
serves as a baseline to evaluate the effects of the proposed technique.

(2) Case 2: Only the goal-based reward shaping method is applied to enhance the reward
system.

(3) Case 3: Only the multifunctional reward shaping method is applied to enhance the
reward system.

(4) Case 4: The HER technique is used.
(5) Proposed Method: Both multifunctional reward shaping and the HER technique

are applied.

Given the nature of deep reinforcement learning, instances exist where discovering
the optimal policy is not guaranteed, even within identical learning scenarios. This implies
that under consistent configurations, the likelihood of identifying the optimal policy may
fluctuate. To assess the robustness and reliability of the proposed methodology, the experi-
ment was replicated ten times. To easily visualize the progress of policy optimization, the
average rewards of the most recent 50 episodes were plotted and compared. To address
the comparison challenge introduced by multifunctional reward shaping, the rewards
obtained from all experiments were compared using the baseline reward system defined by
Equation (13). In addition, following the completion of the learning phase, test-driving was
performed using trained artificial neural networks. In this process, actions were determined
without the addition of noise. Each driving test was conducted in both simulated and real
environments. In detail, in Figure 10a, 100 episodes were conducted with the destination
set randomly to the same settings as the learning environment in the simulation. In a real
environment, as shown in Figure 10b, four fixed obstacles of different sizes are installed
and one person acts as a dynamic obstacle that moves randomly. To test the adaptability
of the optimal policy found by the proposed method, the actual environment is set up
slightly differently from the learning environment, and the destination is set to each of the
four corners of the space. We conducted a total of 20 test drives, with 5 tests for each corner.
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4.2. Experimental Results

Figure 11 is a graph depicting the case in which the best policy was found among
10 learning sessions conducted in each case. In case 1, learning was conducted with a sparse
reward system based on the DDPG algorithm, and it converged to −300 points. Since
the maximum number of actions is set to +300, we can confirm that it has converged to a
sub-optimal policy that runs in place without colliding. In the remaining cases, converging
to values greater than −300, it can be concluded that the policy successfully navigated
to the destination while avoiding obstacles. However, analyzing the completeness of the
policy, it can be observed that case 2 with goal-based reward shaping and case 3 with only
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the HER technique have lower completeness compared to when the proposed method is
applied. Case 4 with only the proposed reward-shaping technique and case 5 with both
proposed reward shaping and the HER converged to relatively high values around +200.
Therefore, it can be considered that policies were found to navigate through optimal paths,
avoiding obstacles and reaching the destination, indicating higher completeness.
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Table 1 shows the training success rate and test-driving results for each case. First,
the training success rate represents the ratio of trials that found the optimal policy out
of 10 trials for each case. From the perspective of the training success rate, the case that
applied both the proposed reward shaping and the HER simultaneously showed the
highest success rate of 80%. In order to compare policies in terms of completeness, test-
driving was conducted using the policy with the best performance for each case. The
results of the simulated test-driving indicate that case 3, which applied only the proposed
reward-shaping technique, had the highest success rate, and when combined with the HER
technique, it reached 97%. When applying the proposed techniques, it was possible to find
policies with relatively higher completeness than in other cases. In addition, it can be said
that Case 3 and the proposed method have the best success rate even when driving in a
real environment that is different from the learning environment, helping to find policies
that can adapt to changes in the environment.

Table 1. Test-driving results for all cases in the simulation and the real world.

Case 1 Case 2 Case 3 Case 4 Proposed Method

Training success 0% 40% 50% 30% 80%
Test in simulation 0% 91% 99% 72% 97%
Test in real-world 0% 90% 95% 5% 95%

Remark 2: Based on the experimental results, the proposed method is effective in
determining the optimal policy for advanced autonomous driving in dynamic environ-
ments. The contribution of this study lies in demonstrating the potential for enhancing
autonomous driving in dynamic environments by incorporating both destination and obsta-
cle information using multifunctional reward-shaping techniques. Moreover, the proposed
scheme implements both HER and multifunctional reward-shaping techniques, which have
not been simultaneously deployed in previous studies. In particular, we implemented the
reward-shaping technique to assist in achieving objectives and sub-objectives even during
ongoing episodes and utilized the HER technique to balance data between failure and
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success cases. Consequently, the proposed method successfully determined the optimal
policy in most experimental cases.

5. Discussion

In the field of autonomous mobile robot navigation, the primary goal is to reach the
destination while avoiding obstacles. The techniques based on SLAM have successfully
implemented autonomous navigation in indoor environments by relying on pre-mapped
surrounding information. However, it faces limitations when unexpected dynamic obsta-
cles appear or when there are changes in the internal elements of the indoor environment,
necessitating map reconstruction. Research is underway to apply reinforcement learning to
the autonomous driving of mobile robots. In the other study, reward shaping was applied
with the DDPG, but there was a need for improvement in adaptability to dynamic obstacles.
To address this limitation, this study proposes a technique that simultaneously applies
the HER and multifunctional reward shaping. The objective is to achieve autonomous
driving by effectively handling dynamic obstacles. Verification through test-driving in both
simulation and real-world environments demonstrates the effectiveness of our approach.
The HER proves valuable by generating successful experiences from failed ones, addressing
the imbalance in experience data, and aiding in finding optimal policies. The multifunc-
tional reward shaping continuously provides information about the goal and obstacles,
facilitating in finding policies that avoid obstacles while reaching the destination. The
training success rate of our proposed technique reached 80%, showcasing its effectiveness.
From the perspective of overall driving success, our method achieved a success rate of over
95% in both simulation and real-world test driving, validating its effectiveness. Notably,
despite differences in the composition of the training and real-world environments, the
95% navigation success rate achieved highlights the adaptability of the reinforcement
learning-based autonomous driving technique to environmental changes.

Compared to SLAM techniques, our proposed approach exhibits advantages in en-
vironmental adaptability. This study demonstrates that intuitive ideas, such as those
presented in our technique, can enhance performance and offer advantages in terms of
implementation complexity. This underscores the adaptability of reinforcement learning-
based autonomous driving technology to dynamic environmental changes.

6. Conclusions

We propose a technique that adopts the concepts of both multifunctional reward-
shaping and HER to implement the autonomous driving of a mobile robot based on
reinforcement learning in a dynamic environment. Reward shaping is used to design a
reward system that induces actions to reach a destination while avoiding obstacles. The
specific reward system was constructed by designing functions that provide information
about the destination and obstacles, respectively. In addition, to balance the experiences of
failure and success, we implemented the HER, which generates success experiences from
failure experiences. Therefore, the proposed method addresses the sparse reward problem
and aids in finding the adaptive optimal policy in dynamic environments. The proposed
approach, combining the reward shaping and HER techniques, was validated through
simulation and real-world test-driving, demonstrating its effectiveness in finding optimal
policies. In particular, the proposed method demonstrated effectiveness in finding adapt-
able optimal policies, as evidenced by the high success rate in real-world environments
different from the training setting.
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