In Vitro Studies on 3D-Printed PLA/HA/GNP Structures for Bone Tissue Regeneration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Scaffolds Characterisation
Morphological Evaluation
2.3. In Vitro Cellular Response
2.3.1. Cell Culture Models
2.3.2. In Vitro Assessment of Cellular Survival
2.3.3. In Vitro Cellular Morphology Assessment
2.3.4. In Vitro Assessment of RAW 264.7 Immune Response
2.3.5. In Vitro Osteogenic Differentiation Assessment
2.3.6. Statistical Analysis
3. Results
3.1. Scaffolds Characterisation
Morphological Evaluation
3.2. In Vitro Osteoblasts Response
3.2.1. Cellular Viability and Proliferation Potential
3.2.2. Cellular Attachment and Cytoskeleton Organisation
3.2.3. Osteogenic Differentiation Capacity
3.3. In Vitro Macrophage Response
3.3.1. Cellular Survival and Proliferation Potential
3.3.2. Cellular Morphology
3.3.3. Nitric Oxide Level Assessment
3.3.4. In Vitro Macrophage Fusion Assay
4. Conclusions
- The overall features of the scaffolds were evaluated, and the morphological evaluation (top-view surface) revealed a uniform dispersion and the embedding of the ceramic particles, with no formation of aggregates regardless of the GNP amount.
- The conversion from smooth to slightly rough surfaces was observed at higher HA ratios, leading to the emergence of micrometric protuberances. Once the GNP amount reached the maximum value (3 wt.%) and the HA ratio was in the 20–30 wt.% range, a bulging effect occurred and was preserved along the printed lines, suggesting an improved material fluidity; yet, this aftereffect is not always adequate for a proper cellular response.
- The in vitro biological assessment using two different cell lines, MC3T3-E1 pre-osteoblasts and RAW 264.7 macrophages, showed that all scaffolds, to different degrees, are suitable for cell growth and that the presence of HA in higher ratios (20 wt.% and 30 wt.%) created a positive osteogenic microenvironment capable of stimulating new bone formation.
- Moreover, a desirable inflammatory activity was observed for all of the analysed scaffolds, but in different degrees.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, W.; Passarini, J.R., Jr.; Lopes Nalesso, P.R.; Musson, D.; Cornish, J.; Mendonca, F.; Caetano, G.F.; Bartolo, P. Engineered 3D printed Poly(ε-caprolactone)/graphene scaffolds for bone tissue engineering. Mater. Sci. Eng C 2019, 100, 759–770. [Google Scholar] [CrossRef] [PubMed]
- Karthic, M.; Chockalingam, K.; Vignesh, C.; Nagarajan, K.J. Characterization of 3D-printed graphene reinforced PLA scaffolds for bone regeneration applications. Emerg. Mater. Res. 2023, 12, 382–394. [Google Scholar] [CrossRef]
- Bertsch, C.; Marechal, H.; Gribova, V.; Levy, B.; Derby, C.; Lavalle, P. Biomimetic Bilayered Scaffolds for Tissue Engineering: From Current Design Strategies to Medical Applications. Adv. Healthc. Mater. 2023, 12, 2203115. [Google Scholar] [CrossRef] [PubMed]
- Kantaros, S. Bio-Inspired Materials: Exhibit Characteristics and Integration Degree in Bio-Printing Operations. Am. J. Eng. Appl. Sci. 2022, 15, 255–263. [Google Scholar] [CrossRef]
- Babaie, E.; Bhaduri, S.B. Fabrication aspects of porous biomaterials in orthopedic applications. A review. ACS Biomater. Sci. Eng. 2018, 4, 1–39. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.G.; Shin, H.; Lim, D.W. Biomimetic Scaffolds for Tissue Engineering. Ad. Healthc. Mater. 2012, 22, 2446–2468. [Google Scholar] [CrossRef]
- Mirkhalaf, M.; Men, Y.; Wang, R.; No, Y.; Zreiqat, H. Personalized 3D printed bone scaffolds: A review. Acta Biomater. 2023, 156, 110–124. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, X.; Shan, M.; Hao, Z.; Zhang, X.; Meng, L.; Zhai, Z.; Zhang, L.; Liu, X.; Wang, X. Convergence of 3D Bioprinting and Nanotechnology in Tissue Engineering Scaffolds. Biomimetics 2023, 8, 94. [Google Scholar] [CrossRef]
- Chen, Y.; Dong, X.; Shafiq, M.; Myles, G.; Radacsi, N.; Mo, X. Recent Advancements on Three-Dimensional Electrospun Nanofiber Scaffolds for Tissue Engineering. Adv. Fibre Mater. 2022, 4, 959–986. [Google Scholar] [CrossRef]
- Suamte, L.; Tirkey, A.; Barman, J.; Babu, P.J. Various manufacturing methods and ideal properties of scaffolds for tissue engineering applications. Smart Mater. Manuf. 2023, 1, 100011. [Google Scholar] [CrossRef]
- Hutmacher, D.W.; Sittinger, M.; Risbud, M.V. Scaffold-based tissue engineering: Rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 2004, 22, 353–362. [Google Scholar] [CrossRef] [PubMed]
- ISO/ASTM 52900(en); Additive Manufacturing- general Principles- Terminology. ISO: London, UK, 2023. Available online: https://www.iso.org/opb/ui/#iso:std;iso-astm:59200:dis:ed-2:v1:en (accessed on 18 December 2023).
- Kantaors, A.; Ganetsos, T. From Static to Dynamic: Smart Materials Pioneering Additive Manufacturing in Regenerative Medicine. Int. J. Mol. Sci. 2023, 24, 15748. [Google Scholar] [CrossRef] [PubMed]
- Kiselevskiy, M.V.; Anisimova, N.Y.; Kapustin, A.V.; Ryzhkin, A.A.; Kuznetsova, D.N.; Polyakova, V.V.; Enikeev, N.A. Development of Bioactive Scaffolds for Orthopedic Applications by Designing Additively Manufactured Titanium Porous Structures: A Critical Review. Biomimetics 2023, 8, 546. [Google Scholar] [CrossRef]
- Staffa, G.; Barbanera, A.; Faiola, A.; Fricia, A.; Limoni, P.; Mottaran, R.; Zanotti, B.; Stefini, R. Custom made bioceramic implants in complex and large cranial reconstruction: A two-year follow-up. J. Cranio-Maxillofac. Surg. 2012, 40, 65–70. [Google Scholar] [CrossRef]
- Roque, R.; Barbosa, G.F.; Guastaldi, A.C. Design and 3D bioprinting of interconnected porous scaffolds for bone regeneration. An additive manufacturing approach. J. Manuf. Process. 2021, 64, 655–663. [Google Scholar] [CrossRef]
- Lee, H.; Yoo, J.M.; Ponnusamy, N.K.; Nam, S.Y. 3D-printed hydroxyapatite/gelatin bone scaffolds reinforced with graphene oxide: Optimized fabrication and mechanical characterization. Ceram. Int. 2022, 48, 10155–10163. [Google Scholar] [CrossRef]
- Mocanu, A.-C.; Miculescu, F.; Constantinescu, A.E.; Pandele, M.-A.; Voicu, Ș.I.; Cîmpean, A.; Miculescu, M.; Negrescu, A.M. Selection Route of Precursor Materials in 3D Printing Composite Filament Development for Biomedical Applications. Materials 2023, 16, 2359. [Google Scholar] [CrossRef] [PubMed]
- Simamora, P.; Chern, W. Poly-L-lactic acid: An overview. J. Drugs Dermatol. 2006, 5, 436–440. [Google Scholar]
- Lei, B.; Guo, B.; Rambhia, K.J.; Ma, P.X. Hybrid polymer biomaterials for bone tissue regeneration. Front. Med. 2019, 13, 19–201. [Google Scholar] [CrossRef]
- Bharadwaz, A.; Jayasuriya, A.C. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Mater. Sci. Eng. Biol. Appl. 2020, 110, 110698. [Google Scholar] [CrossRef]
- Wang, C.; Huang, W.; Zhou, Y.; He, L.; He, Z.; Chen, Z.; He, X.; Tian, S.; Liao, J.; Lu, B.; et al. 3D printing of bone tissue engineering scaffolds. Bioact. Mater. 2022, 5, 82–91. [Google Scholar] [CrossRef]
- Avanzi, I.R.; Parisi, J.R.; Souza, A.; Cruz, A.; Santi Martignago, C.C.; Ribeiro, D.A.; Braga, A.R.C.; Renno, A.C. 3D-printed hydroxyapatite scaffolds for bone tissue engineering: A systemic review in experimental animal studies. J. Biomed. Mater. Res. 2023, 111, 203–219. [Google Scholar] [CrossRef] [PubMed]
- Babilotte, J.; Guduric, V.; Nihouannen, D.L.; Naveau, A.; Fricain, J.-C.; Catros, S. 3D printed polymer-mineral composite biomaterials for bone tissue engineering: Fabrication and characterization. J. Biomed. Mater. Res. B Appl. Biomater. 2019, 107, 2579–2595. [Google Scholar] [CrossRef] [PubMed]
- Bai, R.G.; Ninan, N.; Muthoosamy, K.; Mnickam, S. Graphene: A versatile platform for nanotheranostics and tissue engineering. Prog. Mater. Sci. 2018, 91, 24–69. [Google Scholar] [CrossRef]
- Ryoo, S.-R.; Kim, Y.-K.; Kim, M.-H.; Min, D.-H. Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: Proliferation, focal adhesion, and gene transfection studies. ACS Nano 2010, 4, 6587–6598. [Google Scholar] [CrossRef] [PubMed]
- Cheung, W.; Pontoriero, F.; Taratula, O.; Chen, A.M.; He, H. DNA and carbon nanotubes as medicine. Adv. Drug Deliv. Rev. 2010, 62, 633–649. [Google Scholar] [CrossRef]
- Mohanta, D.; Patnaik, S.; Sood, S.; Das, N. Carbon nanotubes: Evaluation of toxicity at biointerfaces. J. Pharma. Anal. 2019, 9, 293–300. [Google Scholar] [CrossRef]
- Podsiadly, B.; Matuszewski, P.; Skalski, A.; Sloma, M. Carbon Nanaotubes-Based Composite Filaments for 3D Printing of Structural and Conductive Elements. Appl. Sci. 2021, 11, 1272. [Google Scholar] [CrossRef]
- Prancis, A.P.; Devasena, T. Toxicity of carbon nanotubes: A review. Toxicol. Ind. Health 2018, 34, 200–210. [Google Scholar] [CrossRef]
- Mocanu, A.-C.; Miculescu, F.; Dascălu, C.-A.; Voicu, Ș.I.; Pandele, M.-A.; Ciocoiu, R.-C.; Batalu, D.; Dondea, S.; Mitran, V.; Ciocan, L.-T. Influence of Ceramic Particles Size and Ratio on Surface—Volume Features of the Naturally Derived HA-Reinforced Filaments for Biomedical Applications. J. Funct. Biomater. 2022, 13, 199. [Google Scholar] [CrossRef]
- Maidaniuc, A.; Miculescu, M.; Voicu, S.; Ciocan, L.; Niculescu, M.; Corobea, M.; Rada, M.; Miculescu, F. Effect of micron sized silver particles concentration on the adhesion induced by sintering and antibacterial properties of hydroxyapatite microcomposites. J. Adhes. Sci. Technol. 2016, 30, 1829–1841. [Google Scholar] [CrossRef]
- Maidaniuc, A.; Miculescu, F.; Voicu, S.I.; Andronescu, C.; Miculescu, M.; Matei, E.; Mocanu, A.C.; Pencea, I.; Csaki, I.; Machedon-Pisu, T. Induced wettability and surface-volume correlation of composition for bovine bone derived hydroxyapatite particles. Appl. Surf. Sci. 2018, 438, 158–166. [Google Scholar] [CrossRef]
- Negrescu, A.M.; Mitran, V.; Draghicescu, W.; Popescu, S.; Pirvu, C.; Ionascu, I.; Soare, T.; Uzun, S.; Croitoru, S.M.; Cimpean, A. TiO2 Nnaotubes Functionalised with Icariin for an Attenuated In Vitro Immune Response and Improved In Vivo Osseointegration. J. Funct. Biomater. 2022, 13, 43. [Google Scholar] [CrossRef] [PubMed]
- Neacsu, P.; Mazare, A.; Cimpean, A.; Park, J.; Costache, M.; Schmuki, P.; Demetrescu, I. Reduced Inflammatory Activity of RAW 264.7 Macrophages on Titania Nanotube Modified TI Surface. Int. J. Biochem. Cell Biol. 2014, 55, 187–195. [Google Scholar] [CrossRef]
- Gordin, D.; Ion, R.; Vasilescu, C.; Drob, S.; Cimpean, A.; Gloriant, T. Potentiality of the “gum metal” titanium-based alloy for biomedical applications. Mater. Sci. Eng. C 2014, 44, 362–370. [Google Scholar] [CrossRef]
- Lerman, J.M.; Lembong, J.; Muramoto, S.; Gillen, G.; Fisher, P.J. The Evolution of Polystyrene as a Cell Culture Material, exhibited the highest number of cells. Tissue Eng. Part B Rev. 2018, 24, 359–372. [Google Scholar] [CrossRef]
- Shapouri-Moghaddam, A.; Mohammadian, S.; Vazini, H.; Taghadosi, M.; Esmaeili, S.A.; Mardani, F. Macrophage Plasticity, Polarization, and Function in Health and Disease. J. Cell. Physiol. 2018, 233, 6425–6440. [Google Scholar] [CrossRef]
- Lavenus, S.; Pilet, P.; Guicheux, J.; Weiss, P. Behaviour of mesenchymal stem cells, fibro-blasts and osteoblasts on smooth surfaces. Acta Biomater. 2010, 7, 1525–1534. [Google Scholar] [CrossRef]
- Wong, Y.J.; Leach, J.B.; Brown, X.Q. Balance of chemistry, topography, and mechanics at the cell-biomaterial interface: Issues and changeless for assessing the role of substrate mechanics on cell response. Surf. Sci. 2004, 570, 119–133. [Google Scholar] [CrossRef]
- Cai, X.; Tan, S.; Yu, A.; Zhang, J.; Liu, J.; Mai, W. Sodium 1-naphthalen esulfonate-functionalized reduced graphene oxide stabilizes silver nanoparticles with lower cytotoxicity and long-term antibacterial activity. Chem. Asian J. 2012, 7, 1664–1670. [Google Scholar] [CrossRef]
- Hong, B.J.; Compton, O.C.; An, Z.; Eryazici, I.; Nguyen, S.T. Successful stabilization of graphene oxide in electrolyte solutions: Enhancement of biofunctionalization and cellular uptake. ACS Nano 2012, 6, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.C.; Lim, C.H.Y.; Shi, H.; Tang, L.A.; Wang, Y.; Lim, C.T.; Loh, K.P. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 2011, 5, 7334–7341. [Google Scholar] [CrossRef]
- Kalbacova, M.; Broz, A.; Kong, J.; Kalbac, M. Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon 2010, 48, 4323–4329. [Google Scholar] [CrossRef]
- Wurn, M.C.; Most, T.; Bergauer, B.; Rietzel, D.; Neukam, F.W.; Cifuentes, S.C.; von Wilmowsky, C. IN-vitro evaluation of Polylactic acid (PLA) manufactured by fused deposition modelling. J. Biol. Eng. 2017, 11, 29. [Google Scholar] [CrossRef]
- Matassi, F.; Nistri, L.; Paez, D.C.; Innocenti, M. New biomaterials for bone regeneration. Clin. Cases Miner. Bone Metab. 2011, 8, 21–24. [Google Scholar]
- Blair, H.C.; Larrouture, Q.C.; Li, Y.; Lin, H.; Beer-Stoltz, D.; Liu, L.; Tuan, R.S.; Robinson, L.J.; Schlesinger, P.H.; Nelson, D.J. Osteoblast Differentiation and Bone Matrix Formation In Vivo and In Vitro. Tissue Eng. B 2016, 23, 268–280. [Google Scholar] [CrossRef] [PubMed]
- Hoemann, C.D.; El-Gabalawy, H.; McKee, M.D. In vitro osteogenesis assay: In fluence of the primary cell source on alkaline phosphatase activity and mineralization. Pathol. Biol. 2009, 57, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Tanodekaew, S.; Channasanon, S.; Kaewkong, P.; Uppanan, P. PLA-HA scaffolds: Preparation and bioactivity. Proc. Eng. 2013, 59, 144–149. [Google Scholar] [CrossRef]
- Robinson, R.J.; Doty, S.B.; Cooper, R.R. Electron Microscopy of Mammalian Bone. In Biological Mineralization; Zipkin, I., Ed.; Academic Press: New York, NY, USA, 1973; pp. 257–296. [Google Scholar]
- Ungureanu, E.; (Dragomir) Vladescu, A.; Parau, A.C.; Mitran, V.; Cimpean, A.; Tarcolea, M.; Vranceanu, D.M.; Cotrut, C.M. In Vitro Evaluation of Ag- and Sr-Doped Hydroxyapatire Coatings for Medical Applications. Materials 2023, 16, 5428. [Google Scholar] [CrossRef]
- Genge, B.R. Correlation between loss of alkaline phosphatase activity and accumulation of calcium during matrix vesicle-mediated mineralization. J. Biol. Chem. 1988, 263, 18513–18519. [Google Scholar] [CrossRef]
- Kumar, S.; Azam, D.; Raj, S.; Kolanthai, E.; Vasu, K.S.; Sood, A.K.; Chatterjee, K. 3D scaffold alters cellular response to graphene in a polymer composite for orthopedic applications. J. Biomed. Mater. Res. B Appl. Biomater. 2016, 104, 732–749. [Google Scholar] [CrossRef] [PubMed]
- Vadiveloo, P.; Keramidaris, E.; Morrison, W.; Stewart, A. Lipopolysaccharide-Induced Cell Cycle Arrest in Macrophages Occurs Independently of Nitric Oxide Synthase II Induction. Biochim. Biophys. Acta (BBA)-Bioenerg. 2001, 1539, 140–146. [Google Scholar] [CrossRef]
- Zeiger, A.S.; Hinton, B.; Van Vliet, K.J. Why the dish makes a difference: Quantitative comparison of polystyrene culture surfaces. Acta Biomater. 2013, 9, 7354–7361. [Google Scholar] [CrossRef] [PubMed]
- Van Goethem, E.; Guiet, R.; Balor, S.; Charriere, G.M.; Poincloux, R.; Labrousse, A. Macrophage podosomes go 3D. Eur. J. Cell Biol. 2011, 90, 224–236. [Google Scholar] [CrossRef]
- Tripathi, P.; Tripathi, P.; Kashyap, L.; Sign, V. The role of nitric oxide in inflammatory reactions. FEMS Immunol. Med. Microbiol. 2007, 51, 443–452. [Google Scholar] [CrossRef]
- Basca, L.; Zeini, M.; Traves, P.G.; Hortelano, S. Nitric oxide and cell viability in inflammatory cells: A role for NO in macrophage function and fate. Toxicology 2005, 208, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Ahmadzedeh, K.; Vanoppen, M.; Rose, C.D.; Matthys, P.; Wouters, C.H. Multinucleated Giant Cells: Current Insights in Phenotype, Biological Activities and Mechanism of Formation. Front. Cell Dev. Biol. 2022, 10, 873226. [Google Scholar] [CrossRef]
- Zhou, G.; Groth, T. Host Response to Biomaterials and Anti-Inflammatory Design–a Brief Review. Macromol. Biosci. 2018, 18, e1800112. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negrescu, A.-M.; Mocanu, A.-C.; Miculescu, F.; Mitran, V.; Constantinescu, A.-E.; Cimpean, A. In Vitro Studies on 3D-Printed PLA/HA/GNP Structures for Bone Tissue Regeneration. Biomimetics 2024, 9, 55. https://doi.org/10.3390/biomimetics9010055
Negrescu A-M, Mocanu A-C, Miculescu F, Mitran V, Constantinescu A-E, Cimpean A. In Vitro Studies on 3D-Printed PLA/HA/GNP Structures for Bone Tissue Regeneration. Biomimetics. 2024; 9(1):55. https://doi.org/10.3390/biomimetics9010055
Chicago/Turabian StyleNegrescu, Andreea-Mariana, Aura-Cătălina Mocanu, Florin Miculescu, Valentina Mitran, Andreea-Elena Constantinescu, and Anisoara Cimpean. 2024. "In Vitro Studies on 3D-Printed PLA/HA/GNP Structures for Bone Tissue Regeneration" Biomimetics 9, no. 1: 55. https://doi.org/10.3390/biomimetics9010055
APA StyleNegrescu, A. -M., Mocanu, A. -C., Miculescu, F., Mitran, V., Constantinescu, A. -E., & Cimpean, A. (2024). In Vitro Studies on 3D-Printed PLA/HA/GNP Structures for Bone Tissue Regeneration. Biomimetics, 9(1), 55. https://doi.org/10.3390/biomimetics9010055