}‘{ biomimetics

Article

Autonomous Robot Task Execution in Flexible Manufacturing:
Integrating PDDL and Behavior Trees in ARIAC 2023

Ruikai Liu ¥*%*40), Guangxi Wan

check for
updates

Citation: Liu, R.; Wan, G.; Jiang, M.;
Chen, H.; Zeng, P. Autonomous Robot
Task Execution in Flexible
Manufacturing: Integrating PDDL
and Behavior Trees in ARIAC 2023.
Biomimetics 2024, 9, 612. https://
doi.org/10.3390/biomimetics9100612

Academic Editor: Ming Xie

Received: 19 August 2024
Revised: 1 October 2024
Accepted: 8 October 2024
Published: 10 October 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1,2,3,% 1,2,34 1,2,3,%

, Maowei Jiang ®, Haojie Chen and Peng Zeng

State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences,
Shenyang 110016, China; liuruikai@sia.cn (R.L.)

Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang 110016, China
Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China

[S BN N N

University of Chinese Academy of Sciences, Beijing 100049, China

Institute of Future Human Habitats, Tsinghua Shenzhen International Graduate School, University Town of
Shenzhen, Nanshan District, Shenzhen 518055, China

* Correspondence: wanguangxi@sia.cn (G.W.); zp@sia.cn (P.Z.)

Abstract: The Agile Robotics for Industrial Automation Competition (ARIAC) was established
to advance flexible manufacturing, aiming to increase the agility of robotic assembly systems in
unstructured and dynamic industrial environments. ARIAC 2023 introduced eight agility challenges
involving faulty parts, flipped parts, faulty grippers, robot malfunctions, sensor blackouts, high-
priority orders, insufficient parts, and human safety. Given the unpredictability of these scenarios, it
is impractical to develop a specific strategy for each possible situation. To address these issues, this
paper presents a hierarchical framework for autonomous robotic task generation and execution in
dynamic scenarios. The framework is divided into a task level and an execution level. Initially, an
immediate task management strategy is adopted at the task level, which reasonably decomposes
dynamic tasks and allocates short-term tasks to the floor robot and ceiling robot. Later, at the
execution level, each robot is designed with an agent architecture that combines PDDL planning
with the quick response of behavior trees. Finally, the effectiveness and practicality of the proposed
framework were thoroughly validated in ARIAC 2023.

Keywords: agent; robotics; agility; PDDL; behavior tree

1. Introduction

Over the past few decades, robots have been extensively employed in manufacturing
systems, primarily for performing repetitive and simple tasks. The globalized market
requires manufacturing systems to have enhanced flexibility and agility, enabling them to
maintain competitiveness and adaptability in ever-changing environments [1]. However,
owing to their task specificity, the efficiency of traditional robot programming methods
is limited under constantly changing products and events. For example, when a robot
performs assembly tasks in a warehouse, it must adjust its actions on the basis of the
type of object being handled (such as pumps or batteries); this typically requires the
input of robot experts, which is both time-consuming and lacks flexibility [2]. To meet
evolving demands, new approaches to robot agility and adaptability are needed. An
initiative to facilitate the development of new approaches is the Agile Robot Industrial
Automation Competition (ARIAC), which was designed to push the boundaries of robotic
systems by emphasizing not only task efficiency but also the system’s ability to adapt in
dynamic environments [3]. In addition to participants being required to complete specified
assembly tasks in as little time and expense as possible, ARIAC 2023 introduces eight agility
challenges involving faulty parts, flipped parts, faulty grippers, robot malfunctions, sensor
blackouts, high-priority orders, insufficient parts, and human safety. These challenges occur
randomly to simulate as closely as possible the problems that can occur in real production.

Biomimetics 2024, 9, 612. https:/ /doi.org/10.3390 /biomimetics9100612

https://www.mdpi.com/journal /biomimetics

https://doi.org/10.3390/biomimetics9100612
https://doi.org/10.3390/biomimetics9100612
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0009-0004-4275-5679
https://orcid.org/0000-0003-4456-6236
https://doi.org/10.3390/biomimetics9100612
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics9100612?type=check_update&version=1

Biomimetics 2024, 9, 612

20f17

These challenges occur randomly, further simulating the unpredictability of real-world
manufacturing scenarios and highlighting the need for flexible, adaptive robotic solutions.
Traditional robot programming methods, while effective for repetitive tasks, often
fall short in highly dynamic environments [4]. Automated planning [5,6] and machine
learning [7] have emerged as the two mainstream methods for robotic task planning,
offering more flexibility than static programming. However, due to the ARIAC robot system
design principle of “preparing mostly for errors instead of normal operation” [8], these
methods cannot provide timely solutions in dynamic and frequently faulty environments.
Therefore, most action planning work by past ARIAC participants has resulted in static
plans with designed rules to adapt to dynamic environments. Team RuBot used finite
state machines (FSMs) to design static plans for each robot and added simple recovery
modules to handle robot faults [9]. Team Reaper constructed multiple agents on the basis
of task functions, reducing system coupling but still requiring static plans and rules for
each agent [2]. However, these methods inevitably reduce the autonomy and robustness of
robotic systems, decreasing their adaptability to dynamic tasks and environments.

To address these limitations, hybrid architectures that combine automated planning,
machine learning, and control frameworks have been proposed to improve system adapt-
ability. Recent studies in areas such as human-robot interaction, autonomous systems,
and brain—computer interfaces have demonstrated the effectiveness of hybrid models in
dynamic environments, offering insights into how these techniques could enhance robotic
systems [10-12]. In recent years, behavior trees have emerged as a key component of
such hybrid architectures, recognized for their superior reactivity in robotic task execu-
tion [13]. Behavior trees provide a modular framework for organizing and executing tasks,
wherein nodes (including conditions, actions, etc.) define how a robot makes decisions
and responds to varying scenarios. The principal advantage of behavior trees lies in their
ability to react swiftly, adapting quickly to changing environments [14]. However, a single
behavior tree structure is often unable to meet the diverse requirements of complex and
dynamic manufacturing environments. In this context, the role of the Planning Domain
Definition Language (PDDL) [15] is particularly crucial. PDDL is a language designed to
describe and automatically generate task plans based on the current task and environment.
By combining PDDL with behavior trees, systems can flexibly generate and adapt behavior
trees in response to complex, dynamic environments. Similar studies have attempted to
combine behavior trees with various planning algorithms, using knowledge base data to
generate long-term plans. However, generating long-term plans in highly dynamic and
complex environments is impractical. For example, although systems such as PlanSys2 [16]
and BeBOP [17] have made progress in planning and execution, they still face challenges
in adapting to environmental changes and real-time responses. The most relevant to our
work is [18]; however, our work emphasizes rapid adaptation to dynamic challenges rather
than ontology reasoning.

Therefore, a hierarchical robotics task framework for dynamic and complex environ-
ments is proposed. The framework is divided into task level and execution level. At the
task level, an immediate task management strategy is adopted. This strategy is capable of
providing agents with reasonable short-term tasks in the context of complex and uncertain
long-term dynamic tasks, allowing them to plan quickly. As detailed in Section 3.3.1, the
planning instance demonstrates the efficiency of this approach, with planning solutions
being generated in approximately 0.01 s. At the execution level, each robot is designed with
an agent architecture that combines PDDL and behavior trees. This architecture leverages
PDDL’s symbolic planning capabilities to generate task plans while utilizing the modularity
and flexibility of behavior trees to execute these plans. While the behavior tree handles
the sequence of task actions, a fault monitoring mechanism is introduced. When the agent
detects a fault during task execution, the system can automatically amend the behavior
tree on the basis of the fault information, enabling timely responses to ARIAC’s random
agility challenges.

Biomimetics 2024, 9, 612

3o0f17

This work won first place in ARIAC 2023, which validated the effectiveness and
practicality of this system framework in that environment. The code is available at
https://github.com/LKmubihei/ ARIAC_paper_code, (accessed on 8 August 2024). The
main highlights are as follows:

1. A hierarchical robotics task framework for flexible manufacturing that decomposes
long-term tasks and assigns them to multiple robots for execution.

2. A robust agent architecture is designed to automatically generate and update the
behavior tree on the basis of real-time information, thus ensuring the reliability of task
execution in dynamic scenarios.

3. The proposed robotics task framework is validated on a simulation manufacturing
platform, ARIAC 2023.

The remainder of this paper is organized as follows: Section 2 presents the challenges
introduced by ARIAC 2023 and related work in this domain. Section 3 analyzes the dynamic
task management strategy and the agent construction methodology in detail. Section 4
presents the system implementation and experimental validation. Finally, Section 5 presents
the competition experience and concludes this paper.

2. ARIAC 2023
2.1. ARIAC Introduction

The ARIAC, initiated in 2017, was created to increase the agility of industrial robotic
systems, aiming to improve their assembly capabilities in unstructured and dynamic
industrial settings. The engineers behind ARIAC convert challenges encountered in real-
world production environments into tasks within the Gazebo simulation platform. The
participants are required to develop agile robotic control systems based on the robot
operating system (ROS), which is capable of handling the dynamic tasks set forth by
the ARIAC [3]. In this competition, robot agility can be specifically represented by the
following traits. (1) Failure recovery: robots can detect and fix issues during manufacturing.
(2) Automated planning: robots require less setup time when handling new products.
(3) Flexible environments: robots adapt to parts in different positions. (4) Plug-and-play
robots: different robots work seamlessly without requiring major reprogramming.

In ARIAC 2023, participants were required to complete dynamically issued orders,
which encompass three types of tasks: kitting, assembly, and combined tasks [19]. As
illustrated in Figure 1, these tasks require participants to control floor and ceiling robots to
precisely select specific parts from conveyors or bins, including different colored pumps,
batteries, regulators, and sensors, and move these parts to designated locations.

For the kitting task, the robot is required to place the scattered parts of an order into a
kit. Specifically, the robot must pick the selected parts, place them in the designated areas
of the kit tray, and use an automated guided vehicle (AGV) to transport the tray to the
warehouse. The completed kit trays were scored based on accuracy and completeness. The
assembly task requires the robot to assemble parts onto products at the assembly station
workbench following the manufacturing process in sequential or arbitrary order. At the
beginning of the task, parts are typically already placed on the AGV. Participants must move
the AGV to the correct assembly site and perform the assembly there. Upon completion, the
assembled products are evaluated and scored based on quality and accuracy. The combined
task is an integrated task requiring participants to complete the kitting task and assembly
task in sequence. Since the assembly part is scored, participants can flexibly adjust their
strategies to smoothly complete the combined task.

During task execution, the competition system introduces agility challenges to test
the agility of the robotic systems, with the specific challenges displayed in Table 1. The
competition results account for cost factors (cost of system sensors), efficiency factors (time
taken to complete tasks), and completion scores (accuracy of task execution) when assessing
the performance of the participants.

https://github.com/LKmubihei/ARIAC_paper_code

Biomimetics 2024, 9, 612 40f17
Figure 1. The ARIAC 2023 environment.
Table 1. Eight agile challenges in ARTAC 2023.
Challenge Description
Faulty parts Parts have quality problems and cannot be used in the competition.
Flip parts Parts may be placed upside down and must be reoriented.
Faulty gripper The gripper may drop parts at any time, even if it does not move.

The robot may fail under certain conditions in the test, causing it to stop
moving, which must be addressed.
Sensor blackout The sensor may stop sending data for a period.
The simulation must complete a high-priority order before the
regular-priority order.
Insufficient parts The workspace does not have enough parts to complete the order.
To simulate human movement in the workspace, the robot must ensure
that it maintains a safe distance from people; otherwise, it will be punished.

Robot malfunction

High-priority order

Human safety

2.2. New Trends in ARIAC 2023

Migration from ROS1 to ROS2. In 2023, ARIAC updated its implementation architec-
ture from ROS1 to ROS2 [20] to align the competition with technological advancements.
Although ROS1 and ROS2 do not significantly differ in terms of robotic control archi-
tecture implementation, ROS2 offers considerable advantages in real-time performance,
security, and decentralization, which positions it as the new standard in robotics technology.
Consequently, choosing ROS2 as the competition environment makes ARIAC take tech-
nological progress into account and presents a new challenge for participants: designing
control systems that are more compatible with the ROS2 architecture to fully leverage its
advanced features.

Task Complications. ARIAC 2023 introduced combined tasks that require the ex-
ecution of assembly and kitting tasks. This increases the system complexity, requiring
competitors to effectively manage two different types of tasks and complete them within a
limited amount of time. This demands that the system has strong perception and planning
capabilities to manage and utilize available resources effectively, completing tasks in an
optimal manner.

Randomization of Agility Challenges. In ARIAC 2023, the conditions for trigger-
ing agility challenges changed. In addition to the original triggers from various events
(such as placing parts and submitting orders), time-based triggers were added, making
the occurrence of challenges unpredictable and random. This temporary uncertainty in-
creases the complexity and unpredictability of the competition. These changes make the
competitive environment more similar to real industrial production settings, increasing

Biomimetics 2024, 9, 612

50f 17

the demands on the adaptability, response speed, and decision-making capabilities of the
participating systems.

2.3. Related Work

Team RuBot [9] shared their experience participating in ARIAC 2019 and ARIAC 2020.
The robotic control system was divided into a high-level task planning layer and a low-level
motion planning layer. The high-level layer uses a finite state machine (FSM) for robot task
allocation, constructing precise planning paths through meticulous design at the lower
level. To address agility challenges, Team RuBot designed simple recovery modules in
the state machine to respond to emergencies. These modules enabled the robot to shut
off its vacuum gripper and return to its original position if it became stuck or frozen for
a sufficient length of time, addressing more than half of the system failures. This design
highlights the importance of incorporating recovery modules into robotic systems, although
indiscriminate recovery approaches can severely impact system execution efficiency. Team
Virsli [8], the winners of ARIAC 2020, structured their robotic control system into four
layers: strategic planning, trajectory planning, low-level robot control, and perception.
When system failures occurred during agility challenges, responses were managed through
the top-level strategic planner. Specifically, the strategic planning layer utilized a stateless
microservice architecture, decomposing the program into a series of small, independent
services. These services, which were not reliant on previous system states, allowed the
system to flexibly formulate new action plans upon detecting failures caused by agility chal-
lenges. In ARIAC 2021, Team Reaper employed an agent-based architecture [2], dividing
the agents into four types according to the functional requirements of the ARIAC: the order
agent, task agent, robot agent, and sensor agent. They organized the multiagent system
structure using Unified Modeling Language (UML) and controlled the dynamic behavior
of agents through state machine transitions. Under an instant task assignment strategy,
upon detecting agility challenges, the system could swiftly switch states or generate new
plans through the division of labor and collaboration among agents.

Although the aforementioned methods address the adaptability of robotic systems in
dynamic environments to varying degrees, they all share several common shortcomings:
Response delay: Predefined static state machines and high-level strategic planning can
hardly cover all unexpected situations, resulting in a slow response or even execution
failure in dynamic environments. Difficulty in expansion: Recovery modules and stateless
microservice architectures lack flexible adaptive capabilities when responding to complex
and changing environments, making it more difficult to expand the system and handle
unforeseen failures.

In this paper, a hierarchical robotics task framework is proposed to autonomously
complete ARIAC order tasks and promptly respond to dynamic agility challenges.

3. Hierarchical Robotics Task Framework
3.1. Overview

Building on the experience obtained from winning ARIAC 2021 [2], we explored
in depth the advantages of agent-based architectures in addressing agility challenges.
An agent-based architecture offers a modular system design, enabling the decentralized
design of autonomous and cooperative systems. The excellent flexibility and robustness
of this architecture make it ideal for handling dynamic and unpredictable environments.
For the joint tasks performed by the floor robot and ceiling robot in ARIAC 2023, we
considered treating each robotic entity as an agent and controlling it with an agent design
that integrates behavior trees and PDDL. This design approach allows each robot to handle
ARIAC’s dynamic tasks autonomously and flexibly while ensuring reactivity.

Experience from ARIAC 2021 shows that using instant task assignment strategies
is appropriate when handling highly uncertain, rapidly changing environments. We
constructed a dynamic task manager to allocate and coordinate tasks for the two agents
in real-time, thus achieving a hierarchical robotic task framework that can effectively

Biomimetics 2024, 9, 612

6 of 17

Orders

Task Level <

address the dynamic task and agility challenges in ARIAC 2023. As shown in Figure 2,
the framework is divided into a task level and an execution level, which are designed to
handle orders from the competitor control system (CCS). At the task level, the task manager
first receives the order and breaks it down into multiple parts. It then distributes these
parts to three specialized task queues: kitting, assembly, and combined. The execution
level is composed of a floor agent and a ceiling agent. The floor agent and ceiling agent
extract individual part tasks from the relevant task queues, obtain the specific part positions
through the sensor system, and execute these tasks in a closed-loop manner.

id: 'MMB3@H2' id: 'MMB3eH57" id: 'MMB3@H38'
type: 'kitting’ type: ‘assembly” type: 'combined’
§ announcement : announcement :
announcement: X .
X dition: time_condition: 5 time_condition: 25
eLmENCONG LELON 2 priority: false priority: false
prlorlty. false assembly_task: combined_task:
kitting_task: agv_numper: [4,3] station: 'as2’
agv_number: 2 station: 'as4’ products:
tray_id: 2 products: - type: 'sensor’
destination: ‘warehouse’ - type: ‘sensor color: 'red’

color: 'green’
assembled pose:
xyz: [@.405, ©.164, 0.110]

products:
- type: ‘battery’

assembled_pose:
xyz: [0.405, ©.164, 0.118]
color: "blue’

e - rpy: ['pi/2", e, @]
quadrant: 1 gzimglsi;;réciioﬁ? [1, o, @] assembly direction: [-1, @, @] /
Kitting queue Combined queue Assembly queue

e pump | redpump) [lue patery | red_pump | || blue battery | red pump |
L)
Al A

Execution Level

~
e Ak ey
,,, — S~ - %4 4
PP . Kad [)

task type : kitting task type : assembly
- part name :blue_pump - part name :blue_battery
destation : agv_num_slot destation : assembly_station

part pose : Pose() part pose : Pose()

€=———

floor agent ceiling agent

Figure 2. Hierarchical robotic task framework: The CCS dynamically announces orders. The system
controls the floor robot and ceiling robot to fulfill these dynamic orders. The floor robot is a UR10e
arm mounted on a linear rail, and the ceiling robot is mounted to a gantry on the ceiling and can
move along the x- and y-axes and rotate.

3.2. Task Level—Dynamic Task Management Strategy

The task level primarily consists of a task manager, which is the central component re-
sponsible for managing the workflow and task execution within the system. It is intricately
connected with the CCS to ensure seamless order processing. One key function of the task
layer is to subscribe to real-time orders from the CCS. This subscription mechanism allows
the system to receive and process incoming orders promptly. Upon receiving these orders,
the task manager of the task layer decomposes the orders into individual part tasks, which
serve the smallest unit. Then, depending on the type of order, these individual part tasks
are added to different task queues. Additionally, the task layer actively cooperates with
the CCS to submit completed orders. Once a group of part tasks in an order is successfully
executed, the task layer notifies the CCS that the order task has been completed. This
interaction is crucial for maintaining accurate records of completed tasks and ensuring the
smooth operation of the entire order fulfillment process.

Biomimetics 2024, 9, 612

7 of 17

Owing to the significant uncertainty caused by agility challenges in ARIAC, it is diffi-
cult to achieve task optimization and allocation for robots via global planning algorithms.
The immediate strategy proposed by [2] is suitable for solving ARIAC tasks. On this basis,
we have also devised a rule-based task allocation method.

First, in the task system, the task manager breaks down the received orders into
individual tasks. This fine-grained task decomposition is key to achieving real-time task
allocation, making the system more flexible and allowing it to respond more quickly to
changes in sequential tasks. The decomposed tasks are distributed into three queues on the
basis of their type: kitting, assembly, and combined. Each part is treated as the smallest unit
of a task and is sorted according to the priority of the part tasks. Task interchangeability
between different queues is also allowed. For example, a combined part task can be
decomposed into kitting and assembly tasks, where the target part is first picked and placed
on an AGV, which then transports it to the assembly station for assembly. Alternatively,
the task can be directly converted into an assembly task, where the ceiling agent picks the
target part directly from a bin or conveyor belt and transports it to the assembly station
for assembly. This task decomposition and conversion mechanism enables the system to
respond flexibly to various task demands, thereby improving overall efficiency.

The floor agent can complete kitting tasks only, whereas the ceiling agent can complete
kitting, assembly, and combined tasks. To achieve the goal of minimizing the completion
time of ARIAC tasks, the task acquisition method is based on the following rules:

1. When the floor agent is idle and functioning normally, it retrieves parts from the
kitting queue. When the ceiling agent is idle and functioning normally, it retrieves
parts from the queues in the order of assembly, combined, and kitting.

2. Combined tasks are decomposed into kitting tasks and assembly tasks when both the
floor and ceiling agents are idle. In other cases, combined tasks are directly converted
into assembly tasks.

3. Tasks involving parts on the conveyor belt are prioritized for completion.

3.3. Execution Level—Agent Architecture

The execution level consists of two agents, the floor agent and the ceiling agent, which
receive individual part tasks from the task manager. As depicted in Figure 3, the agent
architecture is divided into three parts: the planner, executor, and fault recorder. The
planner uses PDDL to construct behavior trees for specific tasks, enabling the agent to
handle various tasks. The executor implements these behavior trees, quickly identifying
and responding to agility challenges. The fault recorder logs fault information during
execution failure, which is used by the planner for subsequent planning sessions. Successful
task execution triggers a success signal, allowing the agent to proceed to the next task,
whereas failure sends a failure signal to the task manager, records fault information on the
blackboard, and returns the task to the queue for reassignment. This closed-loop execution
is essential for achieving system agility.

In this architecture, the core of each agent is its action library, which serves as a shared
knowledge resource for both PDDL and behavior trees. This structured design simplifies
the construction of intelligent agents, as designers only need to specify the action library to
quickly build an agent. There is no need for designers to write complex code for all possible
scenarios; instead, they only need to create a domain file based on the action library in
advance. PDDL automatically extracts data from the current environment to generate
problem files and converts the generated plan into a series of actions in a behavior tree to
effectively complete the assigned tasks.

Biomimetics 2024, 9, 612 8of17

Fault recorder -- Backboard ™
Fault

information fault reason fault action target
:11 ‘floor_drop’ ‘move’ Part()
Problem I:l
aan
q Move][Flip J

((Grasp | [.- | I:l
_ Action library Domain —

J Action
Seqence
. Planner -- PDDL Executor -- Behavior tree /

task type : kitting
part name :blue_pump

destation : agv_num_slot
part pose : Pose()

—>

Failure

e e e e e e
e e e

Cd
~,

Figure 3. Diagram of the proposed agent architecture. The agent is composed of a planner, an
actuator, and a fault recorder.

The control architecture that integrates PDDL and behavior trees, as discussed in
the literature [18], was designed for single-robot tasks and relies on a specific reasoning
framework. When a fault occurs, this architecture updates the motion planning and
TAMP configuration files to generate a new behavior tree, which increases complexity and
computation time. In contrast, our proposed framework decouples planning and execution.
The planning module generates PDDL problem files from the current environment and
focuses on symbolic planning, while the execution module handles task execution. If
an error is detected during execution, monitoring nodes interrupt the execution, return
a failure signal, and reassign the task to another robot, ensuring task continuity and
reducing system downtime. This architecture is especially effective in environments like
ARIAC, which are designed to “prepare for errors rather than normal operations”, offering
robustness and high task completion rates.

Because the architecture uses relatively independent modules, in the event of execu-
tion failure, the behavior tree will only return a failure signal, and specific fault information
might be overlooked during task replanning, making it unusable. This can be critical for
some failures. For example, during replanning, if a part has already been grasped and
placed on the gripper, a failure might occur. Although the replanning process accounts
for the presence of an object on the gripper, the object’s parameters are not returned. Con-
sequently, the system identifies a new part on the basis of the target and sensor system,
forcing the robot to find a new part among the available parts and use its parameters for the
task. To address this issue, we designed a fault recorder to log the corresponding fault infor-
mation. When the planner next performs planning, it attempts to extract parameters from
the fault information and assigns them to the planner on the basis of the fault conditions.

3.3.1. Agent Planner—PDDL

PDDL is crucial for ensuring the adaptability of agents by acting as the planner within
the agent structure. PDDL is responsible for perceiving and understanding the environment
and for making final decisions. In this process, the domain description defines the objects to
be specified in the domain, predicates on the basis of these objects, and defines actions that
produce certain effects under specific preconditions. The problem description discusses
the specific instances of these objects, which predicates are true, and the goals that must be
achieved [21].

PDDL has been actively developed and used in Al planning for more than two
decades; multiple versions have been developed, including PDDL2.1 [22], PDDL3.1 [23],
and PDDL+ [24]. Although the planning problems in ARIAC involve numerous variables,
at the individual agent level, only the action sequencing problem must be examined.
The expressive power of the STRIPS [25] is sufficient for this purpose, allowing for a
more flexible choice of the PDDL version. Utilizing PDDL as the planner of an agent
allows the problem domain, states, and goals to be clearly defined, enabling the system

Biomimetics 2024, 9, 612

90f17

to autonomously understand tasks and devise appropriate action plans. Let us consider a
simple example of the utilization of PDDL in ARTAC 2023.

The domain in Listing 1, named ‘ariac_domain’, provides the basic framework and
rule definitions for the planning problem. It describes the types of objects available in the
system, such as containers, parts, and robots, and their relationships, represented by a series
of predicates, such as ‘attach’, “is_enabled’, ‘is_reachable’, ‘on " and “flip_on’, to describe
the system state and connections. Additionally, this file defines a series of actions, such as
‘flip’, ‘grasp’, ‘move’ and ‘place’, each with its own preconditions and effects, dictating the
timing and manner of execution of these actions. Defining rules and constraints for the
problem enables the planner to effectively find solutions to the problem.

Listing 1. PDDL domain description.

(define (domain ariac_domain)
(:requirements :strips :typing)
(:types container part robot)
(:predicates (attach?part - part?robot - robot)

(is_enabled?robot - robot)

(is_reachable?robot - robot?container - container)
(on?part - part?container - container)
(flip_on?part - part?container - container))
(:raction flip

:parameters (?robot - robot?part - part?container -

container)
:precondition (and (is_enabled?robot)
(is_reachable?robot?container)
(flip_on?part?container))
:effect (on7part?container)
)
(:action grasp
:parameters (?robot - robot?part - part?container -
container)
:precondition (and (on?part?container)
(is_enabled?robot)
(is_reachable?robot?container)
(not (attach?part?robot)))
:effect (attach?part?robot)
)
(:action move
:parameters (?robot - robot?source_container - container?
destination_container - container)
:precondition (and (is_enabled?robot)
(is_reachable?robot?source_container))
:effect (and (not (is_reachable?robot?source_container))
(is_reachable?robot?destination_container))
)
(:action place
:parameters (?robot - robot?part - part?container -
container)
:precondition (and (is_enabled?robot)
(is_reachable?robot?container)
(attach?part?robot))
:effect (and (not (attach?part?robot)) (on?part?container))
)
)

Biomimetics 2024, 9, 612

10 of 17

The problem in Listing 2, named ‘ariac_floor_problem’, specifies a planning problem
within the context of the “ariac_domain” planning domain. It defines various objects,
including containers, parts, and a robot (floor_robot), along with their initial configurations.
The initial state includes information about the robot’s activation, its position, and the
locations of parts and containers. This problem must be solved to achieve a specific task:
placing a particular part (battery_red) onto a specific container (agv1). This problem file
outlines a concrete planning challenge where a planner must find a sequence of actions to
accomplish the task, transitioning from the initial state to the desired goal state.

Listing 2. PDDL problem description.

(define (problem ariac_floor_problem)
(:domain ariac_domain)
(:requirements :strips :typing)
(:objects agvl - container agv2 - container agv3 - container
agv4 - container battery_blue - part battery_green - part
battery_orange - part battery_purple - part battery_red -
part
binl - container bin2 - container binb - container
bin6 - container curr_position - container floor_robot -
robot
pump_blue - part pump_green - part pump_orange - part
pump_purple - part pump_red - part regulator_blue - part
regulator_green - part regulator_orange - part
regulator_purple - part
regulator_red - part sensor_blue - part sensor_green - part
sensor_orange - part sensor_purple - part sensor_red - part)
(:init (is_enabled floor_robot)
(is_reachable floor_robot curr_position)
(on battery_red binl)
(on pump_red binl)
(on regulator_green bin2)
(on sensor_green bin2))
(:goal (on battery_red agvl))
)

Listing 3 provides the solution to the PDDL planning problem. In this solution, the
robot (floor_robot) initially moves from its current position (curr_position) to container bin1.
Afterward, a part named battery_red is grasped from bin1, this part is moved from bin1 to
agvl, and the part is finally placed into agv1. The sequence of these actions forms the plan
that successfully transitions the problem from its initial state to the desired goal state.

Listing 3. PDDL solution.

Time: 0.013570785522460938s

Plan:

move floor robot curr position binl
grasp floor robot battery red binil
move floor robot binl agvil

place floor robot battery red agvl

PDDL solvers exhibit a slow generation speed when handling complex, multistep
global plans, which has long been a point of criticism [8]. However, in our research
framework, the application and objectives of PDDL have significantly improved. PDDL
has demonstrated unique advantages, particularly when addressing tasks in the dynamic
environment of ARIAC. The distributed framework employed in this study allows agents

Biomimetics 2024, 9, 612

11 of 17

to focus on tasks involving single parts rather than complex overall plans. This approach
effectively reduces the risk of planning failures and enhances the adaptability of agents
in dynamic environments. In traditional applications such as Plansys2 [16], PDDL is used
to generate global plans involving complex actions, often encompassing numerous steps
and times. However, in our framework, PDDL is utilized to generate action sequences
for individual part tasks. As shown in the results of Listing 3, because fewer planning
steps are involved, the speed of plan generation is significantly higher; the framework
thereby overcomes the speed limitations of PDDL. This ability to quickly generate plans
for individual tasks greatly enhances the agents’ response speed and real-time decision-
making capabilities.

3.3.2. Agent Executor—Behavior Tree

In agent architecture, behavior trees function akin to “hands’” and are responsible for
executing specific actions and tasks. The advantage of this architecture lies in its excellent
reactivity, which enables agents to respond quickly to agility challenges and dynamic tasks.
Additionally, the modular structure of behavior trees allows for effective mapping within
the action library, facilitating the construction and maintenance of agents.

Behavior trees were originally applied in computer games [26]. Michele et al. [27]
considered the application of behavior trees in robot control and proposed the classic
behavior tree framework. Owing to its adaptability and responsiveness, this framework
has become popular in robot control [28]. A behavior tree consists of a root node, control
flow nodes (sequence, fallback, or parallel), and execution nodes (action or condition) (see
Table 2). The tick signal starts at the root node and flows from left to right through the tree.
Each leaf node returns one of three states: success, failure, or running.

Table 2. Behavior tree node types.

Node Type Symbol Success Failure Running
Sequence — Ifall children If one child fails [f one Chﬂc.l
succeed returns running
Fallback ? fonechild 1oy idren fait 1 One child
succeeds returns running
If >M children If>N-M
Parallel = succeed children fail else
Action shaded box If completed Fail to complete Durmg
completion
Condition white oval If true If false Never

Notably, different behavior tree libraries or tools might introduce variations in the expres-
sion and functionalities of behavior trees. In the open-source tool py-trees (https://py-trees.
readthedocs.io/en/devel/, accessed on 8 August 2024), the fallback node is replaced by a
selector node, and the sequence node has memory and non-memory variants. Parallel
nodes are also divided into selective parallel and sequential parallel types. These varied
functionalities enhance the flexibility of py-trees in organizing the action structure.

Reactivity is a crucial feature of modern Behavior Tree frameworks [29], allowing
agents to adapt flexibly to changes in the external environment. In particular, the recurrent
execution mechanism of the root node (recurrent ticks) is crucial for enhancing the agent’s
responsiveness. The root node periodically sends a looping ‘tick” signal throughout the
behavior tree, continuously triggering a reevaluation. This allows the agent to regularly
check and adjust its behavior to adapt to environmental changes. The frequency of the
recurrent execution of a root node can be adjusted according to specific needs, meeting
various response time requirements.

Behavior trees exhibit significant modularity in the design of agent behaviors [30].
Behavior trees use a uniform task interface, standardized return states (success, failure,
running), and techniques like hierarchical structures, composite nodes, and blackboards.

https://py-trees.readthedocs.io/en/devel/
https://py-trees.readthedocs.io/en/devel/

Biomimetics 2024, 9, 612

12 0of 17

These features improve the maintainability and scalability of agent behaviors. For example,
the fault recorder employs blackboard technology. Upon receiving a task failure signal, it
parametrically stores the current information, including the fault reason, the failed action,
and the current goal, on the global blackboard. When the planner reinitiates the planning
process, it attempts to extract parameters from this fault information and allocate them to
the planner accordingly.

In the dynamic competition environment of ARIAC, when detecting agility challenges,
behavior trees enable agents to handle various emergencies effectively through their flexibly
configured conditional nodes. Designers can customize the settings of these conditional
nodes according to specific needs and environmental changes. Since behavior trees are
executed cyclically at a set frequency, the behavior of an agent can be quickly interrupted
or altered when the preset conditions of a certain conditional node are no longer met. This
mechanism allows agents to keenly monitor and respond to changes in the environment
and the robot’s own abnormal states, thereby maintaining efficient operations in a dynamic
environment.

4. System Implementation and Experimental Validation
4.1. System Implementation

In ARTAC 2023, the system employed a multinode distributed communication frame-
work based on ROS2. In this framework, each agent is designed as an independent node,
thereby yielding a high degree of modularity and parallel processing capabilities. These
agent nodes are coordinated through a centralized master node, ensuring unified manage-
ment and efficient operation of the entire multiagent system.

Upon receiving dynamic task orders from the CCS, the task manager assigns individual
tasks to each agent. These tasks are first represented using the PDDL, where the problem
is formulated by defining objects, predicates, initial conditions, and goal states relevant
to the task at hand, as outlined in Section 3.3.1. The PDDL-related libraries (pddl-parser,
https:/ /github.com/pucrs-automated-planning /pddl-parser, (accessed on 8 August 2024),
Al-Planning/pddl, https://github.com/Al-Planning/pdd]l, (accessed on 8 August 2024))
in Python were employed to generate a detailed action plan based on this task description.

Once the task has been planned via PDDL, the generated action sequence is trans-
formed into an executable behavior tree using the PyTrees library. The behavior tree
organizes the task into a modular and hierarchical structure, where each node corresponds
to an action or condition. This behavior tree framework enables closed-loop task execution,
allowing agents to continuously monitor and adapt to real-time changes in the environment.
As the agents execute their behavior trees, they react dynamically to system states and
adjust their actions accordingly. In the event of failure, such as a robot malfunction, the
failure state is detected, and the task and failure reason is returned to the task manager for
reassignment.

Figure 4 illustrates examples of the behavior trees for both floor and ceiling robots
under various task scenarios in the ARIAC environment. These examples highlight the
flexibility and adaptability of the proposed task framework, which enables robots to
respond efficiently to dynamic changes and task failures.

Figure 4a shows the behavior tree for a floor robot performing a normal kitting task.
The “Robot_Normal” node checks conditions such as the operational status of the robot,
the functionality of the gripper, and the risk of collision with other robots. Once these
conditions are satisfied, the robot follows the sequence of actions planned by PDDL to
complete the task. Specifically, the robot must move to the location of the target part, grab
it, and then place it on the target AGV. If a failure occurs at any point, the behavior tree
halts and is reconstructed based on the new task state to retry or recover from the error.

Figure 4b shows the behavior tree for a floor robot after recovering from a robot
malfunction during an assembly task. Upon detecting the failure, the task is paused. After
the failure in the behavior tree from Figure 4a, a new behavior tree, as shown in Figure 4b,
is generated to retry and successfully complete the task.

https://github.com/pucrs-automated-planning/pddl-parser
https://github.com/AI-Planning/pddl

Biomimetics 2024, 9, 612

13 of 17

Figure 4c demonstrates the behavior tree used by a floor robot when executing a
part-flipping task. For a flipped part, the robot must first grab and flip it, then select a new
surface to flip. The process is repeated until the flipping task is successfully completed.

Figure 4d shows the behavior tree for a ceiling robot performing a normal assembly
task. The “Robot_Normal” node checks if the robot is functioning properly, including
conditions for human safety. If the system detects proximity to a human, the robot switches
to a “Far from Human” action sequence, ensuring safe operation before returning to the
original task.

Figure 4e shows the behavior tree for a ceiling robot after recovering from a gripper
malfunction during an assembly task. Upon detecting the failure, the task is paused. After
the failure in the behavior tree from Figure 4d, a new behavior tree, as shown in Figure 4e,
is generated to retry and successfully complete the task.

Figure 4f depicts the behavior tree for a ceiling robot executing a task that involves
flipping a part. The robot must grab the part, flip it, and continue the task.

Robot_Normal?

(d) (© ®

Figure 4. Behavior trees for various tasks and scenarios. (a) Floor robot behavior tree for normal
kitting tasks. (b) Floor robot behavior tree after robot malfunction recovery. (c) Floor robot behavior
tree for the flipped part. (d) Ceiling robot behavior tree for normal assembly tasks. (e) Ceiling robot
behavior tree after gripper malfunction recovery. (f) Ceiling robot behavior tree for the flipped part.

Real-time monitoring of conditional nodes via behavior trees ensures timely responses
to agility challenges, overcoming issues such as reduced execution efficiency caused by
delayed responses to agility challenges in traditional frameworks. A simple experimental
demonstration of this framework can be found at: https:/ /www.youtube.com/watch?v=
QW96v9eKiBc, accessed on 21 August 2024.

4.2. Experimental Validation

To evaluate the performance of the proposed hierarchical robotic task framework in
different scenarios, we conducted experiments on three types of tasks: kitting, assembly,
and combined tasks. For each task type, nine sets of experiments were conducted, including
one normal scenario and eight scenarios with various challenges. Each scenario was tested
five times with random variations. The specific experimental setup is detailed in Table 3.

https://www.youtube.com/watch?v=QW96v9eKiBc
https://www.youtube.com/watch?v=QW96v9eKiBc

Biomimetics 2024, 9, 612

14 of 17

Table 3. The trial details.

Trial

Description

normal_kitting

normal_assembly
normal_combined
Faulty parts
Flip parts
Faulty Gripper
Robot malfunction
Sensor Blackout
High-priority order
Insufficient parts

Human safety

1 regular order: performing kitting on AGV4 and shipping the AGV to the warehouse. Randomly
selected 4 parts.
1 regular order: performing assembly at as1. Randomly selected 4 parts.
1 regular order: performing assembly at as2. Randomly selected 4 parts.

Randomly set one faulty part on the tray, only effective for kitting and combined tasks.
Randomly set two parts that need to be flipped, only effective for kitting and combined tasks.
Randomly set a gripper malfunction that causes one part to be dropped.

Randomly set a robot malfunction for 20 s.

Randomly set a sensor blackout for 20 s.

The same workload is generated by two orders: 1 regular order and 1 high-priority order.
Randomly omit a required part from the order.

The human operator purposefully moves towards the ceiling robot to interfere with the robot’s
current task.

Figure 5 presents the experimental results across various tasks and scenarios, where
task scores and task times serve as key performance indicators to evaluate the agility and
effectiveness of the proposed hierarchical robotics task framework. Notably, the part poses
in the assembly task are obtained through system calls; therefore, challenges related to
faulty parts and flipped parts are not present. The high-priority order challenge divides
the tasks into two orders, resulting in additional rewards that increase the scores beyond
the baseline in a normal state.

~ = Kitting Normal
~~- Assembly Normal
~~+ Combined Normal
= Kitting

== Combined

B Assembly —mmmommmomomomomeoooo oo oo LB

Trial score

Trials in Different Challenges

(a)

=+ Kitting Normal

120 | —-- Assembly Normal
~~+ Combined Normal

[Kitting

=1 Combined

Order execution time (s)

Trials in Different Challenges
(b)

Figure 5. The results for various tasks and scenarios. (a) Trial score: the dashed line represents
the baseline score in the normal state, whereas the bar chart represents the scores under various
challenges. (b) Order execution time: the dashed line represents the baseline time in the normal state,
whereas the bar chart represents the times under various challenges.

Biomimetics 2024, 9, 612

15 of 17

The scoring formulas used in the experiments are as follows. The kitting task score S
is calculated as:

n
Sk = max (pttray + Zptq + Pty — Pnep, 0) X Nes 1)
q

where pty,, represents the tray score, pt, represents the score for each component, pt,, is
the bonus score for successfully completing the entire task, pn,, represents the penalty if
more parts are on the tray than needed, and 7, is the number of target locations.

The assembly and combined task scores S, and S, are calculated as:

n
S4,5: = <2Pts + ptb> X Nes (2)
s

where pt, is the score for each component in the assembly or combined tasks, pt; is
the bonus score for successfully completing the entire task, and 7, is the number of
target locations.

In Figure 5a, the bar chart illustrates task performance across various challenges, with
the dashed line representing the baseline score in a normal state. The results indicate that
the framework excels at handling dynamic tasks, particularly in the kitting task, where the
scores are consistently close to the baseline, even under challenging conditions. However,
in the assembly and combined tasks, the scores show more variation, primarily due to the
higher precision required for operations such as part insertion.

Figure 5b provides insight into task completion times. The increase in time compared
to the baseline is largely due to the additional recovery steps necessary to handle faults
or agility challenges, as seen in scenarios like robot malfunction or high-priority orders.
However, the time increments remain relatively close to the baseline, demonstrating the
system’s capacity for real-time fault monitoring and quick reactivity. The agent architecture,
which integrates PDDL planning and behavior trees, plays a critical role in minimizing time
overhead by dynamically adjusting to unexpected challenges and automatically updating
the behavior tree during execution.

As discussed in Section 3.3.1, the planning time required by the PDDL approach was
relatively minimal. Consequently, the primary factor contributing to the extended challenge
time was the inclusion of additional recovery steps. Nevertheless, the overall completion
time remained within acceptable limits. While this analysis predominantly addresses
individual tasks, the proposed method exhibited consistent performance across multiple
tasks. Notably, in the ARTAC 2023 finals, which required the simultaneous execution
of various tasks, the scores accounted for sensor costs, task completion time, and task
scores. Our approach ultimately secured first place in the competition. (Agile Robotics for
Industrial Automation Competition | NIST, https:/ /www.nist.gov/el/intelligent-systems-
division-73500/agile-robotics-industrial-automation-competition, accessed on 28 August
2024).

5. Lessons and Conclusions
5.1. Lessons

From our experience of participating and winning awards for three consecutive years,
the most important lesson we have learned is the choice of an agent-based approach. The
structure of agents allows the system to be divided into independent units, each focusing on
specific tasks. In ARIAC 2021 and ARIAC 2022, we used various functions as independent
agents. In ARIAC 2023, we treated each robot as a complete agent. This modular design not
only facilitated debugging and collaboration among team members but also significantly
improved the system’s flexibility and scalability.

https://www.nist.gov/el/intelligent-systems-division-73500/agile-robotics-industrial-automation-competition
https://www.nist.gov/el/intelligent-systems-division-73500/agile-robotics-industrial-automation-competition

Biomimetics 2024, 9, 612 16 of 17

5.2. Conclusions

This paper details the hierarchical robot task framework adopted in ARIAC 2023.
The framework employs an immediate task allocation strategy and integrates PDDL with
behavior trees to form agents. The test results of ARIAC 2023 fully demonstrate the
effectiveness of the system design. In addressing the challenges of flexible manufacturing
tasks in dynamic and unpredictable environments, our approach focuses on rapid decision
switching to adapt to dynamic challenges. Future work will concentrate on incorporating
uncertainty into the planning process, integrating advanced techniques such as deep
reinforcement learning to enable long-term decision-making in uncertain environments. For
example, by integrating symbolic planning with reinforcement learning, as demonstrated
in skill-based systems [31], our framework can leverage RL to enhance long-term decision-
making capabilities by enabling agents to learn from dynamic challenges and optimize
performance over time. Additionally, further exploration of the system’s scalability when
dealing with larger teams of robots or more complex tasks would enhance the paper’s
applicability to industrial-scale applications. By sharing our experience in ARIAC 2023, we
hope to contribute to future ARIAC competitions and broader robotic applications.

Author Contributions: Conceptualization, R.L.; methodology, R.L. and G.W.; software, R.L. and
H.C,; validation, H.C. and G.W.; writing—review and editing, R.L., M.]. and G.W.,; visualization, R.L.;
supervision, P.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China [92367301,
92267205], Natural Science Foundation of Liaoning Province [2024-MSBA-83], the State Key Labora-
tory of Robotics of China (2023-Z15), and the National Program for Funded Postdoctoral Researchers
(GZB20230805).

Institutional Review Board Statement: Not applicable.
Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare that they have no conflict of interest. The manuscript
was written through the contributions of all authors. All authors have approved the final version of
the manuscript.

References

1. ElMaraghy, H.; Monostori, L.; Schuh, G.; EIMaraghy, W. Evolution and future of manufacturing systems. CIRP Ann. 2021,
70, 635-658. [CrossRef]

2. Wan, G.; Dong, X.; Dong, Q.; He, Y.; Zeng, P. Design and implementation of agent-based robotic system for agile manufacturing:
A case study of ARIAC 2021. Robot.-Comput.-Integr. Manuf. 2022, 77, 102349. [CrossRef]

3. Downs, A.; Kootbally, Z.; Harrison, W.; Pilliptchak, P.; Antonishek, B.; Aksu, M.; Schlenoff, C.; Gupta, S.K. Assessing Industrial
Robot agility through international competitions. Robot.-Comput.-Integr. Manuf. 2021, 70, 102113. [CrossRef] [PubMed]

4. Billard, A; Calinon, S.; Dillmann, R.; Schaal, S. Robot Programming by Demonstration. In Springer Handbook of Robotics; Siciliano,
B.; Khatib, O., Eds.; Springer Berlin/Heidelberg, Germany, 2008; pp. 1371-1394. [CrossRef]

5. Xu, Y.; Zhang, Z.; Yu,].; Shen, Y.; Wang, Y. A Framework to Co-Optimize Robot Exploration and Task Planning in Unknown
Environments. IEEE Robot. Autom. Lett. 2022, 7, 12283-12290. [CrossRef]

6. Styrud, J.; Iovino, M.; Norrlof, M.; Bjorkman, M.; Smith, C. Combining Planning and Learning of Behavior Trees for Robotic
Assembly. arXiv 2021, arXiv:2103.09036. [CrossRef]

7. Ceola, F; Tosello, E.; Tagliapietra, L.; Nicola, G.; Ghidoni, S. Robot Task Planning via Deep Reinforcement Learning: A Tabletop
Object Sorting Application. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC),
Bari, Italy, 6-9 October 2019; pp. 486—492. [CrossRef]

8. Vidacs, A.; Szab6, G. Winning ARIAC 2020 by KISSing The BEAR: Keeping things simple in Best Effort Agile Robotics.
Robot.-Comput.-Integr. Manuf. 2021, 71, 102166. [CrossRef]

9. Feng, SSW.; Guo, T.; Bekris, K.E.; Yu, J]. Team RuBot’s experiences and lessons from the ARIAC. Robot.-Comput.-Integr. Manuf.
2021, 70, 102126. [CrossRef]

10. Kokotinis, G.; Michalos, G.; Arkouli, Z.; Makris, S. A Behavior Trees-based architecture towards operation planning in hybrid
manufacturing. Int. J. Comput. Integr. Manuf. 2024, 37, 324-349. [CrossRef]

11. Al-Qaysi, Z.; Suzani, M.S.; Bin Abdul Rashid, N.; Aljanabi, R.A ; Ismail, R.D.; Ahmed, M.; Sulaiman, W.A.W.; Kumar, H. Optimal

Time Window Selection in the Wavelet Signal Domain for Brain-Computer Interfaces in Wheelchair Steering Control. Appl. Data
Sci. Anal. 2024, 2024, 69-81. [CrossRef]

http://doi.org/10.1016/j.cirp.2021.05.008
http://dx.doi.org/10.1016/j.rcim.2022.102349
http://dx.doi.org/10.1016/j.rcim.2020.102113
http://www.ncbi.nlm.nih.gov/pubmed/37056680
http://dx.doi.org/10.1007/978-3-540-30301-5_60
http://dx.doi.org/10.1109/LRA.2022.3214784
http://dx.doi.org/10.48550/arXiv.2103.09036
http://dx.doi.org/10.1109/SMC.2019.8914278
http://dx.doi.org/10.1016/j.rcim.2021.102166
http://dx.doi.org/10.1016/j.rcim.2021.102126
http://dx.doi.org/10.1080/0951192X.2023.2228254
http://dx.doi.org/10.58496/ADSA/2024/007

Biomimetics 2024, 9, 612 17 of 17

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Al-Qaysi, Z.T.; Suzani, M.S.; bin, Abdul, Rashid, N.; Ismail, R.D.; Ahmed, M.A_; Sulaiman, W.A.W.; Aljanabi, R.A. A Frequency-
Domain Pattern Recognition Model for Motor Imagery-Based Brain-Computer Interface. Appl. Data Sci. Anal. 2024, 2024, 82-100.
[CrossRef]

Colledanchise, M.; C)gren, P. Behavior Trees in Robotics and AI; CRC Press: Boca Raton, FL, USA, 2018. [CrossRef]

Iovino, M.; Styrud, J.; Falco, P; Smith, C. Learning Behavior Trees with Genetic Programming in Unpredictable Environments. In
Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May-5 June 2021;
pp. 45914597, ISSN: 2577-087X, [CrossRef]

Ghallab, M.; Knoblock, C.; Wilkins, D.; Barrett, A.; Christianson, D.; Friedman, M.; Kwok, C.; Golden, K.; Penberthy, S.; Smith,
D.; et al. PDDL—The Planning Domain Definition Language. 1998. Available online: https://www.researchgate.net/profile/
Craig-Knoblock/publication/2278933_PDDL_-_The_Planning Domain_Definition_Language/links/0912f50c0c99385e19000
000/PDDL-The-Planning-Domain-Definition-Language.pdf (accessed on 28 August 2024).

Martin, E; Clavero,].G.; Matellan, V.; Rodriguez, FJ. PlanSys2: A Planning System Framework for ROS2. In Proceedings of the
2021 IEEE/RS]J International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September-1
October 2021; pp. 9742-9749. [CrossRef]

Styrud, J.; Mayr, M.; Hellsten, E.; Krueger, V.; Smith, C. BeBOP-Combining Reactive Planning and Bayesian Optimization to
Solve Robotic Manipulation Tasks. arXiv 2023, arXiv:2310.00971. [CrossRef]

Ruiz-Celada, O.; Verma, P.; Diab, M.; Rosell,]. Automating Adaptive Execution Behaviors for Robot Manipulation. IEEE Access
2022, 10, 123489-123497. [CrossRef]

ARIAC Documentation—ARIAC Docs 1.0 Documentation. Available online: https://pages.nist.gov/ARIAC_docs/en/latest/
index.html (accessed on 2 February 2024).

Macenski, S.; Foote, T.; Gerkey, B.; Lalancette, C.; Woodall, W. Robot Operating System 2: Design, architecture, and uses in the
wild. Sci. Robot. 2022, 7, eabm6074. [CrossRef] [PubMed]

Mayr-Dorn, C.; Egyed, A.; Winterer, M.; Salomon, C.; Fuerschuss, H. Evaluating PDDL for programming production cells: A
case study. In Proceedings of the RoSE "22: Proceedings of the 4th International Workshop on Robotics Software Engineering,
Pittsburgh, PA, USA , 9 May 2022; pp. 17-24. [CrossRef]

Fox, M.; Long, D. PDDL2.1 : An extension of PDDL for expressing temporal planning domains.]. Artif. Intell. Res. 2003,
20, 61-124. [CrossRef]

1 BNF Definition of PDDL 3.1. Available online: https://paperzz.com/doc/9260341/1-bnf-definition-of-pddI-3.1 (accessed on
30 September 2023).

Fox, M.; Long, D. PDDL+: Modelling Continuous Time-Dependent Effects. 1999. Available online: https://planning.wiki/
_citedpapers/pddlplus2003.pdf (accessed on 30 September 2023).

Fikes, R.E.; Nilsson, N.J. Strips: A new approach to the application of theorem proving to problem solving. Artif. Intell. 1971,
2,189-208. [CrossRef]

Florez-Puga, G.; Gomez-Martin, M.A.; Gomez-Martin, PP,; Diaz-Agudo, B.; Gonzalez-Calero, P.A. Query-Enabled Behavior Trees.
IEEE Trans. Comput. Intell. Games 2009, 1, 298-308. [CrossRef]

Marzinotto, A.; Colledanchise, M.; Smith, C.; Ogren, P. Towards a unified behavior trees framework for robot control. In
Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May-7 June
2014; pp. 5420-5427, ISSN 1050-4729. [CrossRef]

Ghzouli, R.; Berger, T.; Johnsen, E.B.; Dragule, S.; Wasowski, A. Behavior trees in action: A study of robotics applications.
In Proceedings of the SLE 2020: Proceedings of the 13th ACM SIGPLAN International Conference on Software Language
Engineering, Virtual, 16-17 November 2020; pp. 196-209. [CrossRef]

Iovino, M.; Scukins, E.; Styrud, J.; Ogren, P.; Smith, C. A survey of Behavior Trees in robotics and Al Robot. Auton. Syst. 2022,
154,104096. [CrossRef]

Colledanchise, M.; Ogren, P. How Behavior Trees Modularize Hybrid Control Systems and Generalize Sequential Behavior
Compositions, the Subsumption Architecture, and Decision Trees. IEEE Trans. Robot. 2017, 33, 372-389. [CrossRef]

Mayr, M.; Ahmad, F,; Chatzilygeroudis, K.; Nardi, L.; Krueger, V. Skill-based Multi-objective Reinforcement Learning of Industrial
Robot Tasks with Planning and Knowledge Integration. In Proceedings of the 2022 IEEE International Conference on Robotics
and Biomimetics (ROBIO), Jinghong, China, 5-9 December 2022; pp. 1995-2002. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.58496/ADSA/2024/008
http://dx.doi.org/10.1201/9780429489105
http://dx.doi.org/10.1109/ICRA48506.2021.9562088
https://www.researchgate.net/profile/Craig-Knoblock/publication/2278933_PDDL_-_The_Planning_Domain_Definition_Language/links/0912f50c0c99385e19000000/PDDL-The-Planning-Domain-Definition-Language.pdf
https://www.researchgate.net/profile/Craig-Knoblock/publication/2278933_PDDL_-_The_Planning_Domain_Definition_Language/links/0912f50c0c99385e19000000/PDDL-The-Planning-Domain-Definition-Language.pdf
https://www.researchgate.net/profile/Craig-Knoblock/publication/2278933_PDDL_-_The_Planning_Domain_Definition_Language/links/0912f50c0c99385e19000000/PDDL-The-Planning-Domain-Definition-Language.pdf
http://dx.doi.org/10.1109/IROS51168.2021.9636544
http://dx.doi.org/10.48550/arXiv.2310.00971
http://dx.doi.org/10.1109/ACCESS.2022.3223995
https://pages.nist.gov/ARIAC_docs/en/latest/index.html
https://pages.nist.gov/ARIAC_docs/en/latest/index.html
http://dx.doi.org/10.1126/scirobotics.abm6074
http://www.ncbi.nlm.nih.gov/pubmed/35544605
http://dx.doi.org/10.1145/3526071.3527519
http://dx.doi.org/10.1613/jair.1129
https://paperzz.com/doc/9260341/1-bnf-definition-of-pddl-3.1
https://planning.wiki/_citedpapers/pddlplus2003.pdf
https://planning.wiki/_citedpapers/pddlplus2003.pdf
http://dx.doi.org/10.1016/0004-3702(71)90010-5
http://dx.doi.org/10.1109/TCIAIG.2009.2036369
http://dx.doi.org/10.1109/ICRA.2014.6907656
http://dx.doi.org/10.1145/3426425.3426942
http://dx.doi.org/10.1016/j.robot.2022.104096
http://dx.doi.org/10.1109/TRO.2016.2633567
http://dx.doi.org/10.1109/ROBIO55434.2022.10011996

	Introduction
	ARIAC 2023
	 ARIAC Introduction
	 New Trends in ARIAC 2023
	 Related Work

	Hierarchical Robotics Task Framework
	Overview
	Task Level—Dynamic Task Management Strategy
	Execution Level—Agent Architecture
	Agent Planner—PDDL
	Agent Executor—Behavior Tree

	System Implementation and Experimental Validation
	System Implementation
	Experimental Validation

	Lessons and Conclusions
	Lessons
	Conclusions

	References

