Using the Grey Wolf Aquila Synergistic Algorithm for Design Problems in Structural Engineering
Abstract
:1. Introduction
- Based on the Grey Wolf alpha position, the Aquila Optimizer has been improved, so that its exploration ability is increased.
- Then, the quasi-oppositional-based learning strategy is used in each phase of the Aquila Optimizer to direct the search process of the AO algorithm.
- The performance of our method on 23 classical functions and 29 CEC2017 functions is examined and compared with the performances of the other 10 algorithms while considering different dimensions.
- Four engineering design challenges are utilized to evaluate the effectiveness of our proposed method to solve practical situations.
2. Background
2.1. Aquila Optimizer
2.1.1. Expanded Exploration
2.1.2. Narrowed Exploration
2.1.3. Expanded Exploitation
2.1.4. Narrowed Exploitation
Algorithm 1 Aquila Optimizer |
, max_iter, etc.) where nPop refers to population size, max_iter to the maximum number of iterations. Determine the starting position at random. While (Iteration < max_iter) do Determine the fitness of early positions. As , identify the best individual with the finest fitness values. For (i = 1: nPop) Updated variables include If then If Execute Expanded Exploration using Equation (1) Else Execute Narrowed Exploration using Equation (3) End Else If Execute Expanded Exploitation using Equation (8) Else Execute Narrowed Exploitation using Equation (9) End If End If End for End while Record best solution |
2.2. Grey Wolf Optimizer
- The alpha wolf is regarded as the dominating wolf in the pack, and his/her orders should be followed by the pack members.
- Beta wolves are subordinate wolves, which support the alpha wolf in decision making, and they are considered the best prospects to be the alpha wolf.
- Delta wolves have to surrender to the alpha and beta, but they rule the omega.
- Omega wolves are regarded as the scapegoats in the pack, they are the least important individuals in the pack, and they are only allowed to feed last.
2.2.1. Encircling the Prey
2.2.2. Hunting the Prey
2.2.3. Attacking the Prey (Exploitation Phase)
2.2.4. Searching the Prey (Exploration Phase)
Algorithm 2 Grey Wolf Optimizer |
Set Initial values of parameters (nPop, max_iter, ub, and lb) Use ub and lb to generate the starting locations for the grey wolves. Initialize Calculate each grey wolf’s fitness level. The grey wolf with the highest level of fitness is the . The grey wolf with the second-highest fitness level is . The grey wolf with the third highest fitness is called . While (Iteration < max iteration) for (i = 1: nPop) do Report the current location of the grey wolf by using Equation (20) end for Update , , . Calculate each search agent’s fitness. Return while updating , . |
2.3. Opposition-Based Learning and Quasi-Opposition-Based Learning
Algorithm 3 Quasi-Oppositional-Based Learning |
Set Initial values of parameters (nPop, nVar, initial population u, lb, ub) For i = 1: nPop For j = 1: nVar %Inverting the current population If %Creating Quasi Opposite of Population Else End End End |
3. Proposed Framework
Algorithm 4 GAOA |
Set Initial values of parameters (nPop, max_iter, ub, and lb, nVar, ) Initialize Population Randomly While (Iteration < Max iterations) do Determine the fitness of each wolf. Evaluate the alpha position by using the GWO algorithm If If Execute Expanded Exploration by using alpha position in Equation (1) Execute QOBL Else Execute Narrowed Exploration by using alpha position in Equation (3) Execute QOBL End If Else If Execute Expanded Exploitation by using alpha position in Equation (8) Execute QOBL Else Execute Narrowed Exploitation by using the alpha position in Equation (9) Execute QOBL End If End If End while Record best solution |
4. Experimental Results and Analysis
4.1. Experimental Settings
- The average and standard deviation of the optimization errors between the obtained and known real optimal values are used. All objective functions are minimization issues; hence, the best values, or minimum mean values, are denoted in bold.
- Non-parametric statistical tests, such as the Wilcoxon rank-sum test, are used to compare the p-value and the significance level (0.05) between the suggested algorithm and the compared method [67,68]. There is a substantial difference between the two algorithms when the p-value is less than 0.05. W/T/L denotes the number of wins, ties, and losses the given algorithm has experienced in comparison to its rival.
- Another non-parametric statistical test that is employed is the Friedman test [69]. As test data, the average optimization error values are employed. The algorithm performs better when the Friedman rank value is lower. The minimum value is bolded to draw attention to it.
- By exhibiting the pairwise variations in the ranks for each method at each dimension, the Bonferroni–Dunn diagram demonstrates the discrepancies between the rankings achieved for each algorithm at dimensions of 30, 50, and 100. By deducting the rank of one algorithm from the rank of another algorithm, the pairwise differences in the rankings are determined. Each bar in the Bonferroni–Dunn image represents the average pairwise difference in ranks for a particular algorithm at a particular dimension. Usually, the bars are color-coded to represent various algorithms.
- Convergence graphs are used to provide a simple visual representation of the algorithm’s accuracy and speed of convergence. It explains if the enhanced algorithm breaks away from the local solution.
4.2. Competitive Algorithms Comparison
4.3. Complexity of the Algorithm
5. GAOA for Engineering Design Problems
5.1. Pressure Vessel Design Problem
5.2. Tension Spring Design Problem
5.3. Three-Bar Truss Design Problem
5.4. Speed Reducer Problem
5.5. Cantilever Beam Design
6. Conclusions
- This article introduces the GAOA, which is the modification of the entire Aquila Optimizer (AO). To improve the GAOA’s capacities for exploration and exploitation, a mutation opposition-based learning strategy is used.
- Then, 23 classical benchmark functions and the CEC 2017 benchmark test functions are used to assess the GAOA’s performance and examine its exploration capability, exploitation capability, and ability to avoid stagnation. The experimental results highlight the GAOA’s better performance and competitive benefits compared to other cutting-edge metaheuristic algorithms.
- Five engineering design challenges are successfully solved using the algorithm, further demonstrating its superiority to previous metaheuristic algorithms. The suggested GAOA handles complex benchmark functions and limited engineering issues with surprising effectiveness.
- The GAOA has the potential to be used in the future for a variety of practical optimization issues, such as problems in multi-objective, feature selection, multi-threshold image segmentation, convolutional neural networks, and NP-hard issues.
7. Future Scope
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Houssein, E.H.; Saad, M.R.; Hussain, K.; Zhu, W.; Shaban, H.; Hassaballah, M. Optimal Sink Node Placement in Large Scale Wireless Sensor Networks Based on Harris’ Hawk Optimization Algorithm. IEEE Access 2020, 8, 19381–19397. [Google Scholar] [CrossRef]
- Agbaje, M.B.; Ezugwu, A.E.; Els, R. Automatic Data Clustering Using Hybrid Firefly Particle Swarm Optimization Algorithm. IEEE Access 2019, 7, 184963–184984. [Google Scholar] [CrossRef]
- Qiuyun, T.; Hongyan, S.; Hengwei, G.; Ping, W. Improved Particle Swarm Optimization Algorithm for AGV Path Planning. IEEE Access 2021, 9, 33522–33531. [Google Scholar] [CrossRef]
- Zhao, F.; Ma, R.; Wang, L. A Self-Learning Discrete Jaya Algorithm for Multiobjective Energy-Efficient Distributed No-Idle Flow-Shop Scheduling Problem in Heterogeneous Factory System. IEEE Trans. Cybern. 2022, 52, 12675–12686. [Google Scholar] [CrossRef]
- Zhao, F.; He, X.; Wang, L. A Two-Stage Cooperative Evolutionary Algorithm With Problem-Specific Knowledge for Energy-Efficient Scheduling of No-Wait Flow-Shop Problem. IEEE Trans. Cybern. 2021, 51, 5291–5303. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A. A Comprehensive Survey of the Grasshopper Optimization Algorithm: Results, Variants, and Applications. Neural Comput. Appl. 2020, 32, 15533–15556. [Google Scholar] [CrossRef]
- Ezugwu, A.E.; Shukla, A.K.; Nath, R.; Akinyelu, A.A.; Agushaka, J.O.; Chiroma, H.; Muhuri, P.K. Metaheuristics: A Comprehensive Overview and Classification along with Bibliometric Analysis. Artif. Intell. Rev. 2021, 54, 4237–4316. [Google Scholar] [CrossRef]
- Tang, J.; Liu, G.; Pan, Q. A Review on Representative Swarm Intelligence Algorithms for Solving Optimization Problems: Applications and Trends. IEEE/CAA J. Autom. Sin. 2021, 8, 1627–1643. [Google Scholar] [CrossRef]
- Hare, W.; Nutini, J.; Tesfamariam, S. A Survey of Non-Gradient Optimization Methods in Structural Engineering. Adv. Eng. Softw. 2013, 59, 19–28. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A. Advances in Sine Cosine Algorithm: A Comprehensive Survey. Artif. Intell. Rev. 2021, 54, 2567–2608. [Google Scholar] [CrossRef]
- Fonseca, C.M.; Fleming, P.J. An Overview of Evolutionary Algorithms in Multiobjective Optimization. Evol. Comput. 1995, 3, 1–16. [Google Scholar] [CrossRef]
- Krause, J.; Cordeiro, J.; Parpinelli, R.S.; Lopes, H.S. A Survey of Swarm Algorithms Applied to Discrete Optimization Problems. In Swarm Intelligence and Bio-Inspired Computation; Elsevier: Amsterdam, The Netherlands, 2013; pp. 169–191. [Google Scholar]
- Biswas, A.; Mishra, K.K.; Tiwari, S.; Misra, A.K. Physics-Inspired Optimization Algorithms: A Survey. J. Optim. 2013, 2013, 438152. [Google Scholar] [CrossRef]
- Kosorukoff, A. Human Based Genetic Algorithm. In Proceedings of the 2001 IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat.No.01CH37236), Tucson, AZ, USA, 7–10 October 2001; IEEE: New York, NY, USA, 2001; pp. 3464–3469. [Google Scholar]
- Eiben, A.E.; Smith, J. From Evolutionary Computation to the Evolution of Things. Nature 2015, 521, 476–482. [Google Scholar] [CrossRef]
- Boussaïd, I.; Lepagnot, J.; Siarry, P. A Survey on Optimization Metaheuristics. Inf. Sci. 2013, 237, 82–117. [Google Scholar] [CrossRef]
- Yu, Y.; Lei, Z.; Wang, Y.; Zhang, T.; Peng, C.; Gao, S. Improving Dendritic Neuron Model With Dynamic Scale-Free Network-Based Differential Evolution. IEEE/CAA J. Autom. Sin. 2022, 9, 99–110. [Google Scholar] [CrossRef]
- Hong, W.-J.; Yang, P.; Tang, K. Evolutionary Computation for Large-Scale Multi-Objective Optimization: A Decade of Progresses. Int. J. Autom. Comput. 2021, 18, 155–169. [Google Scholar] [CrossRef]
- Jiang, Y.; Luo, Q.; Wei, Y.; Abualigah, L.; Zhou, Y. An Efficient Binary Gradient-Based Optimizer for Feature Selection. Math. Biosci. Eng. 2021, 18, 3813–3854. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, S.; Zhou, M.; Abusorrah, A. Dual-Objective Mixed Integer Linear Program and Memetic Algorithm for an Industrial Group Scheduling Problem. IEEE/CAA J. Autom. Sin. 2021, 8, 1199–1209. [Google Scholar] [CrossRef]
- Yousri, D.; Abd Elaziz, M.; Abualigah, L.; Oliva, D.; Al-qaness, M.A.A.; Ewees, A.A. COVID-19 X-Ray Images Classification Based on Enhanced Fractional-Order Cuckoo Search Optimizer Using Heavy-Tailed Distributions. Appl. Soft Comput. 2021, 101, 107052. [Google Scholar] [CrossRef]
- Miikkulainen, R.; Forrest, S. A Biological Perspective on Evolutionary Computation. Nat. Mach. Intell. 2021, 3, 9–15. [Google Scholar] [CrossRef]
- Ji, J.; Gao, S.; Cheng, J.; Tang, Z.; Todo, Y. An Approximate Logic Neuron Model with a Dendritic Structure. Neurocomputing 2016, 173, 1775–1783. [Google Scholar] [CrossRef]
- Holland, J.H. Genetic Algorithms. Sci. Am. 1992, 267, 66–72. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution- A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Yang, X.; Hossein Gandomi, A. Bat Algorithm: A Novel Approach for Global Engineering Optimization. Eng. Comput. 2012, 29, 464–483. [Google Scholar] [CrossRef]
- Passino, K.M. Bacterial Foraging Optimization. Int. J. Swarm Intell. Res. 2010, 1, 1–16. [Google Scholar] [CrossRef]
- Dasgupta, D. Artificial Immune Systems and Their Applications; Springer: Berlin/Heidelberg, Germany, 1999; ISBN 978-3-642-64174-9. [Google Scholar]
- Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-qaness, M.A.A.; Gandomi, A.H. Aquila Optimizer: A Novel Meta-Heuristic Optimization Algorithm. Comput. Ind. Eng. 2021, 157, 107250. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Abualigah, L.; Elaziz, M.A.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A Nature-Inspired Meta-Heuristic Optimizer. Expert Syst. Appl. 2022, 191, 116158. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. Proc. IEEE Int. Conf. Neural Netw. 1995, 4, 1942–1948. [Google Scholar]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A Bio-Inspired Optimizer for Engineering Design Problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A Sine Cosine Algorithm for Solving Optimization Problems. Knowl. Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Jia, H.; Lang, C.; Oliva, D.; Song, W.; Peng, X. Dynamic Harris Hawks Optimization with Mutation Mechanism for Satellite Image Segmentation. Remote Sens. 2019, 11, 1421. [Google Scholar] [CrossRef]
- Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Bayraktar, Z.; Komurcu, M.; Werner, D.H. Wind Driven Optimization (WDO): A Novel Nature-Inspired Optimization Algorithm and Its Application to Electromagnetics. In Proceedings of the 2010 IEEE Antennas and Propagation Society International Symposium, Toronto, ON, USA, 11–17 July 2010; pp. 1–4. [Google Scholar]
- Zhao, W.; Wang, L.; Zhang, Z. A Novel Atom Search Optimization for Dispersion Coefficient Estimation in Groundwater. Futur. Gener. Comput. Syst. 2019, 91, 601–610. [Google Scholar] [CrossRef]
- Rao, R.V.; Savsani, V.J.; Balic, J. Teaching–Learning-Based Optimization Algorithm for Unconstrained and Constrained Real-Parameter Optimization Problems. Eng. Optim. 2012, 44, 1447–1462. [Google Scholar] [CrossRef]
- Samareh Moosavi, S.H.; Bardsiri, V.K. Poor and Rich Optimization Algorithm: A New Human-Based and Multi Populations Algorithm. Eng. Appl. Artif. Intell. 2019, 86, 165–181. [Google Scholar] [CrossRef]
- Jia, H.; Sun, K.; Zhang, W.; Leng, X. An Enhanced Chimp Optimization Algorithm for Continuous Optimization Domains. Complex Intell. Syst. 2022, 8, 65–82. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
- Fan, Q.; Chen, Z.; Xia, Z. A Novel Quasi-Reflected Harris Hawks Optimization Algorithm for Global Optimization Problems. Soft Comput. 2020, 24, 14825–14843. [Google Scholar] [CrossRef]
- Mohamed, A.a.; Abualigah, L.; Alburaikan, A.; Khalifa, H.A.E.-W. AOEHO: A New Hybrid Data Replication Method in Fog Computing for IoT Application. Sensors 2023, 23, 2189. [Google Scholar] [CrossRef] [PubMed]
- Nirmalapriya, G.; Agalya, V.; Regunathan, R.; Belsam Jeba Ananth, M. Fractional Aquila Spider Monkey Optimization Based Deep Learning Network for Classification of Brain Tumor. Biomed. Signal Process. Control 2023, 79, 104017. [Google Scholar] [CrossRef]
- Perumalla, S.; Chatterjee, S.; Kumar, A.P.S. Modelling of Oppositional Aquila Optimizer with Machine Learning Enabled Secure Access Control in Internet of Drones Environment. Theor. Comput. Sci. 2023, 941, 39–54. [Google Scholar] [CrossRef]
- AlRassas, A.M.; Al-qaness, M.A.A.; Ewees, A.A.; Ren, S.; Abd Elaziz, M.; Damaševičius, R.; Krilavičius, T. Optimized ANFIS Model Using Aquila Optimizer for Oil Production Forecasting. Processes 2021, 9, 1194. [Google Scholar] [CrossRef]
- Duan, J.; Zuo, H.; Bai, Y.; Chang, M.; Chen, X.; Wang, W.; Ma, L.; Chen, B. A Multistep Short-Term Solar Radiation Forecasting Model Using Fully Convolutional Neural Networks and Chaotic Aquila Optimization Combining WRF-Solar Model Results. Energy 2023, 271, 126980. [Google Scholar] [CrossRef]
- Ramamoorthy, R.; Ranganathan, R.; Ramu, S. An Improved Aquila Optimization with Fuzzy Model Based Energy Efficient Cluster Routing Protocol for Wireless Sensor Networks. Yanbu J. Eng. Sci. 2022, 19, 51–61. [Google Scholar] [CrossRef]
- Huang, C.; Huang, J.; Jia, Y.; Xu, J. A Hybrid Aquila Optimizer and Its K-Means Clustering Optimization. Trans. Inst. Meas. Control 2023, 45, 557–572. [Google Scholar] [CrossRef]
- Ekinci, S.; Izci, D.; Abualigah, L. A Novel Balanced Aquila Optimizer Using Random Learning and Nelder–Mead Simplex Search Mechanisms for Air–Fuel Ratio System Control. J. Braz. Soc. Mech. Sci. Eng. 2023, 45, 68. [Google Scholar] [CrossRef]
- Alangari, S.; Obayya, M.; Gaddah, A.; Yafoz, A.; Alsini, R.; Alghushairy, O.; Ashour, A.; Motwakel, A. Wavelet Mutation with Aquila Optimization-Based Routing Protocol for Energy-Aware Wireless Communication. Sensors 2022, 22, 8508. [Google Scholar] [CrossRef]
- Das, T.; Roy, R.; Mandal, K.K. A Novel Weighted Adaptive Aquila Optimizer Technique for Solving the Optimal Reactive Power Dispatch Problem. 2022; preprint. [Google Scholar] [CrossRef]
- Baş, E. Binary Aquila Optimizer for 0–1 Knapsack Problems. Eng. Appl. Artif. Intell. 2023, 118, 105592. [Google Scholar] [CrossRef]
- Sasmal, B.; Hussien, A.G.; Das, A.; Dhal, K.G. A Comprehensive Survey on Aquila Optimizer. Arch. Comput. Methods Eng. 2023, 30, 4449–4476. [Google Scholar] [CrossRef] [PubMed]
- Faris, H.; Aljarah, I.; Al-Betar, M.A.; Mirjalili, S. Grey Wolf Optimizer: A Review of Recent Variants and Applications. Neural Comput. Appl. 2018, 30, 413–435. [Google Scholar] [CrossRef]
- Tizhoosh, H.R. Opposition-Based Learning: A New Scheme for Machine Intelligence. In Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 28–30 November 2005; pp. 695–701. [Google Scholar]
- Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M.A. Opposition-Based Differential Evolution. IEEE Trans. Evol. Comput. 2008, 12, 64–79. [Google Scholar] [CrossRef]
- Debnath, M.K.; Kar, S.K.; Tripathy, S. Optimal Design of PI/PD Dual Mode Controller Based on Quasi Opposition-Based Learning for Power System Frequency Control. Adv. Electr. Eng. Electron. Energy 2023, 4, 100135. [Google Scholar] [CrossRef]
- Ahandani, M.A.; Abbasfam, J.; Kharrati, H. Parameter Identification of Permanent Magnet Synchronous Motors Using Quasi-Opposition-Based Particle Swarm Optimization and Hybrid Chaotic Particle Swarm Optimization Algorithms. Appl. Intell. 2022, 52, 13082–13096. [Google Scholar] [CrossRef]
- Wu, G.; Mallipeddi, R.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Competition and Special Session on Constrained Single Objective Real-Parameter Optimization; National University of Defense Technology: Changsha, China; Kyungpook National University: Daegu, Republic of Korea; Nanyang Technological University: Singapore, 2016. [Google Scholar]
- Sen, Z.; Yongguan, Z.; Zhiming, L.; Wei, P. Grey Wolf Optimizer for unmanned combat aerial vehicle path planning. Adv. Eng. Softw. 2016, 99, 121–136. [Google Scholar]
- Zhang, S.; Luo, Q.; Zhou, Y. Hybrid Grey Wolf Optimizer Using Elite Opposition-Based Learning Strategy and Simplex Method. Int. J. Comput. Intell. Appl. 2017, 1750012, 16. [Google Scholar]
- Rahnamayan, S.; Wang, G.G.; Ventresca, M. An Intuitive Distance-Based Explanation of Opposition-Based Sampling. Appl. Soft Comput. 2012, 12, 2828–2839. [Google Scholar] [CrossRef]
- Tizhoosh, H.R.; Ventresca, M.; Rahnamayan, S. Opposition-Based Computing. In Oppositional Concepts in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2008; pp. 11–28. [Google Scholar]
- García, S.; Molina, D.; Lozano, M.; Herrera, F. A Study on the Use of Non-Parametric Tests for Analyzing the Evolutionary Algorithms’ Behaviour: A Case Study on the CEC’2005 Special Session on Real Parameter Optimization. J. Heuristics 2009, 15, 617–644. [Google Scholar] [CrossRef]
- García, S.; Fernández, A.; Luengo, J.; Herrera, F. Advanced Nonparametric Tests for Multiple Comparisons in the Design of Experiments in Computational Intelligence and Data Mining: Experimental Analysis of Power. Inf. Sci. 2010, 180, 2044–2064. [Google Scholar] [CrossRef]
- Luengo, J.; García, S.; Herrera, F. A Study on the Use of Statistical Tests for Experimentation with Neural Networks: Analysis of Parametric Test Conditions and Non-Parametric Tests. Expert Syst. Appl. 2009, 36, 7798–7808. [Google Scholar] [CrossRef]
- Ali, M.H.; Salawudeen, A.T.; Kamel, S.; Salau, H.B.; Habil, M.; Shouran, M. Single- and Multi-Objective Modified Aquila Optimizer for Optimal Multiple Renewable Energy Resources in Distribution Network. Mathematics 2022, 10, 2129. [Google Scholar] [CrossRef]
- Carrasco, J.; García, S.; Rueda, M.M.; Das, S.; Herrera, F. Recent Trends in the Use of Statistical Tests for Comparing Swarm and Evolutionary Computing Algorithms: Practical Guidelines and a Critical Review. Swarm Evol. Comput. 2020, 54, 100665. [Google Scholar] [CrossRef]
- Jia, H.; Rao, H.; Wen, C.; Mirjalili, S. Crayfish Optimization Algorithm. Artif. Intell. 2023, 56, 1919–1979. [Google Scholar]
- Jia, H.; Peng, X.; Lang, C. Remora Optimization Algorithm. Expert Syst. Appl. 2021, 185, 115665. [Google Scholar]
- Precup, R.E.; David, R.C.; Roman, R.C.; Petriu, E.M.; Szedlak-Stinean, A.I. Slime Mould Algorithm-Based Tuning of Cost-Effective Fuzzy Controllers for Servo Systems. Int. J. Comput. Intell. Syst. 2021, 14, 1042. [Google Scholar] [CrossRef]
- Wang, S.; Hussien, A.; Jia, H. Enhance Remora Optimization Algorithm for Solving Constrained Engineering Optimization Problems. Mathematics 2022, 10, 1696. [Google Scholar] [CrossRef]
- Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper Optimisation Algorithm: Theory and Application. Adv. Eng. Software. 2017, 105, 30–47. [Google Scholar]
- Mirjalili, S. The Ant Lion Optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [Google Scholar] [CrossRef]
Evolution-Inspired | Genetic Algorithm (GA) [24] Differential Evolution (DE) [25] Bat Algorithm (BA) [26] Bacterial Foraging Optimization (BFO) [27] Artificial Immune System (AIS) [28] |
Swarm-Inspired | Aquila Optimizer (AO) [29] Grey Wolf Optimizer (GWO) [30] Whale Optimization Algorithm (WOA) [31] Reptile Search Algorithm (RSA) [32] Particle Swarm Optimization (PSO) [33] Salp Swarm Algorithm (SSA) [34] Sine Cosine Algorithm (SCA) [35] Dynamic Harris Hawks Optimization (DHHO) [36] |
Physics-Inspired | Gravitational Search Algorithm (GSA) [37] Wind Driven Optimization (WDO) [38] Atom Search Optimization (ASO) [39] |
Human-Inspired | Teaching–Learning-Based Optimization (TLBO) [40] Poor and Rich Optimization (PRO) [41] |
Algorithm | Parameters |
---|---|
GAOA | |
MAO | |
AO | |
GWO | |
SCA | |
RSA | |
WOA | |
SSA |
Function | GAOA | MAO | AO | GWO | SCA | RSA | WOA | SSA |
---|---|---|---|---|---|---|---|---|
F1 Mean STD | 2.512 × 103 3.401 × 103 | 3.641 × 103 4.381 × 103 | 1.511 × 109 7.720 × 109 | 9.328 × 108 8.157 × 108 | 1.661 × 107 8.017 × 107 | 5.384 × 10 9.292 × 109 | 2.826 × 107 1.911 × 107 | 2.410 × 103 2.501 × 103 |
F3 Mean STD | 5.501 × 101 4.013 × 101 | 4.823 × 100 1.101 × 101 | 5.731 × 104 3.812 × 104 | 2.803 × 104 8.092 × 103 | 2.429 × 103 4.748 × 103 | 7.423 × 104 5.505 × 104 | 1.642 × 104 6.126 × 105 | 3.001 × 101 1.710 × 102 |
F4 Mean STD | 3.103 × 101 3.571 × 101 | 4.579 × 101 3.631 × 101 | 6.081 × 102 1.433 × 103 | 1.442 × 102 3.276 × 101 | 4.581 × 102 3.170 × 102 | 1.455 × 104 4.561 × 103 | 1.588 × 102 4.127 × 101 | 9.495 × 101 2.001 × 101 |
F5 Mean STD | 6.071 × 101 1.581 × 101 | 1.642 × 102 4.233 × 101 | 2.911 × 102 8.777 × 101 | 9.191 × 101 2.354 × 101 | 1.457 × 102 4.729 × 101 | 3.891 × 102 3.309 × 101 | 2.743 × 102 5.211 × 101 | 2.038 × 102 4.101 × 101 |
F6 Mean STD | 2.091 × 100 3.030 × 10−1 | 1.871 × 101 1.102 × 101 | 6.241 × 101 1.873 × 101 | 4.693 × 100 3.004 × 100 | 2.502 × 101 8.602 × 100 | 8.634 × 101 7.461 × 100 | 6.627 × 101 9.812 × 100 | 5.316 × 101 6.414 × 100 |
F7 Mean STD | 1.100 × 102 2.710 × 101 | 2.611 × 102 7.001 × 101 | 4.799 × 102 1.533 × 102 | 1.474 × 102 3.596 × 101 | 2.569 × 102 5.750 × 101 | 6.725 × 102 6.730 × 101 | 5.470 × 102 9.151 × 101 | 5.110 × 102 1.011 × 102 |
F8 Mean STD | 6.812 × 101 2.251 × 101 | 1.190 × 102 3.460 × 101 | 2.122 × 102 8.900 × 101 | 8.182 × 101 2.299 × 101 | 1.273 × 102 2.980 × 101 | 3.116 × 102 2.206 × 101 | 2.031 × 102 5.167 × 101 | 1.451 × 102 3.211 × 101 |
F9 Mean STD | 4.485 × 101 4.790 × 101 | 2.304 × 103 1.152 × 103 | 7.801 × 103 3.310 × 103 | 4.242 × 102 2.347 × 102 | 3.154 × 103 1.325 × 103 | 8.533 × 103 1.196 × 103 | 6.089 × 103 2.090 × 103 | 3.411 × 103 6.754 × 102 |
F10 Mean STD | 3.430 × 103 5.75 × 102 | 3.660 × 103 6.391 × 102 | 6.411 × 103 1.734 × 103 | 2.909 × 103 7.536 × 102 | 3.524 × 103 7.312 × 102 | 7.021 × 103 3.593 × 102 | 5.121 × 103 8.401 × 102 | 4.211 × 103 6.081 × 102 |
F11 Mean STD | 6.901 × 101 2.791 × 101 | 8.771 × 101 3.543 × 101 | 2.031 × 103 2.331 × 103 | 3.375 × 102 3.685 × 102 | 3.566 × 102 2.507 × 102 | 7.770 × 103 2.806 × 103 | 4.111 × 102 1.331 × 102 | 1.378 × 102 4.511 × 101 |
F12 Mean STD | 4.531 × 104 2.510 × 104 | 6.078 × 104 2.860 × 104 | 3.713 × 108 9.301 × 108 | 3.088 × 107 5.277 × 107 | 8.585 × 107 1.659 × 108 | 1.703 × 1010 4.663 × 109 | 3.911 × 107 3.199 × 107 | 1.614 × 106 8.094 × 105 |
F13 Mean STD | 7.900 × 103 8.512 × 103 | 1.311 × 104 1.431 × 104 | 4.823 × 108 1.011 × 109 | 6.233 × 105 3.575 × 106 | 1.201 × 107 4.615 × 107 | 1.187 × 1010 4.906 × 109 | 1.297 × 105 1.194 × 105 | 5.216 × 104 2.340 × 104 |
F14 Mean STD | 1.463 × 103 1.501 × 103 | 2.810 × 103 3.311 × 103 | 6.001 × 105 6.399 × 105 | 1.484 × 105 2.439 × 105 | 1.356 × 105 2.768 × 105 | 3.074 × 106 3.588 × 106 | 7.001 × 105 6.901 × 105 | 4.170 × 103 3.152 × 103 |
F15 Mean STD | 2.911 × 103 3.221 × 103 | 7.241 × 103 9.211 × 103 | 2.412 × 107 5.101 × 107 | 9.164 × 104 2.899 × 105 | 2.104 × 105 1.366 × 106 | 6.736 × 108 5.747 × 108 | 7.581 × 104 5.291 × 104 | 3.112 × 104 2.122 × 104 |
F16 Mean STD | 7.605 × 102 2.751 × 102 | 9.101 × 102 2.300 × 102 | 2.092 × 103 8.831 × 102 | 7.493 × 102 2.635 × 102 | 1.328 × 103 3.729 × 102 | 3.898 × 103 6.862 × 102 | 2.005 × 103 4.610 × 102 | 1.504 × 103 3.314 × 102 |
F17 Mean STD | 1.742 × 102 1.100 × 102 | 4.563 × 102 2.204 × 102 | 9.123 × 102 4.001 × 102 | 2.779 × 102 1.651 × 102 | 5.103 × 102 2.027 × 102 | 5.306 × 103 6.866 × 103 | 7.780 × 102 2.780 × 102 | 8.120 × 102 2.401 × 102 |
F18 Mean STD | 8.014 × 104 4.841 × 104 | 8.612 × 104 3.800 × 104 | 6.833 × 106 9.212 × 106 | 6.210 × 105 5.727 × 105 | 6.259 × 105 2.004 × 106 | 3.277 × 107 3.071 × 107 | 2.940 × 106 2.656 × 106 | 1.120 × 105 1.001 × 105 |
F19 Mean STD | 5.611 × 103 6.400 × 103 | 8.194 × 103 9.885 × 103 | 3.514 × 107 7.989 × 107 | 8.827 × 105 1.949 × 106 | 1.493 × 104 1.536 × 104 | 2.323 × 109 1.694 × 109 | 2.747 × 106 2.061 × 106 | 1.301 × 105 5.361 × 104 |
F20 Mean STD | 2.100 × 102 8.214 × 101 | 4.501 × 102 1.824 × 102 | 7.711 × 102 1.981 × 102 | 3.404 × 102 1.337 × 102 | 6.274 × 102 2.118 × 102 | 8.636 × 102 1.426 × 102 | 7.130 × 102 2.025 × 102 | 7.219 × 102 2.015 × 102 |
F21 Mean STD | 2.462 × 102 1.610 × 101 | 3.101 × 102 3.341 × 101 | 4.612 × 102 1.154 × 102 | 2.834 × 102 2.986 × 101 | 3.351 × 102 4.075 × 101 | 6.431 × 102 4.269 × 101 | 4.510 × 102 5.431 × 101 | 4.004 × 102 4.051 × 101 |
F22 Mean STD | 1.010 × 102 6.702 × 10−1 | 1.114 × 102 1.113 × 100 | 5.511 × 102 1.304 × 103 | 1.762 × 103 1.485 × 103 | 2.591 × 103 2.065 × 103 | 5.253 × 103 1.008 × 103 | 4.401 × 103 2.103 × 103 | 4.001 × 103 1.701 × 103 |
F23 Mean STD | 4.214 × 102 2.750 × 101 | 4.923 × 102 3.701 × 101 | 8.330 × 102 1.502 × 102 | 4.321 × 102 2.277 × 101 | 6.291 × 102 1.227 × 102 | 1.039 × 103 1.089 × 102 | 7.206 × 102 9.760 × 101 | 9.991 × 102 1.013 × 102 |
F24 Mean STD | 5.016 × 102 3.011 × 101 | 5.712 × 102 5.281 × 101 | 8.700 × 102 1.711 × 102 | 5.032 × 102 4.536 × 101 | 7.538 × 102 1.073 × 102 | 1.177 × 103 2.453 × 102 | 7.810 × 102 8.921 × 101 | 1.004 × 103 9.711 × 101 |
F25 Mean STD | 3.212 × 102 2.310 × 100 | 4.011 × 102 1.910 × 101 | 6.799 × 102 5.582 × 102 | 4.570 × 102 2.613 × 101 | 5.397 × 102 1.008 × 102 | 2.224 × 103 8.605 × 102 | 4.500 × 102 3.001 × 101 | 4.101 × 102 9.110 × 100 |
F26 Mean STD | 1.302 × 103 9.812 × 102 | 2.041 × 103 1.511 × 103 | 3.341 × 103 2.261 × 103 | 1.837 × 103 3.100 × 102 | 3.121 × 103 1.143 × 103 | 7.933 × 103 1.124 × 103 | 4.912 × 103 9.810 × 102 | 5.832 × 103 1.112 × 103 |
F27 Mean STD | 5.322 × 102 1.876 × 101 | 5.711 × 102 2.821 × 101 | 9.114 × 102 1.990 × 102 | 5.326 × 102 1.520 × 101 | 8.132 × 102 9.760 × 101 | 9.409 × 102 2.313 × 102 | 6.499 × 102 6.500 × 101 | 1.204 × 103 2.510 × 102 |
F28 Mean STD | 3.120 × 102 4.670 × 101 | 3.406 × 102 5.676 × 101 | 7.651 × 102 8.041 × 102 | 5.472 × 102 5.758 × 101 | 7.495 × 102 2.564 × 102 | 3.985 × 103 8.850 × 102 | 5.001 × 102 3.121 × 101 | 3.854 × 102 5.120 × 101 |
F29 Mean STD | 6.821 × 102 1.512 × 102 | 9.094 × 102 2.071 × 102 | 2.041 × 103 6.110 × 102 | 7.531 × 102 1.339 × 102 | 1.322 × 103 4.000 × 102 | 4.146 × 103 1.609 × 103 | 2.001 × 103 4.100 × 102 | 1.520 × 103 3.701 × 102 |
F30 Mean STD | 4.811 × 103 2.123 × 103 | 6.001 × 103 2.612 × 103 | 5.601 × 107 8.344 × 107 | 5.504 × 106 5.643 × 106 | 1.681 × 106 4.255 × 106 | 2.239 × 109 9.259 × 108 | 9.787 × 106 6.828 × 106 | 5.371 × 105 3.104 × 105 |
(W/L/T) Average Rank | -/-/- 1.17 | 28/1/0 2.62 | 29/0/0 6.55 | 27/2/0 3.28 | 29/0/0 4.41 | 29/0/0 7.97 | 29/0/0 5.52 | 27/2/0 4.48 |
Function | GAOA | MAO | AO | GWO | SCA | RSA | WOA | SSA |
---|---|---|---|---|---|---|---|---|
F1 Mean STD | 3.667 × 103 4.401 × 103 | 5.365 × 103 5.327 × 103 | 7.360 × 109 2.171 × 1010 | 4.493 × 109 2.326 × 109 | 9.919 × 108 3.411 × 109 | 9.635 × 1010 9.884 × 109 | 8.668 × 106 8.653 × 106 | 6.232 × 103 5.212 × 103 |
F3 Mean STD | 2.912 × 104 5.334 × 103 | 1.624 × 104 4.453 × 103 | 2.041 × 105 4.305 × 104 | 7.261 × 104 1.523 × 104 | 4.166 × 104 5.777 × 104 | 1.487 × 105 1.042 × 104 | 6.664 × 104 3.301 × 104 | 5.412 × 102 7.890 × 102 |
F4 Mean STD | 9.332 × 101 5.876 × 101 | 9.010 × 101 5.124 × 101 | 1.528 × 103 4.977 × 103 | 4.341 × 102 1.771 × 102 | 3.289 × 103 1.935 × 103 | 2.710 × 104 6.760 × 103 | 3.101 × 102 7.122 × 101 | 1.711 × 102 4.724 × 101 |
F5 Mean STD | 1.621 × 102 3.990 × 101 | 3.304 × 102 3.742 × 101 | 4.251 × 102 1.586 × 102 | 1.922 × 102 5.205 × 101 | 3.091 × 102 6.603 × 101 | 6.336 × 102 2.898 × 101 | 4.235 × 102 8.622 × 101 | 3.266 × 102 4.253 × 101 |
F6 Mean STD | 4.359 × 100 4.566 × 100 | 3.900 × 101 1.127 × 101 | 8.072 × 101 1.928 × 101 | 1.019 × 101 3.623 × 100 | 3.588 × 101 8.211 × 100 | 9.827 × 101 4.680 × 100 | 7.823 × 101 1.124 × 101 | 6.011 × 101 4.134 × 100 |
F7 Mean STD | 2.481 × 102 5.343 × 101 | 6.432 × 102 1.432 × 102 | 9.171 × 102 1.878 × 102 | 3.037 × 102 6.764 × 101 | 6.691 × 102 1.175 × 102 | 1.302 × 103 5.902 × 101 | 1.110 × 103 9.324 × 101 | 1.142 × 103 1.421 × 102 |
F8 Mean STD | 1.678 × 102 4.734 × 101 | 3.352 × 102 5.221 × 101 | 5.012 × 102 1.882 × 102 | 1.852 × 102 3.069 × 101 | 3.035 × 102 6.896 × 101 | 6.791 × 102 2.650 × 101 | 4.424 × 102 9.601 × 101 | 3.422 × 102 4.754 × 101 |
F9 Mean STD | 8.113 × 102 6.756 × 102 | 8.370 × 103 2.628 × 103 | 3.127 × 104 1.240 × 104 | 3.551 × 103 2.143 × 103 | 1.151 × 104 3.209 × 103 | 3.204 × 104 2.580 × 103 | 2.012 × 104 4.745 × 103 | 1.143 × 104 1.324 × 103 |
F10 Mean STD | 6.212 × 103 1.012 × 103 | 6.646 × 103 8.435 × 102 | 1.173 × 104 3.014 × 103 | 3.551 × 103 2.143 × 103 | 5.973 × 103 1.019 × 103 | 1.315 × 104 4.800 × 102 | 8.650 × 103 1.342 × 103 | 7.251 × 103 8.125 × 102 |
F11 Mean STD | 1.365 × 102 3.434 × 101 | 1.657 × 102 3.951 × 101 | 6.883 × 103 8.539 × 103 | 1.789 × 103 1.152 × 103 | 4.105 × 103 4.079 × 103 | 1.682 × 104 2.846 × 103 | 5.012 × 102 1.126 × 102 | 2.131 × 102 4.236 × 101 |
F12 Mean STD | 5.465 × 105 3.254 × 105 | 7.611 × 105 4.842 × 105 | 4.109 × 109 1.312 × 1010 | 5.809 × 108 6.600 × 108 | 1.296 × 109 2.252 × 109 | 7.667 × 1010 1.708 × 1010 | 2.112 × 108 1.145 × 108 | 1.375 × 107 7.012 × 106 |
F13 Mean STD | 2.633 × 103 3.555 × 103 | 4.113 × 103 5.001 × 103 | 1.521 × 109 3.723 × 109 | 1.168 × 108 1.135 × 108 | 2.332 × 106 1.638 × 107 | 4.590 × 1010 1.270 × 1010 | 2.724 × 105 2.241 × 105 | 6.153 × 104 3.245 × 104 |
F14 Mean STD | 2.234 × 104 1.454 × 104 | 2.101 × 104 2.122 × 104 | 6.639 × 106 7.101 × 106 | 3.512 × 105 3.476 × 105 | 4.044 × 106 6.734 × 106 | 3.605 × 107 2.864 × 107 | 6.745 × 105 4.243 × 105 | 3.121 × 104 2.553 × 104 |
F15 Mean STD | 4.465 × 103 4.219 × 103 | 7.128 × 103 6.524 × 103 | 3.622 × 108 6.853 × 108 | 4.375 × 106 9.979 × 106 | 3.162 × 105 1.642 × 106 | 6.628 × 109 4.800 × 109 | 7.646 × 104 5.112 × 104 | 2.745 × 104 1.210 × 104 |
F16 Mean STD | 1.267 × 103 4.343 × 102 | 1.757 × 103 4.703 × 102 | 3.691 × 103 1.479 × 103 | 1.280 × 103 3.636 × 102 | 2.631 × 103 7.796 × 102 | 7.172 × 103 1.378 × 103 | 3.123 × 103 6.645 × 102 | 2.321 × 103 5.354 × 102 |
F17 Mean STD | 1.121 × 103 2.988 × 102 | 1.251 × 103 3.423 × 102 | 2.407 × 103 6.650 × 102 | 9.308 × 102 2.273 × 102 | 1.516 × 103 3.538 × 102 | 1.819 × 104 3.409 × 104 | 2.382 × 103 4.546 × 102 | 2.011 × 103 4.024 × 102 |
F18 Mean STD | 2.121 × 105 1.233 × 105 | 1.572 × 105 8.769 × 104 | 2.837 × 107 3.638 × 107 | 4.024 × 106 4.810 × 106 | 1.048 × 107 1.422 × 107 | 9.345 × 107 5.237 × 107 | 5.124 × 106 4.163 × 106 | 2.512 × 105 1.110 × 105 |
F19 Mean STD | 1.478 × 104 8.260 × 103 | 1.545 × 104 1.231 × 104 | 1.635 × 108 3.962 × 108 | 1.429 × 106 2.421 × 106 | 1.283 × 104 1.670 × 104 | 6.888 × 109 2.802 × 109 | 1.901 × 106 1.232 × 106 | 4.882 × 105 2.534 × 105 |
F20 Mean STD | 8.364 × 102 2.834 × 102 | 1.119 × 103 3.662 × 102 | 1.797 × 103 4.564 × 102 | 7.867 × 102 3.287 × 102 | 1.230 × 103 3.499 × 102 | 1.825 × 103 1.962 × 102 | 1.721 × 103 3.121 × 102 | 1.421 × 103 3.012 × 102 |
F21 Mean STD | 3.387 × 102 2.322 × 101 | 4.599 × 102 5.285 × 101 | 6.837 × 102 1.790 × 102 | 3.815 × 102 2.742 × 101 | 5.105 × 102 8.051 × 101 | 1.032 × 103 9.733 × 101 | 7.631 × 102 1.172 × 102 | 6.470 × 102 6.612 × 101 |
F22 Mean STD | 9.125 × 102 2.343 × 103 | 7.036 × 103 1.692 × 103 | 1.255 × 104 3.307 × 103 | 6.136 × 103 1.341 × 103 | 7.477 × 103 1.474 × 103 | 1.408 × 104 5.151 × 102 | 9.101 × 103 1.231 × 103 | 8.325 × 103 8.670 × 102 |
F23 Mean STD | 6.235 × 102 5.421 × 101 | 7.943 × 102 9.845 × 101 | 1.463 × 103 2.659 × 102 | 6.181 × 102 5.885 × 101 | 1.078 × 103 2.207 × 102 | 1.654 × 103 1.582 × 102 | 1.342 × 103 1.244 × 102 | 1.720 × 103 2.150 × 102 |
F24 Mean STD | 6.642 × 102 4.964 × 101 | 8.741 × 102 9.613 × 101 | 1.548 × 103 2.956 × 102 | 7.142 × 102 9.997 × 101 | 1.423 × 103 3.037 × 102 | 2.022 × 103 4.130 × 102 | 1.346 × 103 1.623 × 102 | 1.732 × 103 2.121 × 102 |
F25 Mean STD | 5.625 × 102 3.253 × 101 | 5.634 × 102 3.725 × 101 | 1.465 × 103 2.862 × 103 | 8.599 × 102 1.553 × 102 | 2.082 × 103 7.709 × 102 | 1.031 × 104 1.269 × 103 | 6.512 × 102 3.453 × 101 | 5.654 × 102 3.430 × 101 |
F26 Mean STD | 2.250 × 103 2.437 × 103 | 3.888 × 103 3.801 × 103 | 7.648 × 103 4.114 × 103 | 3.201 × 103 5.942 × 102 | 7.099 × 103 1.543 × 103 | 1.341 × 104 1.036 × 103 | 1.112 × 104 1.434 × 103 | 1.151 × 104 8.041 × 102 |
F27 Mean STD | 7.865 × 102 9.353 × 101 | 9.120 × 102 1.554 × 102 | 7.648 × 103 4.114 × 103 | 7.910 × 102 7.505 × 101 | 2.078 × 103 3.871 × 102 | 1.905 × 103 3.265 × 102 | 1.232 × 103 3.432 × 102 | 2.630 × 103 4.821 × 102 |
F28 Mean STD | 4.994 × 102 2.865 × 101 | 5.011 × 102 3.343 × 101 | 1.290 × 103 1.762 × 103 | 1.032 × 103 2.321 × 102 | 2.944 × 103 8.029 × 102 | 8.950 × 103 1.133 × 103 | 6.341 × 102 5.243 × 101 | 5.036 × 102 3.097 × 101 |
F29 Mean STD | 1.122 × 103 3.287 × 102 | 1.543 × 103 3.122 × 102 | 4.766 × 103 3.884 × 103 | 1.316 × 103 2.674 × 102 | 3.052 × 103 8.637 × 102 | 6.189 × 104 4.451 × 104 | 4.240 × 103 9.363 × 102 | 2.712 × 103 4.751 × 102 |
F30 Mean STD | 8.824 × 105 1.674 × 105 | 9.655 × 105 2.112 × 105 | 4.685 × 108 9.958 × 108 | 7.309 × 107 3.310 × 107 | 9.298 × 107 6.349 × 107 | 8.605 × 109 2.718 × 109 | 8.642 × 107 3.010 × 107 | 1.491 × 107 1.961 × 106 |
(W/L/T) Average Rank | -/-/- 1.40 | 21/3/4 2.64 | 29/0/1 6.72 | 25/4/0 3.24 | 29/0/0 4.69 | 29/0/0 7.83 | 29/0/0 5.17 | 28/1/0 4.31 |
Function | GAOA | MAO | AO | GWO | SCA | RSA | WOA | SSA |
---|---|---|---|---|---|---|---|---|
F1 Mean STD | 7.001 × 103 1.120 × 104 | 4.734 × 103 7.011 × 103 | 3.011 × 1010 8.314 × 1010 | 3.186 × 1010 6.811 × 109 | 9.611 × 109 2.720 × 1010 | 2.435 × 1011 9.446 × 109 | 4.001 × 107 1.812 × 107 | 4.701 × 106 1.312 × 106 |
F3 Mean STD | 1.323 × 105 1.790 × 104 | 8.843 × 104 1.441 × 104 | 4.011 × 105 1.210 × 105 | 2.030 × 105 2.311 × 104 | 1.290 × 105 1.210 × 105 | 3.155 × 105 1.683 × 104 | 5.615 × 105 1.841 × 105 | 2.361 × 104 2.008 × 104 |
F4 Mean STD | 2.342 × 102 4.712 × 101 | 2.440 × 102 4.551 × 101 | 3.251 × 103 1.145 × 104 | 2.435 × 103 6.471 × 102 | 2.441 × 104 9.190 × 103 | 7.517 × 104 9.738 × 103 | 6.120 × 102 9.421 × 101 | 2.811 × 102 5.710 × 101 |
F5 Mean STD | 5.011 × 102 9.03 × 101 | 7.942 × 102 5.412 × 101 | 1.113 × 103 4.001 × 102 | 5.431 × 102 5.612 × 101 | 7.912 × 102 1.214 × 102 | 1.483 × 103 4.743 × 101 | 9.251 × 102 9.322 × 101 | 8.110 × 102 7.812 × 101 |
F6 Mean STD | 2.331 × 101 1.103 × 101 | 5.307 × 101 6.542 × 100 | 9.401 × 101 2.321 × 101 | 3.001 × 101 4.712 × 100 | 4.601 × 101 5.731 × 100 | 1.072 × 102 3.562 × 100 | 8.010 × 101 9.513 × 100 | 6.432 × 101 3.411 × 100 |
F7 Mean STD | 8.017 × 102 1.741 × 102 | 2.032 × 103 3.743 × 102 | 2.641 × 103 4.910 × 102 | 1.040 × 103 1.151 × 102 | 2.523 × 103 3.511 × 102 | 3.361 × 103 1.066 × 102 | 2.509 × 103 1.821 × 102 | 2.590 × 103 2.751 × 102 |
F8 Mean STD | 4.843 × 102 8.631 × 101 | 8.804 × 102 9.712 × 101 | 1.344 × 103 3.904 × 102 | 5.511 × 102 4.812 × 101 | 8.310 × 102 1.441 × 102 | 1.636 × 103 4.052 × 101 | 1.100 × 103 1.325 × 102 | 9.041 × 102 7.798 × 101 |
F9 Mean STD | 7.812 × 103 3.312 × 103 | 2.104 × 104 1.411 × 103 | 6.370 × 104 2.721 × 104 | 2.251 × 104 9.361 × 103 | 2.640 × 104 4.711 × 103 | 7.459 × 104 6.599 × 103 | 3.711 × 104 9.731 × 103 | 2.751 × 104 3.010 × 103 |
F10 Mean STD | 1.410 × 104 1.401 × 103 | 1.301 × 104 1.142 × 103 | 2.541 × 104 6.663 × 103 | 1.456 × 104 3.201 × 103 | 1.511 × 104 4.112 × 103 | 2.976 × 104 7.076 × 102 | 2.012 × 104 2.860 × 103 | 1.451 × 104 1.410 × 103 |
F11 Mean STD | 5.411 × 102 1.211 × 102 | 5.804 × 102 9.863 × 101 | 2.033 × 105 8.152 × 104 | 3.434 × 104 1.171 × 104 | 1.341 × 105 5.410 × 104 | 1.577 × 105 2.500 × 104 | 6.911 × 103 2.350 × 103 | 1.131 × 103 1.413 × 102 |
F12 Mean STD | 9.131 × 105 3.332 × 105 | 1.123 × 106 5.042 × 105 | 7.822 × 109 2.906 × 1010 | 4.843 × 109 2.611 × 109 | 2.910 × 1010 1.981 × 1010 | 1.670 × 1011 2.323 × 1010 | 6.101 × 108 1.723 × 108 | 7.390 × 107 1.500 × 107 |
F13 Mean STD | 9.231 × 105 3.332 × 105 | 5.215 × 103 5.513 × 103 | 1.561 × 109 5.901 × 109 | 4.001 × 108 3.543 × 108 | 9.361 × 107 5.611 × 108 | 4.117 × 1010 8.719 × 109 | 8.864 × 104 3.324 × 104 | 4.111 × 104 1.123 × 104 |
F14 Mean STD | 1.621 × 105 8.052 × 104 | 1.201 × 105 6.043 × 104 | 1.841 × 107 3.121 × 107 | 3.601 × 106 2.442 × 106 | 5.700 × 106 7.410 × 106 | 6.200 × 107 2.371 × 107 | 1.811 × 106 6.901 × 105 | 3.022 × 105 1.213 × 105 |
F15 Mean STD | 1.876 × 103 2.132 × 103 | 2.623 × 103 3.070 × 103 | 4.201 × 108 2.224 × 109 | 9.174 × 107 2.223 × 108 | 5.981 × 107 1.911 × 108 | 2.296 × 1010 6.884 × 109 | 1.411 × 105 3.511 × 105 | 3.110 × 104 1.290 × 104 |
F16 Mean STD | 3.712 × 103 7.621 × 102 | 4.041 × 103 6.451 × 102 | 1.031 × 104 4.431 × 103 | 3.712 × 103 5.610 × 102 | 8.244 × 103 2.001 × 103 | 1.972 × 104 3.328 × 103 | 7.881 × 103 1.443 × 103 | 5.512 × 103 7.831 × 102 |
F17 Mean STD | 2.731 × 103 5.431 × 102 | 3.070 × 103 6.050 × 102 | 3.523 × 104 1.242 × 105 | 2.710 × 103 5.250 × 102 | 3.810 × 103 1.236 × 103 | 6.727 × 106 5.873 × 106 | 5.512 × 103 1.010 × 103 | 3.871 × 103 4.901 × 102 |
F18 Mean STD | 4.512 × 105 2.016 × 105 | 3.050 × 105 1.321 × 105 | 2.132 × 107 4.402 × 107 | 3.235 × 106 2.531 × 106 | 1.313 × 107 3.361 × 107 | 9.293 × 107 3.879 × 107 | 2.221 × 106 1.106 × 106 | 4.712 × 105 1.900 × 105 |
F19 Mean STD | 3.015 × 103 4.011 × 103 | 4.350 × 103 5.914 × 103 | 5.711 × 108 2.313 × 109 | 1.151 × 108 1.810 × 108 | 1.751 × 108 7.121 × 108 | 2.305 × 1010 7.182 × 109 | 1.444 × 107 6.840 × 106 | 2.567 × 106 1.341 × 106 |
F20 Mean STD | 3.373 × 103 4.613 × 102 | 3.112 × 103 5.765 × 102 | 5.212 × 103 9.601 × 102 | 2.413 × 103 7.013 × 102 | 3.411 × 103 7.805 × 102 | 5.128 × 103 2.153 × 102 | 4.351 × 103 7.180 × 102 | 3.689 × 103 5.041 × 102 |
F21 Mean STD | 6.244 × 102 8.113 × 101 | 9.613 × 102 1.131 × 102 | 1.712 × 103 4.604 × 102 | 7.341 × 102 5.556 × 101 | 1.110 × 103 3.261 × 102 | 3.014 × 103 2.490 × 102 | 1.821 × 103 2.001 × 102 | 1.799 × 103 2.234 × 102 |
F22 Mean STD | 1.311 × 104 7.820 × 103 | 1.721 × 104 1.824 × 103 | 2.744 × 104 5.470 × 103 | 1.576 × 104 2.430 × 103 | 1.770 × 104 4.489 × 103 | 3.130 × 104 5.639 × 102 | 2.031 × 104 2.332 × 103 | 1.810 × 104 1.382 × 103 |
F23 Mean STD | 1.033 × 103 8.311 × 101 | 1.411 × 103 1.312 × 102 | 3.140 × 103 8.060 × 102 | 1.111 × 103 7.743 × 101 | 2.974 × 103 4.487 × 102 | 2.962 × 103 1.560 × 102 | 2.511 × 103 2.121 × 102 | 3.159 × 103 3.412 × 102 |
F24 Mean STD | 1.662 × 103 1.812 × 102 | 2.235 × 103 2.511 × 102 | 5.141 × 103 1.203 × 103 | 1.435 × 103 8.043 × 101 | 5.056 × 103 8.685 × 102 | 6.766 × 103 2.287 × 103 | 3.511 × 103 3.812 × 102 | 3.700 × 103 6.561 × 102 |
F25 Mean STD | 7.863 × 102 6.035 × 101 | 7.723 × 102 7.001 × 101 | 3.512 × 103 6.413 × 103 | 2.832 × 103 5.142 × 102 | 9.653 × 103 3.146 × 103 | 2.205 × 104 2.229 × 103 | 1.011 × 103 7.381 × 101 | 8.001 × 102 4.141 × 101 |
F26 Mean STD | 1.215 × 104 6.028 × 103 | 1.511 × 104 7.743 × 103 | 2.361 × 104 1.221 × 104 | 9.812 × 103 9.010 × 102 | 2.842 × 104 6.302 × 103 | 4.470 × 104 3.909 × 103 | 2.911 × 104 3.781 × 103 | 2.630 × 104 2.115 × 103 |
F27 Mean STD | 9.741 × 102 1.136 × 102 | 1.131 × 103 2.152 × 102 | 5.140 × 103 1.911 × 103 | 1.131 × 103 8.511 × 101 | 4.830 × 103 1.014 × 103 | 6.058 × 103 1.730 × 103 | 2.601 × 103 7.779 × 102 | 4.343 × 103 1.370 × 103 |
F28 Mean STD | 5.630 × 102 2.432 × 101 | 5.733 × 102 3.131 × 101 | 4.644 × 103 9.001 × 103 | 4.130 × 103 1.143 × 103 | 1.558 × 104 3.032 × 103 | 2.727 × 104 2.445 × 103 | 9.170 × 102 6.911 × 101 | 6.101 × 102 3.767 × 101 |
F29 Mean STD | 3.478 × 103 5.491 × 102 | 3.690 × 103 5.141 × 102 | 1.881 × 104 2.721 × 104 | 4.180 × 103 5.211 × 102 | 9.212 × 103 2.101 × 103 | 5.596 × 105 4.382 × 105 | 1.111 × 104 1.623 × 103 | 6.142 × 103 6.787 × 102 |
F30 Mean STD | 6.001 × 103 2.756 × 103 | 7.911 × 103 4.044 × 103 | 1.901 × 109 5.231 × 109 | 4.901 × 108 4.002 × 108 | 8.556 × 108 1.422 × 109 | 3.889 × 1010 6.251 × 109 | 1.826 × 108 8.101 × 107 | 1.216 × 107 3.001 × 106 |
(W/L/T) Rank | -/-/- 1.57 | 21/8/0 2.29 | 29/0/0 6.72 | 24/4/1 3.48 | 28/1/0 5.17 | 29/0/0 7.76 | 28/1/0 4.97 | 27/2/0 4.03 |
Function | GAOA | MAO | AO | SSA | GWO | WOA | SCA |
---|---|---|---|---|---|---|---|
F1 Mean STD | 0.00 × 100 0.00 × 100 | 4.34 × 10−13 3.06 × 10−13 | 1.27 × 10−48 8.45 × 10−49 | 4.12 × 10−07 3.36 × 10−07 | 4.96 × 10−06 2.16 × 10−06 | 3.02 × 10−74 1.65 × 10−73 | 2.20 × 102 3.43 × 102 |
F2 Mean STD | 7.77 × 10−252 2.02 × 10−34 | 1.29 × 10−66 8.09 × 10−66 | 1.84 × 10−29 5.61 × 10−30 | 1.97 × 100 1.41 × 100 | 2.01 × 10−03 1.91 × 10−03 | 3.17 × 10−50 1.66 × 10−49 | 2.64 × 10−02 2.93 × 10−02 |
F3 Mean STD | 0.00 × 100 0.00 × 100 | 1.10 × 10−13 2.36 × 10−13 | 8.67 × 10−52 2.39 × 10−52 | 2.45 × 103 1.78 × 102 | 9.65 × 10−04 8.19 × 10−04 | 4.33 × 104 1.69 × 104 | 8.07 × 103 4.74 × 103 |
F4 Mean STD | 4.45 × 10−246 2.33 × 10−56 | 4.29 × 10−67 2.86 × 10−66 | 4.06 × 10−28 6.15 × 10−29 | 1.17 × 101 4.06 × 100 | 1.77 × 10−02 1.14 × 10−02 | 5.23 × 101 2.85 × 101 | 3.49 × 101 1.35 × 101 |
F5 Mean STD | 0.002 1.76 × 10−01 | 0.339 2.78 × 10−02 | 0.087 0.0209 | 1.11 × 103 1.49 × 102 | 2.79 × 101 2.03 × 10−01 | 2.32 × 102 4.31 × 10−02 | 7.18 × 104 1.28 × 105 |
F6 Mean STD | 4.13 × 10−05 4.86 × 10−05 | 4.72 × 10−04 8.44 × 10−04 | 2.20 × 10−03 5.51 × 10−04 | 1.38 × 10−05 1.53 × 10−05 | 3.01 × 100 2.23 × 10−02 | 3.61 × 10−02 2.42 × 10−02 | 2.54 × 102 9.78 × 100 |
F7 Mean STD | 6.43 × 10−05 6.15 × 10−04 | 1.38 × 10−04 1.01 × 10−04 | 7.85 × 10−05 1.31 × 10−04 | 1.63 × 10−01 6.25 × 10−02 | 1.06 × 10−04 1.01 × 10−04 | 3.12 × 10−03 3.67 × 10−05 | 1.36 × 10−01 2.89 × 102 |
F8 Mean STD | −4.31 × 103 2.34 × 10−02 | −2.80 × 103 483.5646 | −4.11 × 103 4.03 × 103 | −7.10 × 103 9.12 × 102 | −3.75 × 103 3.67 × 103 | −1.12 × 104 1.68 × 103 | −3.76 × 103 3.89 × 102 |
F9 Mean STD | 0.00 × 100 0.00 × 100 | 0.00 × 100 0.00 × 100 | 0.00 × 100 0.00 × 100 | 5.39 × 101 1.68 × 101 | 1.54 × 10−06 1.08 × 10−06 | 0.00 × 100 0.00 × 100 | 3.65 × 101 3.52 × 101 |
F10 Mean STD | 8.88 × 10−16 0.00 × 100 | 8.88 × 10−16 0.00 × 100 | 8.88 × 10−16 0.00 × 100 | 2.52 × 100 6.85 × 10−01 | 4.25 × 10−04 1.88 × 10−04 | 4.32 × 10−15 2.72 × 10−15 | 1.45 × 101 8.34 × 101 |
F11 Mean STD | 0.00 × 100 0.00 × 100 | 0.00 × 100 0.00 × 100 | 0.00 × 100 0.00 × 100 | 2.06 × 10−05 1.48 × 10−04 | 5.16 × 10−04 2.69 × 10−03 | 1.96 × 10−02 5.48 × 10−02 | 9.37 × 10−01 3.36 × 10−01 |
F12 Mean STD | 8.16 × 10−07 5.18 × 10−05 | 5.92 × 10−06 1.05 × 10−05 | 2.71 × 10−06 3.32 × 10−06 | 7.19 × 100 2.73 × 100 | 6.87 × 10−02 2.77 × 10−02 | 1.78 × 10−04 1.34 × 10−02 | 2.52 × 102 7.02 × 103 |
F13 Mean STD | 2.01 × 10−05 1.54 × 10−05 | 1.12 × 10−05 3.66 × 10−05 | 2.85 × 10−06 6.54 × 10−06 | 1.23 × 101 1.22 × 100 | 2.96 × 100 2.05 × 10−02 | 5.15 × 10−01 2.32 × 10−01 | 1.87 × 105 4.38 × 105 |
F14 Mean STD | 9.78 × 10−01 5.02 × 10−01 | 7.301945 1.996747 | 1.411677 1.467424 | 1.22 × 100 6.72 × 10−01 | 2.01 × 102 4.01 × 101 | 3.01 × 100 3.22 × 100 | 1.79 × 100 9.88 × 10−01 |
F15 Mean STD | 3.82 × 10−04 1.03 × 10−04 | 9.51 × 10−04 3.87 × 10−04 | 5.44 × 10−04 1.79 × 10−04 | 2.83 × 10−03 5.95 × 10−03 | 7.57 × 10−03 1.86 × 10−02 | 8.46 × 10−04 6.56 × 10−04 | 1.05 × 10−03 3.84 × 10−03 |
F16 Mean STD | −1.03 × 100 1.55 × 10−13 | −1.03083 6.33 × 10−04 | −1.0315 1.77 × 10−04 | −1.03 × 101 2.33 × 10−12 | −1.12 × 101 3.00 × 10−14 | −1.03 × 101 1.11 × 10−09 | −1.11 × 101 4.20 × 10−05 |
F17 Mean STD | 3.97 × 10−01 2.56 × 10−12 | 0.421134 1.96 × 10−02 | 0.397935 6.46 × 10−05 | 3.97 × 10−01 1.34 × 10−10 | 4.12 × 10−01 1.32 × 10−04 | 3.97 × 10−01 6.94 × 10−06 | 3.99 × 10−01 1.22 × 10−03 |
F18 Mean STD | 3.00 × 100 4.65 × 100 | 3.969585 1.156593 | 3.007461 0.00734 | 3.00 × 100 1.50 × 10−13 | 1.30 × 101 2.18 × 101 | 3.01 × 101 1.59 × 10−03 | 3.00 × 100 9.12 × 10−05 |
F19 Mean STD | −3.85 × 100 4.80 × 100 | −3.765. 68 0.055039 | −3.86073 0.002118 | −3.86 × 100 1.46 × 10−10 | −3.74 × 100 5.36 × 10−01 | −3.91 × 100 5.88 × 10−03 | −3.92 × 101 8.94 × 10−03 |
F20 Mean STD | −3.32 × 100 4.12 × 10−11 | −2.7442 0.2411 | −3.1204 0.0972 | −3.22 × 100 3.99 × 10−02 | −3.29 × 100 6.34 × 10−02 | −3.19 × 100 1.28 × 10−01 | −2.92 × 100 3.76 × 10−01 |
F21 Mean STD | −10.15 × 100 5.60 × 10−02 | −9.5941 0.4674 | −10.1402 0.0263 | −6.30 × 100 3.52 × 100 | −7.54 × 100 3.21 × 100 | −8.87 × 101 2.56 × 102 | −2.42 × 101 2.03 × 101 |
F22 Mean STD | −10.40 × 101 1.03 × 10−07 | −9.7427 6275 | −10.3868 0.0186 | −7.83 × 100 3.49 × 100 | −7.34 × 100 3.23 × 100 | −7.66 × 100 3.43 × 100 | −3.42 × 100 1.79 × 100 |
F23 Mean STD | −10.53 × 101 1.65 × 10−07 | −9.84755 0.512047 | −10.5163 0.0257 | −9.42 × 100 2.56 × 100 | −7.96 × 100 3.52 × 100 | −7.24 × 100 3.22 × 100 | −3.66 × 100 1.82 × 100 |
Mean Ranking | 1.03 × 100 1 | 1.05 × 100 2 | 1.30 × 100 3 | 8.84 × 100 5 | 1.01 × 101 7 | 4.61 × 100 4 | 8.92 × 100 6 |
Algorithms | Dim = 30 | Dim = 50 | Dim = 100 |
---|---|---|---|
GAOA | 1.17 | 1.40 | 1.57 |
MAO | 2.62 | 2.64 | 2.29 |
AO | 6.55 | 6.72 | 6.72 |
GWO | 3.28 | 3.24 | 3.48 |
SCA | 4.41 | 4.69 | 5.17 |
RSA | 7.97 | 7.83 | 7.76 |
WOA | 5.52 | 5.17 | 4.97 |
SSA | 4.48 | 4.31 | 4.03 |
Function | |||||
---|---|---|---|---|---|
F1 Mean STD | 0.00 × 100 0.00 × 100 | 0.00 × 100 0.00 × 100 | 0.00 × 100 0.00 × 100 | 0.00 × 100 0.00 × 100 | 0.00 × 100 0.00 × 100 |
F3 Mean STD | 0.00 × 100 0.00 × 100 | 0.00 × 100 0.00 × 100 | 0.00 × 100 0.00 × 100 | 0.00 × 100 0.00 × 100 | 0.00 × 100 0.00 × 100 |
F5 Mean STD | 2.03 × 10−03 1.76 × 10−01 | 2.23 × 10−03 1.22 × 10−01 | 3.35 × 10−02 1.11 × 10−02 | 5.24 × 10−02 2.24 × 10−01 | 4.27 × 10−02 1.22 × 10−02 |
F6 Mean STD | 4.13 × 10−05 4.86 × 10−05 | 4.18 × 10−05 2.21 × 10−01 | 4.55 × 10−05 5.22 × 10−01 | 4.47 × 10−05 1.11 × 10−02 | 4.90 × 10−05 3.22 × 10−04 |
F7 Mean STD | 6.43 × 10−05 6.15 × 10−04 | 2.71 × 10−05 1.11 × 10−04 | 2.96 × 10−05 1.25 × 10−02 | 2.81 × 10−05 1.25 × 10−04 | 4.14 × 10−05 3.15 × 10−05 |
F9 Mean STD | 0.00 × 100 0.00 × 100 | 0.00 × 100 0.00 × 100 | 0.00 × 100 0.00 × 100 | 0.00 × 100 0.00 × 100 | 0.00 × 100 0.00 × 100 |
F11 Mean STD | 0.00 × 100 0.00 × 100 | 0.00 × 100 0.00 × 100 | 0.00 × 100 0.00 × 100 | 0.00 × 100 0.00 × 100 | 0.00 × 100 0.00 × 100 |
F12 Mean STD | 8.16 × 10−07 5.18 × 10−05 | 1.17 × 10−06 1.00 × 10−06 | 3.12 × 10−06 2.28 × 10−06 | 1.35 × 10−06 1.22 × 10−06 | 3.27 × 10−06 2.33 × 10−06 |
F13 Mean STD | 2.01 × 10−05 1.54 × 10−05 | 3.65 × 10−05 1.45 × 10−02 | 8.76 × 10−05 1.11 × 10−01 | 6.63 × 10−05 1.27 × 10−05 | 6.14 × 10−05 1.57 × 10−05 |
Mean Ranking | 4.33 × 10−04 1 | 4.67 × 10−04 2 | 6.73 × 10−03 3 | 1.05 × 10−02 5 | 8.57 × 10−03 4 |
Algorithms | Dim = 30 | Dim = 50 | Dim = 100 |
---|---|---|---|
GAOA | 2.21 × 104 | 1.43 × 104 | 2.61 × 105 |
MAO | 2.11 × 104 | 1.13 × 104 | 2.60 × 105 |
AO | 1.34 × 104 | 3.01 × 104 | 1.54 × 105 |
GWO | 3.00 × 104 | 5.71 × 104 | 2.25 × 105 |
SCA | 2.22 × 104 | 6.60 × 104 | 2.85 × 105 |
RSA | 5.55 × 104 | 1.61 × 104 | 7.90 × 105 |
WOA | 4.01 × 103 | 1.00 × 104 | 6.50 × 104 |
SSA | 1.43 × 104 | 3.11 × 104 | 8.91 × 104 |
Algorithms | ΣR+ | ΣR− | z-Value | p-Value | |
---|---|---|---|---|---|
GAOA vs. | MAO | 428 | 7 | −4.552 | 0.0001 |
AO | 435 | 0 | −4.703 | 0.0001 | |
GWO | 412 | 23 | −4.206 | 0.0001 | |
SCA | 435 | 0 | −4.703 | 0.0001 | |
RSA | 435 | 0 | −4.703 | 0.0001 | |
WOA | 435 | 0 | −4.703 | 0.0001 | |
SSA | 426 | 9 | −4.508 | 0.0001 |
Algorithms | ΣR+ | ΣR− | z-Value | p-Value | |
---|---|---|---|---|---|
GAOA vs. | MAO | 335 | 71 | 3.006 | 0.003 |
AO | 435 | 0 | 4.703 | 0.0001 | |
GWO | 395 | 40 | 3.838 | 0.0001 | |
SCA | 415 | 20 | 4.271 | 0.0001 | |
RSA | 435 | 0 | 4.703 | 0.0001 | |
WOA | 435 | 0 | 4.703 | 0.0001 | |
SSA | 411 | 24 | 4.184 | 0.0001 |
Algorithms | ΣR+ | ΣR− | z-Value | p-Value | |
---|---|---|---|---|---|
GAOA vs. | MAO | 279 | 156 | −1.330 | 0.184 |
AO | 435 | 0 | −4.703 | 0.0001 | |
GWO | 369 | 37 | −3.780 | 0.0001 | |
SCA | 425 | 10 | −4.487 | 0.0001 | |
RSA | 435 | 0 | −4.703 | 0.0001 | |
WOA | 412 | 23 | −4.206 | 0.0001 | |
SSA | 387 | 48 | −3.665 | 0.0001 |
Optimum Attributes | |||||
---|---|---|---|---|---|
Algorithms | t | h | r | l | Optimum Cost |
GAOA | 0.7785 | 0.3854 | 40.3275 | 199.892 | 5889.2155 |
COA [72] | 0.7437 | 0.3705 | 40.3238 | 199.9414 | 5735.2488 |
AO [29] | 1.0540 | 0.1828 | 59.6219 | 38.8050 | 5949.2258 |
GWO [30] | 0.8125 | 0.4345 | 42.0891 | 176.7587 | 6051.5639 |
ROA [73] | 0.7295 | 0.2226 | 40.4323 | 198.5537 | 5311.9175 |
RSA [32] | 0.8071 | 0.4426 | 43.6335 | 142.5359 | 6213.8317 |
WOA [31] | 0.8125 | 0.4375 | 42.0982 | 76.6389 | 6059.7410 |
SCA [35] | 0.8820 | 0.4992 | 45.8236 | 135.3623 | 6253.5397 |
Optimum Attributes | ||||
---|---|---|---|---|
Algorithms | d | D | N | Optimum Weight |
GAOA | 0.0513 | 0.3475 | 11.848 | 0.0126 |
COA [72] | 0.05 | 0.3744 | 8.5477 | 0.0098 |
AO [29] | 0.0502 | 0.3562 | 10.5425 | 0.0112 |
GSA [36] | 0.0502 | 0.3236 | 13.5254 | 0.0127 |
DE [25] | 0.0516 | 0.3547 | 11.4108 | 0.0126 |
RSA [32] | 0.0525 | 0.4100 | 7.853 | 0.0124 |
SMA [74] | 0.0584 | 0.5418 | 5.2613 | 0.0134 |
EROA [75] | 0.0537 | 0.4695 | 5.811 | 0.0106 |
Optimum Attributes | |||
---|---|---|---|
Algorithms | s1 | s2 | Optimum Cost |
GAOA | 03661 | 0.7071 | 174.2545 |
GOA [76] | 0.7888 | 0.3966 | 263.8684 |
AO [29] | 0.7926 | 0.3966 | 263.8684 |
GWO [30] | 0.7658 | 0.4658 | 263.8156 |
SSA [34] | 0.7782 | 0.4436 | 262.9263 |
RSA [32] | 0.7623 | 0.4982 | 265.3749 |
WOA [31] | 0.7676 | 0.4352 | 262.896 |
SCA [35] | 0.7315 | 0.4866 | 262.5363 |
Optimum Attributes | ||||||||
---|---|---|---|---|---|---|---|---|
Algorithms | s1 | s2 | s3 | s4 | s5 | s6 | s7 | Optimum Weight |
GAOA | 3.4 | 0.7 | 17 | 7.4 | 7.3 | 3.3422 | 5.2843 | 2988.8799 |
COA [72] | 3.498 | 0.7 | 17 | 7.3 | 7.8 | 3.3507 | 5.3604 | 2995.4729 |
AO [29] | 3.5138 | 0.7 | 17 | 7.4146 | 7.8129 | 3.3770 | 5.2845 | 3009.9097 |
GWO [30] | 3.4825 | 0.7 | 17 | 7.4687 | 7.787 | 3.3587 | 5.2945 | 3010.5893 |
ROA [73] | 3.4976 | 0.7 | 17 | 7.8779 | 8.0940 | 3.3943 | 5.2857 | 3018.644 |
RSA [32] | 3.5598 | 0.7 | 17 | 7.4999 | 8.2 | 3.4532 | 5.2851 | 3053.6732 |
WOA [31] | 3.4973 | 0.7 | 17 | 7.8703 | 8.1669 | 3.4530 | 5.2745 | 3067.0467 |
SCA [35] | 3.6 | 0.7 | 17 | 7.3 | 8.2 | 3.3793 | 5.3689 | 3152.9113 |
Optimum Attributes | ||||||
---|---|---|---|---|---|---|
Algorithms | s1 | s2 | s3 | s4 | s5 | Optimum Weight |
GAOA | 6.0184 | 5.3007 | 4.496 | 3.5124 | 2.1464 | 1.34 |
COA [72] | 6.01722 | 5.3071 | 4.4912 | 3.5081 | 2.1499 | 1.3999 |
AO [29] | 5.8492 | 5.5413 | 4.3778 | 3.5978 | 2.1026 | 1.3596 |
GWO [30] | 5.9956 | 5.4121 | 4.5986 | 3.5689 | 2.3548 | 1.3586 |
ROA [73] | 6.0156 | 5.1001 | 4.303 | 3.7365 | 2.3183 | 1.3456 |
ALO [77] | 601812 | 5.3112 | 4.4887 | 3.4975 | 2.1583 | 1.3499 |
WOA [31] | 5.8393 | 5.1582 | 4.9917 | 3.693 | 2.2275 | 1.3467 |
SCA [35] | 5.9264 | 5.9285 | 4.5223 | 3.3267 | 1.9923 | 1.3581 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varshney, M.; Kumar, P.; Ali, M.; Gulzar, Y. Using the Grey Wolf Aquila Synergistic Algorithm for Design Problems in Structural Engineering. Biomimetics 2024, 9, 54. https://doi.org/10.3390/biomimetics9010054
Varshney M, Kumar P, Ali M, Gulzar Y. Using the Grey Wolf Aquila Synergistic Algorithm for Design Problems in Structural Engineering. Biomimetics. 2024; 9(1):54. https://doi.org/10.3390/biomimetics9010054
Chicago/Turabian StyleVarshney, Megha, Pravesh Kumar, Musrrat Ali, and Yonis Gulzar. 2024. "Using the Grey Wolf Aquila Synergistic Algorithm for Design Problems in Structural Engineering" Biomimetics 9, no. 1: 54. https://doi.org/10.3390/biomimetics9010054
APA StyleVarshney, M., Kumar, P., Ali, M., & Gulzar, Y. (2024). Using the Grey Wolf Aquila Synergistic Algorithm for Design Problems in Structural Engineering. Biomimetics, 9(1), 54. https://doi.org/10.3390/biomimetics9010054