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Abstract: In practical applications, integrating three-dimensional models of bionic devices with
simulation systems can predict their behavior and performance under various operating conditions,
providing a basis for subsequent engineering optimization and improvements. This study proposes
a framework for characterizing three-dimensional models of objects, focusing on extracting 3D
structures and generating high-quality 3D models. The core concept involves obtaining the density
output of the model from multiple images to enable adaptive boundary surface detection. The
framework employs a hierarchical octree structure to partition the 3D space based on surface and
geometric complexity. This approach includes recursive encoding and decoding of the octree structure
and surface geometry, ultimately leading to the reconstruction of the 3D model. The framework has
been validated through a series of experiments, yielding positive results.

Keywords: bionic equipment; multi-view; 3D model reconstruction; hierarchical octree; adaptive
mechanism

1. Introduction

Biomimetics is an interdisciplinary research field that addresses complex engineering
and design challenges by mimicking principles and structures found in nature. In recent
years, significant advancements have been made in biomimetics across various domains,
including advanced medical devices and robotics. These advancements highlight the
immense potential of biomimetics for innovative design. For example, recent studies have
demonstrated drones that emulate bird flight mechanisms [1], climbing robots that mimic
the adhesive properties of gecko feet [2], and waterproof materials inspired by the lotus leaf
effect [3]. These technological innovations emphasize the broad application prospects of
biomimetics but also raise higher demands for the design and optimization of such devices.

Effective design and optimization of bionic devices require precise and accurate
characterization of their three-dimensional features. Three-dimensional characterization
technologies play a crucial role in this process by providing detailed modeling of complex
structures and functions, which is essential for accurate simulation and performance
enhancement of the devices. Despite the foundational progress made by traditional 3D
characterization methods in capturing geometric details and functional characteristics, these
methods often face significant challenges as the complexity of bionic devices increases.

This study introduces a novel 3D characterization framework aimed at addressing
the shortcomings of traditional methods in handling complex biomimetic structures. The
framework improves the precise description of biomimetic structures by offering high-
resolution, adaptive modeling techniques. Specifically, this work integrates state-of-the-art
3D reconstruction technologies, including adaptive local support region segmentation
based on sparse voxel octrees, recursive encoding and decoding methods, to enhance the
design and performance evaluation of bionic devices [4–8]. Through these technologies,
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this study bridges the gap between biomimetic innovations and practical applications,
providing a solid foundation for the engineering optimization of bionic devices.

From scene understanding and object recognition to 3D shape reconstruction and vir-
tual reality scene reconstruction, 3D representation of geometric surfaces has always been
at the core of computer vision and computer graphics tasks. However, there is inherent
uncertainty in the 3D representation of geometric surfaces in 3D shape reconstruction. Inef-
ficiency exists in a range of objects with irregular geometries and surfaces, such as images
of human bodies and animals. Based on this, aiming at voxel-based 3D reconstruction,
high-quality reconstruction of objects with a large number of irregular geometries and
surfaces can be achieved.

Explicit representation methods, such as mesh generation and finite element anal-
ysis, rely on precise geometric descriptions. These methods offer high accuracy when
dealing with regular geometries; however, they often require high-density meshes to
capture the details of complex biomimetic structures, leading to significantly increased
computational costs. Additionally, explicit methods have limitations in handling shape
changes and topological transformations.Implicit representation methods, such as distance
fields and level set methods, provide a means of describing geometries through implicit
functions. These methods offer significant advantages in handling complex shapes and
topological changes. However, implicit methods must strike a balance between achieving
high-precision descriptions and maintaining computational efficiency.

Although explicit 3D representation is widely used in 3D reconstruction work, there is
no existing work that can satisfy the corresponding properties of the method. The challenge
of preserving fine-scale shape details is particularly problematic for point cloud-based and
voxel-based representations, because doing so frequently requires considerable memory
consumption. Mesh-based learning methods tend to rely on the deformation of the model,
thus limiting the scalability of this class of methods to handle arbitrary topologies. The
neural implicit network [4,9–12] suggested by Chen et al. offers a superior strategy for
3D modeling and reconstruction challenges. However, the use of global functions to code
all shapes in neural implicit networks reduces the reconstruction accuracy and shape
applicability of the model.

To circumvent these challenges, it has been suggested that three-dimensional spaces be
transformed into lattices [5,13] or local support spaces [14], with the geometry of each space
being provided to a local implicit function for approximation expression.The meshing of
the space increases the precision and effectiveness of the restructuring process while also
enhancing the shape prior that each local network must learn. However, these methods do
not account for the fact that the granularity of local geometric surface representations varies,
resulting in two issues. First, memory utilization increases quadratically with the volume
of the 3D scene; second, standard meshing is difficult to scale to high resolution, limiting
the representability of geometric surfaces when dealing with complicated, fine-grained,
dense structures.

By evaluating a large number of 3D form representations, it is possible to deduce that
geometric surfaces often contain a greater number of smooth surfaces and fewer fine details.
At the same time, the reconstructed surface usually occupies only a small part of the total
space. Therefore, the Sea-OctField 3D surface representation method is proposed in this
paper, which introduces the hierarchical structure into the organization of local implicit
functions to improve the efficiency of 3D reconstruction.

However, octrees have a distinct and infinitesimal structure, and thus, it is essential
to employ them directly in a deep learning framework. In this research, a novel hierar-
chical network is proposed for distinguishing recursive encoding and decoding of octree
structures and geometric features. On the decoder side, the subdivision of octree cells
is specifically clearly stated as a probabilistic process, which requires learning the octree
structure microscopic. In addition, a classifier is utilized in this method to determine
whether the current cell should be subdivided based on its closed geometric properties.
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As technology continues to advance, bionic devices are playing an increasingly impor-
tant role in fields such as medicine, robotics, and bioengineering. These devices are often
designed to mimic or enhance natural biological structures and functions to help restore or
replace lost physiological functions (for example, the bionic hand). However, the design
and manufacture of bionic devices faces many challenges, especially in scenarios that re-
quire a high degree of personalisation and precise adaptation. Traditional design methods
are often difficult to meet the requirements of complex morphology and high precision,
limiting the widespread use of bionic devices in practical applications. Three-dimensional
reconstruction technology is capable of accurately capturing and reconstructing complex
biological structures, providing a solid foundation for the personalised design and manu-
facture of bionic devices. Although 3D reconstruction technology shows great potential in
the design and manufacture of bionic devices, there are still some challenges in practical
applications. How to improve the reconstruction accuracy, especially in the reconstruction
of complex tissues or dynamic structures, requires more efficient algorithms and more
powerful computational capabilities.

Mesh-based methods usually lack geometric expansion performance and do not
take into account the memory bottleneck caused by the granularity differentiation of
different geometric details. NeRF-based methods have unique features that are difficult to
discriminate when dealing with regions with high texture repetition or sparse texture, which
may lead to repetition errors and unstable model performance. The inability to effectively
distinguish features in these regions results in errors that affect the overall reliability of
the reconstruction. Methods based on generative approaches are highly dependent on the
quality of the dataset. To address the above issues, we adopt the recursive encoder–decoder
network, as shown in Figure 1, which is trained using various GAN methods. In this work,
voxel 3DCNN is used to encode the geometry of the octree and recursive aggregation is
performed using the hierarchy of local encoders and geometric features. The decoding
function is implemented by a hierarchy of local decoders with a mirror structure relative
to the encoder that recursively decodes the structural and geometric information of the
input model. Moreover, the local geometric surface is recovered by embedding the input of
an implicit decoder in each octree. The following three primary points constitute the key
contributions of this paper:

• This work is able to extract the density structure of 3D objects from multiple views,
resulting in a higher quality 3D structure compared to traditional point cloud data.

• This work provides high-quality reconstruction of complex geometries by introducing
a new neural network layer.

• This work solves the distortion problem in 3D model reconstruction work in geometric
scenes by improving the OctField algorithm.

Figure 1. A diagram of a hierarchical octree neural network in two dimensions. In this paper, a
recursive encoder–decoder network is proposed, which is trained using several GAN methods. Here,
the geometry of the octree is encoded using the voxel 3DCNN and recursively aggregated using
the hierarchical structure and geometric features of the local encoder εi. The decoding function
is implemented by a local decoder Di hierarchy with a mirror structure relative to the encoder.
The structural and geometric information of the input model is decoded recursively, and the local
geometric surfaces are recovered with input of an implicit decoder embedded in each octree.
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2. Related Work

Representation of three-dimensional forms based on deep learning. Diverse 3D form
representations are gaining increasing attention and research in the field of 3D deep
learning [15]. The survey by Eman Ahmed et al. [16,17] gives a thorough analysis of
available deep learning-based 3D form representation techniques. In recent years, point
clouds have gained considerable attention [18]. As the output of 3D scanning equipment,
point cloud data makes it simple to collect 3D models with high precision, yet it remains a
formidable task to build dense point cloud models with high precision [19]. Contrary to
conventional representations of 3D geometric surfaces, convolutional neural networks can
process 3D voxels [20,21]. Currently, the computational cost of voxel-based generative mod-
els is significant [22], and new research has added the notion of octree space to the geometric
representation of voxels in order to lower the storage cost [23]. Also, meshes are frequently
used to represent 3D surfaces in 3D model reconstruction tasks. Ding et al. [24] proposed a
bionic active sensing algorithm for 3D perception and reconstruction in order to improve
the visual perception accuracy as well as the control of force and position of a bionic robot,
which achieves high-precision 3D modeling by applying a registration algorithm.

However, current mesh-based methods [25–28] for producing 3D models enhancing
accuracy primarily by deforming the mesh, restricting its scalability to shapes with arbitrary
topology. Because of the adaptability of the neural implicit function [4,5,29] in dealing
with arbitrary topology of the mesh surface, reconstruction of the mesh surface by the
neural implicit function can improve the accuracy of the 3D model surface reconstruction
works. By locally recreating geometric characteristics, Kyle Genova et al. [5,13,14] added
shape decomposition and local implicit functions to the model to boost its modeling ca-
pability. Presenting the discrete dot set of the Implicit Moving Least Squares (IMLS) [23]
surface-resolution model, Shi-Lin Liu et al. defined high-grade geometric zones. Existing
approaches, however, focus primarily on a linear decomposition of the geometric space
and do not account for the occupancy of sparse geometric surfaces and the variable granu-
larity of geometric details, which might result in memory bottlenecks when partitioning
moderately dense geometric surfaces.

Recently, NeRF-based methods have been developed to generalize networks for cross-
scene training for efficient 3D reconstruction of small amounts [30]. Chen et al. [31]
proposed a novel neural rendering method known as MVSNeRF, which is capable of
effectively reconstructing neural radiance fields for view synthesis and representing ob-
jects within three-dimensional scenes. This approach utilizes rapid network inference to
reconstruct the radiance field from three nearby input views. Subsequently, it employs
plane-sweeping cost volumes for geometry-aware scene inference, combining this with
physically based volumetric rendering to achieve the reconstruction of the neural radiance
field. MVSNeRF excels in providing three-dimensional representations of input images
across different scenes, generating highly realistic synthesized results. Furthermore, the
method allows for fine-tuning of the scene’s radiance field, enabling swift reconstruction
of scenes. This capability is particularly beneficial for applications requiring quick and
accurate 3D reconstructions, such as virtual reality, augmented reality, and various fields of
computer vision. Despite its advantages, the method encounters challenges when dealing
with regions that exhibit high texture repetition or areas with sparse texture. In such
regions, the distinctive features are difficult to discern, which may lead to repeated errors
and instability in the model’s performance. The inability to effectively differentiate features
in these areas results in inaccuracies, affecting the overall reliability of the reconstruction.

Generative models utilizing deep learning. The ability with deep generative models,
along with the two deep generative models GAN [32] and VAE [33], to obtain realistic im-
ages in the 2D domain has been consistently proven, but the ability to produce high-quality
3D models in the 3D domain has managed to gain more attention. Three-dimensional
learning approaches strive to replicate 2D generative models successfully in order to gener-
ate 3D shapes. The 3D-GAN [26] model initially employed GAN techniques to voxels to
discover a deep generator capable of synthesizing multiple 3D shapes. Although it is true
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that MLP layers are frequently implemented in generative models on point clouds [29], it
might be difficult to build dense point sets with high precision because to computational
resources and computational complexity. Recent work on synthetic 3D meshes mainly
relies on graph-CNN [10,25,34] to deform mesh shapes or manipulate structures by as-
sembling surfaces [5,35]. A hierarchical implicit generative model for 3D modeling was
introduced by OctField [6], and it was used to reconstruct 3D surfaces with fantastic quality
and intricate geometric elements.

Ho et al. [36] proposed a cascading diffusion model capable of generating high-
fidelity images without the aid of auxiliary image classifiers. This cascading diffusion
model is structured as a pipeline composed of multiple diffusion models, each tasked with
generating images of progressively higher resolutions. The methodology enhances image
information by incrementally adding higher resolution details through upsampling. This
approach is particularly effective in extracting fine details within the images. However,
it is noteworthy that as the number of cascading layers increases, the computational cost
correspondingly escalates. Moreover, the cascading diffusion model imposes stringent
requirements on the quality and completeness of the input data.

Bautista et al. [37] proposed a GAUID generative model capable of capturing the
distribution of complex and realistic 3D scenes, which can be rendered immersively by
moving the camera. This method optimizes a latent 3D representation to disentangle the ra-
diance field from the camera poses. By learning this latent 3D representation, the generative
model can both unconditionally and conditionally generate 3D scenes. The model employs
a sophisticated neural network architecture to effectively learn the underlying structure
and appearance of 3D environments, providing high-quality visual outputs. However,
the model exhibits strong performance on specific datasets but demonstrates decreased
generalization ability when applied to different types of data. This limitation means that
the model might not perform as well when faced with new, unseen environments that differ
significantly from the training data. Additionally, there is a significant risk of overfitting
during the training process.

Henzler et al. [38] proposed a method called PlatonicGAN, which discovers the 3D
structure of object classes from unstructured 2D image collections. The key idea of this
method is to train a deep neural network to generate 3D shapes. This method employs a
series of distinguishable rendering layers to establish constraints between the 2D image
observations and their 3D interpretations, enabling the reconstruction of 3D shapes from
unstructured 2D images. The approach leverages the power of deep learning to infer
3D structures by learning from large datasets of 2D images, effectively bridging the gap
between 2D observations and 3D shape generation. However, this method heavily relies on
the quality and diversity of the training data. If the training data contain noise, biases, or
insufficient variety, the model may struggle to generalize well to new, unseen data, leading
to a significant risk of overfitting.

Watson et al. [39] proposed a diffusion model called 3DiM for 3D view synthesis, which
can transform a single input view into multiple views. The core of this method is a pose-
conditional image-to-image diffusion model that takes the source view and its pose as input,
and generates new views for the target poses in an autoregressive manner, outputting these
as the final result. Generating high-quality multi-view consistent images and 3D shapes
from a collection of single-view 2D photos in an unsupervised manner remains a significant
challenge in computer vision. Existing methods often face a trade-off between the quality
and resolution of generated images and the preservation of multi-view consistency or the
accuracy of 3D shapes. In their work on 3DGAN, Chan et al. [40] proposed a novel hybrid
explicit–implicit network architecture. This architecture combines the advantages of explicit
representations, which offer precise control over 3D shapes, with implicit representations,
providing flexibility to model complex structures. By leveraging this hybrid approach,
3DGAN achieves real-time synthesis of high-resolution, multi-view consistent images and
generates high-quality 3D geometries, which is a significant advancement in the field.
However, the effectiveness of 3DGAN is contingent upon the quality of the input images.
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High-quality input data are crucial for ensuring fidelity in the synthesized views and
accuracy in the reconstructed 3D shapes. Moreover, as with many deep learning models,
3DGAN is susceptible to overfitting during training, which can limit its generalization
ability to unseen data. Addressing these challenges requires ongoing research efforts to
improve the robustness, generalization, and overall performance of 3DGAN. Enhancements
in data preprocessing techniques, regularization strategies, and model architectures are
essential to further advance the capabilities of unsupervised 3D shape synthesis from
single-view images.

In the work of this paper, the generation of high-quality 3D structures is done using a
periodic implicitly generated adversarial network (pi-GAN) [41]. pi-GAN senses image
generation unconditionally and is able to reconstruct 3D shapes and textures conditionally
from local observations. Using pi-GAN to generate 3D structures will allow us to generate
models unconditionally.

3. Method

This section focuses on the eight-domain hierarchical network and the deep generative
model mentioned in this work.

3.1. Hierarchical Eight-Domain Network

Octree structure. In integrating the input model into the octree structure segmentation,
the 3D structure is first scaled evenly into symmetric bounding boxes, followed by recursive
subdivision of the bounding regions into suboctrees in breadth-first order. In order to
subdivide a model, two conditions must be met. The surface of interest is contained
within the octree, and the surrounding geometry must be sufficiently complex to justify
subdivision. Specifically, the following formula describes the normal variance of a surface
slice S:

ν(S) = Ei(ν(ni
x) + ν(ni

y) + ν(ni
z)), (1)

where ni
x, ni

y, and ni
z are x, y, and z elements, respectively, that make up the normal vector

ni at the i-th surface point that was sampled, ni
x denotes the set of ni

x; ν(·) calculates the
variation of the input, while Ei(·) returns the expected value. In the test, periodic sampling
is performed on the surface, and the sampling points are precomputed. The decomposition
is repeated until predefined depth d or ν(S) less than predefined threshold τ is reached.

(ec0 , ec1 , · · · , ec7) = Dk(gk) (2)

where cj ∈ Ck represents the subtree of Ok and ecj = (gcj , αcj , βcj) represents the geometric
properties of the subtree Ocj , as well as two metrics.These two metrics indicate the likeli-
hood that subtree must be decoded or partitioned. This is achieved by decoding all eight
suboctets simultaneously.

As seen in Figure 2, the encoding process begins from the bottom up with the most
significant octet. For each octagon Oi, its binary metric (αi, βi) is first calculated based on
its closed geometry. If surface exists inside Oi, αi is set to 1, otherwise it is 0. If the closed
geometry of Oi (if αi = 1) satisfies the subdivision criterion, βi is set to 1. Then, its closed
voxelized geometry Gi is passed to the voxel CNN V to extract the geometric features Gi of
Oi. When proceeding to higher levels, the potential features of the children are aggregated
to their parent octants. In particular, for the parent octet OK, this method represents the
features of its child octets as ecj = (bcj , gcj , αcj , βcj)|cj ∈ Ck, where represents the child octet
of Ok. The latent features of the substrate of the encoder εk of Oi to the geometric feature
gk = εk(ec0 , ec1 , . . . , ec7) of Oi. Then, gk is connected with the structural features (αk, βk) of
OK to obtain the latent features of Oi. Until the root node is processed, the encoding and
fusing of recursive geometric features are accomplished.
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Figure 2. The structure of the encoder and decoder Ek and Dk, respectively. Ek collects the structure
(acj , bcj ) and geometric characteristics (gcj ) of the child octrees into its parent octree k, where cj is in
Ck, utilizing an MLP, maximum set operation, and second MLP. Two MLPs and classifiers decode the
geometric features gk of the parent space into geometric features gcj and two attributes αcj ,βcj of the
child space. Two metrics are employed to determine the probability of surface occupation and the
need for substructure subdivision.

Dk comprises specifically two MLPs and three classifiers. First, gk is decoded by one
MLP into hidden vector vcj for all eight subspaces. For this method, two classifiers Lg
and Lh are used to retrieve model structure information to compute the probability of the
surface being occupied and, respectively, the necessity for further segmentation. For the
subspace Ocj , its hidden vector vcj is input to Lg and Lh and αcj = Lg(vcj), βcj = Lg(vcj) and
bcj = Lh(vcj) are computed. To predict gcj , other MLPs are applied on vcj . Then, it means
that Ocj does not contain any geometry and will not be processed further. If αcj ≤ 0.5, it
indicates that Ocj does not contain any geometry and is not processed further. If αcj > 0.5,
indicating that Ocj is occupied by surfaces and the value of βcj will be checked further.
If βcj ≤ 0.5, the method will not further subdivide the octagon and will use the implicit
octagon decoder G and the geometric feature gcj to infer the surface it encloses. If βcj > 0.5,
the space will be subdivided by the same procedure by predicting the latent features of its
subnodes. bcj represents the decoding recursion depth generated by the encoder. We repeat
this procedure until there is no space to be subdivided.

3.2. Deep Generation Model

The deep generator model uses a generative method for learning radiation field
representations from unlabeled 2D images to generate high-quality 3D density sets, a type
of data similar to point clouds.

Three-dimensional objects are implicitly represented in the generator using a neural
radiation field parameterized by a multilayer perceptron (MLP), which takes as input the
space x = (x, y, z) and the three-dimensional coordinates d in the observation direction.
The output of the neural radiation field varies in space with a density of σ(x), as shown
in Figure 3a.
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Figure 3. This figure shows the depth generation model, which is composed of n combined network
layers of linear network and implicit network, and the implicit network core uses sin function as
the calculation method. The multi-layer perceptron takes the position information x and the noise
information z processed by the mapping network layer as the input, and the final output is the density.
(a) Overall architecture of the network model. (b) Specific structure of the FiLM SIREN unit.

The neural radiation field output spatially varies in density σ(x) : R3 → R. In
addition, we employ a mapping network inspired by StyleGAN [42] to alter the siren based
on the noise vector z via film conditioning. As represented in Figure 3a, the generator is
represented as:

ϕ(x) = ϕn−1 ◦ ϕn−2 ◦ · · · ◦ ϕ0(x), (3)

ϕi(xi) = sin(γi · (Wixi + bi) + βi, (4)

where ϕi : RMi 7→ RNi is the i-th layer of the MLP. The operator ◦ represents the function
composition used to build network models. It consists of an affine transformation defined
by the weight matrix Wi ∈ RNi×Mi and a bias bi ∈ RNi applied to the input xi ∈ RMi ; it is
then utilized as a nonlinear sine wave for each resultant vector component (Figure 3b). The
network utilized in this instance is a basic ReLU MLP that modulates each layer of alerts
by receiving the noise vector z as input and outputting the frequency γi and phase shift
βi for that item. The density representation of the implicit function is then characterized
as follows:

σ(x) = Wσϕ(x) + bσ (5)

where Wσ and bσ are additional weights and deviation parameters.

4. Experiment

In this section, the data preparation methodology for the experiments will be described
first, followed by an evaluation of the proposed method in several applications, such as
shape reconstruction, form production, interpolation, and shape completeness.

4.1. Shape Reconstruction

The ShapeNet dataset’s [43] five largest and most prevalent object classes were em-
ployed in order to train and evaluate a dataset used to evaluate the performance of shape
reconstruction in this section: chairs, tables, airplanes, cars, and sofas. The most recent
technologies that are closely related to those utilized in this research are also used for
comparison, and these are:IM-Net [4], OccNet [44], Locally Implicit Grid (LIG) [5], and
OctField [6]. While LIG classifies the input model into grid data, uses linear rules, and uses
a local implicit kernel to complete the geometric representation of the model, OctField and
OccNet both use implicit functions to complete the 3D shape representation. Moreover,
while IM Net and OccNet can recreate the overall form of an object, they are unable to
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do so for its intricate structure. LIG could recover some fine geometry, but it struggles to
reproduce the angles and delicate structures shown in the second row. In comparison, the
method developed in this paper gets better results across all categories (see Figure 4 for the
control findings) and is capable of reconstructing complicated geometric details such as the
slats of a chair back, the skeletonized base of a table, and the wheels of an automobile.

The evaluation metrics used in this section and their functions are as follows:

• Mean Intersection over Union (mIoU): Measures the overlap between predicted and
ground truth shapes by averaging the ratio of the intersection area to the union area
of the predicted and ground truth shapes.

• F1 Score: The harmonic mean of precision and recall. Precision is the proportion of
true positive predictions out of all positive predictions, while recall is the proportion
of true positives out of all actual positives.

• Chamfer Distance (CD): Calculates the distance between point clouds of the pre-
dicted and ground truth shapes by averaging the distance from each point to its
nearest neighbor.

• Earth Mover’s Distance (EMD): Also known as Wasserstein distance, it measures the
difference between two point cloud distributions by calculating the minimum amount
of work required to move one distribution to the other.

mIoU is used to measure the overlap between the model’s predictions and the actual
shapes, reflecting the model’s accuracy. F1 is used to evaluate the model’s precision
and recall comprehensively, assessing the overall performance of the model. CD is used
to measure the geometric differences between the predicted and ground truth shapes,
reflecting the model’s precision. EMD is used to assess the similarity of shape distributions,
suitable for measuring the gap between generated shapes and actual shapes. For all metrics,
10 experiments were conducted in ShapeNet dataset and the optimal values were taken as
the results.

Figure 4. Shape reconstruction comparison of (a) LIG [5], (b) OccNet [9], (c) IM-Net [4], (d) OctField [6],
and (e) the work of this paper.

Figure 5 depicts the reconstruction results of the method suggested in this paper for
the complicated surfaces of the model.
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Figure 5. The result of modeling the detail part of the aircraft model.

Based on the content of the two tables, the proposed method in this paper significantly
outperforms other comparative methods in the shape reconstruction task. Table 1 shows
the mIoU and F1 scores, where the proposed method achieves an mIoU of 88.32 and an F1
score of 0.95, the highest among all methods. In contrast, OctField and LIG perform slightly
worse, with mIoU scores of 87.96 and 86.28, and F1 scores of 0.94 and 0.93, respectively.
OccNet performs the worst, with an mIoU of only 71.36 and an F1 score of 0.70. IM-Net
has an mIoU of 79.98 and an F1 score of 0.83, both lower than the proposed method. This
indicates that the proposed method has a significant advantage in overall performance and
can more accurately reconstruct shapes.

Table 1. Here, the mIoU and F1 scores are provided for quantitative evaluation of the formal reconstruction.

Method IM-Net OccNet LIG Octfield Ours

mIoU 79.98 71.36 86.28 87.96 88.32

F1 0.83 0.70 0.93 0.94 0.95

Table 2 provides a detailed comparison of the CD and EMD scores for different
methods across five categories (Plane, Car, Chair, Table, and Sofa). The proposed method
achieves the lowest scores in all categories, with an average CD of 2.79 and an average
EMD of 1.94, demonstrating its superior performance in detail reconstruction and overall
consistency. Specifically, the proposed method has the lowest CD and EMD scores in each
category, such as a CD score of 2.06 and an EMD score of 2.33 in the Plane category, and
a CD score of 2.34 and an EMD score of 1.49 in the Table category. OctField and LIG also
perform well on these metrics, with average CD scores of 2.97 and 3.27, and average EMD
scores of 2.19 and 2.63, respectively, but they still fall short of the proposed method. IM-Net
and OccNet perform relatively poorly, particularly in terms of CD and EMD scores, with
their average scores being higher than those of the proposed method.

Taken together, the method in this paper performs well on all assessment metrics,
and not only has a significant advantage in overall performance, but also demonstrates
excellent ability in detail reconstruction and consistency. This indicates that the method
in this paper is highly stable and superior in the form reconstruction task, and is able to
achieve the best performance in various categories and on different evaluation metrics. In
contrast, other methods, although also performing better on some metrics, are still not as
good as this paper’s method overall, especially OccNet and IM-Net, which underperform
on a number of metrics.
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Table 2. Evaluation quantitative of form reconstruction. The scores (lower is better) for the five
categories CD (10−4) and EMD (10−2) are displayed in this table. Sea-OctField is compared to four
baselines (IM-Net, OccNet, Local Implicit Grids, and OctField) in order to determine the average
score and highest performance in each category.

Method Plane Car Chair Table Sofa Mean

IM-Net
CD 4.21 15.14 6.99 8.03 7.95 8.46

EMD 3.39 4.46 3.77 3.16 2.51 3.45

OccNet
CD 5.62 13.54 7.87 7.47 8.6 8.62

EMD 3.46 4.93 4.16 3.34 2.81 3.74

LIG
CD 2.50 5.46 2.37 2.81 3.23 3.27

EMD 2.57 4.08 2.18 2.27 2.06 2.63

OctField
CD 2.29 4.84 2.19 2.53 3.02 2.97

EMD 2.47 2.79 2.13 1.71 1.84 2.19

Ours
CD 2.06 4.65 2.01 2.34 2.89 2.79

EMD 2.33 2.31 2.02 1.49 1.54 1.94

4.2. Shape Generation and Interpolation

This method employs a GAN to train the network, which enables the model to generate
various 3D shapes by randomly extracting normally distributed random noise vectors from
the pre-trained decoder. The technique selects a potential vector at random from the
learned potential space, decodes it into the shape space using Marching Cubes to extract its
zero-point equivalent surface, and then creates a new three-dimensional shape. Figure 6
depicts the respective generation results for the chair and table categories. The current
method can produce high-quality 3D objects with intricate geometric details despite using
random sampling.

Figure 6. Shape generation. The image shows the results generated by randomly sampling potential
codes in the potential space.

As a second technique for generating 3D models, interpolation operations can be
performed on the provided shapes in the latent space. By linearly interpolating the latent
codes of the two input shapes, the resulting latent code vectors are sent to a pre-trained
decoder for shape interpolation. Figure 7 shows the interpolation results for the chair
and table categories. This method enables continuous smooth interpolation between
two models with different structures and heights. Additionally, during interpolation,
narrow geometric features, such as the grid base of the table in the first row, can also be
properly preserved. In three-dimensional modeling methodologies, shape generation and
interpolation play pivotal roles. Shape generation refers to the process of constructing the
target object in 3D space, while interpolation techniques are utilized to generate new data
points between existing data, facilitating smooth transitions or the creation of new forms.
Shape generation typically serves as the foundation of 3D modeling, determining the basic
geometric morphology of the model. Interpolation techniques, on the other hand, build
upon shape generation, assisting in fine-tuning model details and altering forms to better
align with design requirements or the structural characteristics of real-world objects. This
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technology is particularly crucial when constructing complex biomimetic structures, as
it effectively simulates the continuous variations and gradual changes found in nature,
thereby enabling precise reproduction of natural forms.

Figure 7. Shape interpolation. The figure shows the results of two types of interpolation: table and
chair. (a) The source shape and (f) the target shape. (b–e) is the intermediate result of interpolation.

5. Conclusions

This work proposes a novel hierarchical 3D surface implicit representation method
called Sea-OctField. This method utilizes sparse voxel octree representation to construct
adaptive local support regions around the target surfaces of interest. Sea-OctField not
only efficiently captures the geometric structures of surfaces, but also demonstrates su-
perior performance and effectiveness over traditional control methods in various shape
modeling, reconstruction, and editing tasks. The introduction of this technique opens up
new possibilities in the field of biomimetics, particularly in the design and optimization of
biomimetic devices.

In biomimetics, the application of Sea-OctField can deepen our understanding of the
complex structures and forms of surfaces found in nature. For example, it can be used
to model and analyze the following biological structures: the scales or shells of marine
organisms, which have highly intricate surface structures; the microtextures of plant leaves,
which play a critical role in photosynthesis; and the surface morphology of insect wings,
which enhance flight performance through specific geometric features. By modeling and
analyzing these natural structures, Sea-OctField can provide novel insights and approaches
for the design and optimization of biomimetic devices. These devices, including biomimetic
submarines, underwater robots, and medical devices, can mimic specific structures and
behaviors from nature, thereby enhancing their adaptability and efficiency in fields such as
marine exploration, environmental monitoring, and medical treatment.

Future work will focus on further leveraging the Sea-OctField method to advance
biomimetics and biomimetic device development. This may involve refining the algorithms
and performance of Sea-OctField to meet the demands for efficiency and sustainability of
biomimetic devices. Additionally, integrating semantic information into the octree struc-
ture can enhance Sea-OctField’s ability to simulate and understand biological structures
in nature, providing more inspiration and guidance for the design and optimization of
biomimetic devices. These efforts will drive the advancement of the field of biomimetics
and foster the widespread application of biomimetic devices across various domains.
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