Lightweight Optic Disc and Optic Cup Segmentation Based on MobileNetv3 Convolutional Neural Network
Abstract
:1. Introduction
2. Methods
2.1. Generating the Network
2.2. Adversarial Networks
3. Experiments and Results
3.1. Datasets
3.2. Implementation Details
3.3. Algorithm Evaluation
3.4. Experimental Results
3.5. Ablation Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Mary, V.S.; Rajsingh, E.B.; Naik, G.R. Retinal fundus image analysis for diagnosis of glaucoma: A comprehensive survey. IEEE Access 2016, 4, 4327–4354. [Google Scholar] [CrossRef]
- Chen, N.; Lv, X. Research on segmentation model of optic disc and optic cup in fundus. BMC Ophthalmol. 2024, 24, 273. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Chen, X.; Meng, Q.; Song, J.; Luo, G.; Wang, M.; Shi, F.; Chen, Z.; Xiang, D.; Pan, L.; et al. GDCSeg-Net: General optic disc and cup segmentation network for multi-device fundus images. Biomed. Opt. Express 2021, 12, 6529–6544. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, G. IOSUDA: An unsupervised domain adaptation with input and output space alignment for joint optic disc and cup segmentation. Appl. Intell. 2021, 51, 3880–3898. [Google Scholar] [CrossRef]
- Fu, H.; Cheng, J.; Xu, Y.; Wong, D.W.K.; Liu, J.; Cao, X. Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans. Med. Imaging 2018, 37, 1597–1605. [Google Scholar] [CrossRef] [PubMed]
- Al-Bander, B.; Williams, B.M.; Al-Nuaimy, W.; Al-Taee, M.A.; Pratt, H.; Zheng, Y. Dense fully convolutional segmentation of the optic disc and cup in colour fundus for glaucoma diagnosis. Symmetry 2018, 10, 87. [Google Scholar] [CrossRef]
- Qin, P.; Wang, L.; Lv, H. Optic disc and cup segmentation based on deep learning. In Proceedings of the 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, 15–17 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1835–1840. [Google Scholar]
- Zhang, Y.; Cai, X.; Zhang, Y.; Kang, H.; Ji, X.; Yuan, X. TAU: Transferable Attention U-Net for optic disc and cup segmentation. Knowl.-Based Syst. 2021, 213, 106668. [Google Scholar] [CrossRef]
- Mehmood, M.; Naveed, K.; Khan, H.A.; Naqvi, S.S. EDDense-Net: Fully Dense Encoder Decoder Network for Joint Segmentation of Optic Cup and Disc. arXiv 2023, arXiv:2308.10192. [Google Scholar]
- Tadisetty, S.; Chodavarapu, R.; Jin, R.; Clements, R.J.; Yu, M. Identifying the edges of the optic cup and the optic disc in glaucoma patients by segmentation. Sensors 2023, 23, 4668. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Tang, X.; You, S.; Liu, S.; Ji, Y. BEAC-Net: Boundary-Enhanced Adaptive Context Network for Optic Disk and Optic Cup Segmentation. Appl. Sci. 2023, 13, 10244. [Google Scholar] [CrossRef]
- Yu, J.; Chen, N.; Li, J.; Xue, L.; Chen, R.; Yang, C.; Xue, L.; Li, Z.; Wei, L. LC-MANet: Location-constrained joint optic disc and cup segmentation via multiplex aggregation network. Comput. Electr. Eng. 2024, 118, 109423. [Google Scholar] [CrossRef]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Wang, S.; Yu, L.; Yang, X.; Fu, C.W.; Heng, P.A. Patch-based output space adversarial learning for joint optic disc and cup segmentation. IEEE Trans. Med. Imaging 2019, 38, 2485–2495. [Google Scholar] [CrossRef] [PubMed]
- Murugesan, B.; Sarveswaran, K.; Shankaranarayana, S.M.; Ram, K.; Joseph, J.; Sivaprakasam, M. Psi-Net: Shape and boundary aware joint multi-task deep network for medical image segmentation. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 7223–7226. [Google Scholar]
- Wang, S.; Yu, L.; Li, K.; Yang, X.; Fu, C.W.; Heng, P.A. Boundary and entropy-driven adversarial learning for fundus image segmentation. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, 13–17 October 2019; Proceedings, Part I 22. Springer: Berlin/Heidelberg, Germany, 2019; pp. 102–110. [Google Scholar]
- Son, J.; Park, S.J.; Jung, K.H. Towards accurate segmentation of retinal vessels and the optic disc in fundoscopic images with generative adversarial networks. J. Digit. Imaging 2019, 32, 499–512. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Xue, D.; Pan, F.; Feng, X. Joint optic disc and optic cup segmentation based on boundary prior and adversarial learning. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Sevastopolsky, A. Optic disc and cup segmentation methods for glaucoma detection with modification of U-Net convolutional neural network. Pattern Recognit. Image Anal. 2017, 27, 618–624. [Google Scholar] [CrossRef]
- Zilly, J.; Buhmann, J.M.; Mahapatra, D. Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Comput. Med. Imaging Graph. 2017, 55, 28–41. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Cheng, J.; Fu, H.; Zhou, K.; Hao, H.; Zhao, Y.; Zhang, T.; Gao, S.; Liu, J. Ce-net: Context encoder network for 2d medical image segmentation. IEEE Trans. Med. Imaging 2019, 38, 2281–2292. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, M.; Khan, T.M.; Arsalan, M.; Naqvi, S.S.; Ahmed, M.; Madni, H.A.; Mirza, J. CDED-Net: Joint segmentation of optic disc and optic cup for glaucoma screening. IEEE Access 2020, 8, 102733–102747. [Google Scholar] [CrossRef]
- Shankaranarayana, S.M.; Ram, K.; Mitra, K.; Sivaprakasam, M. Fully convolutional networks for monocular retinal depth estimation and optic disc-cup segmentation. IEEE J. Biomed. Health Inform. 2019, 23, 1417–1426. [Google Scholar] [CrossRef] [PubMed]
- Orlando, J.I.; Fu, H.; Breda, J.B.; Keer, K.V.; Bathula, D.R.; Diaz-Pinto, A.; Fang, R.; Heng, P.A.; Kim, J.; Lee, J.H. REFUGE Challenge: A Unified Framework for Evaluating Automated Methods for Glaucoma Assessment from Fundus Photographs. Med. Image Anal. 2019, 59, 101570. [Google Scholar] [CrossRef] [PubMed]
Dataset | Number of Samples | Image Size | Cameras | Release Year |
---|---|---|---|---|
Drishti-GS [19] | 50 + 51 | 2047 × 1759 | unknown | 2014 |
RIM-ONE-r3 [20] | 99 + 60 | 2144 × 1424 | unknown | 2015 |
REFUGE [21] | 320 + 80 | 2124 × 2056 | Zeiss Visucam 500 | 2018 |
Methods | Datasets | |||||
---|---|---|---|---|---|---|
Drishti-GS | Rim_One_r3 | |||||
U-net [19] | 0.904 | 0.852 | - | 0.864 | 0.797 | - |
M_UNet [25] | 0.95 | 0.85 | - | 0.95 | 0.82 | - |
M-Net [6] | 0.967 | 0.808 | - | 0.952 | 0.802 | - |
CE-Net [27] | 0.964 | 0.882 | - | 0.953 | 0.844 | - |
CDED-Net [28] | 0.959 | 0.924 | - | 0.958 | 0.862 | - |
[20] | 0.965 | 0.858 | 0.082 | 0.865 | 0.787 | 0.081 |
Gan-based [23] | 0.953 | 0.864 | - | 0.953 | 0.825 | - |
BEAL [22] | 0.961 | 0.862 | - | 0.898 | 0.810 | - |
PDD-UNET [29] | 0.963 | 0.848 | 0.105 | 0.970 | 0.876 | 0.066 |
BEAC-Net [12] | 0.8614 | 0.8087 | - | 0.8582 | 0.7333 | - |
LC-MANet [13] | 0.9723 | 0.9034 | 0.043 | 0.9729 | 0.8458 | 0.0444 |
Ours | 0.974 | 0.900 | 0.045 | 0.966 | 0.875 | 0.043 |
Methods | Inference Time | |||
---|---|---|---|---|
U-net [19] | 0.927 | 0.848 | - | - |
[20] | 0.932 | 0.869 | 0.059 | - |
Psi-Net [21] | 0.956 | 0.851 | - | - |
BEAL [22] | 0.945 | 0.860 | - | - |
BGA-NET [24] | 0.951 | 0.866 | 0.040 | 29.1 ms |
ours | 0.951 | 0.869 | 0.013 | 24.3 ms |
Backbone | Total Params | Total Memory | Total MAdd | Total Flops | Total MemR + W | Segmentation Time |
---|---|---|---|---|---|---|
efficientnetv2_m | 54.9 M | 2299.8 M | 158.4 G | 79.3 G | 3.1 GB | 192.7 ms |
Xception | 52.1 M | 1524.5 M | 165.8 G | 83.0 G | 3.1 GB | 170.4 ms |
Resnet50 | 38.4 M | 845.3 M | 138.5 G | 69.3 G | 1.7 GB | 58.9 ms |
Mobilenetv2 | 5.5 M | 651.1 M | 52.9 G | 26.5 G | 1.2 GB | 29.1 ms |
Ours | 5.3 M | 495.4 M | 48.8 G | 24.4 G | 839.0 M | 24.3 ms |
Dataset | |||
---|---|---|---|
Baseline | 0.964 | 0.865 | 0.050 |
Baseline + B | 0.964 | 0.868 | 0.046 |
Baseline + B + G | 0.966 | 0.875 | 0.043 |
Dataset | ||
---|---|---|
Original dataset | 0.920 | 0.820 |
ROI extraction dataset | 0.962 | 0.880 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Liu, Z.; Meng, Y.; Li, J. Lightweight Optic Disc and Optic Cup Segmentation Based on MobileNetv3 Convolutional Neural Network. Biomimetics 2024, 9, 637. https://doi.org/10.3390/biomimetics9100637
Chen Y, Liu Z, Meng Y, Li J. Lightweight Optic Disc and Optic Cup Segmentation Based on MobileNetv3 Convolutional Neural Network. Biomimetics. 2024; 9(10):637. https://doi.org/10.3390/biomimetics9100637
Chicago/Turabian StyleChen, Yuanqiong, Zhijie Liu, Yujia Meng, and Jianfeng Li. 2024. "Lightweight Optic Disc and Optic Cup Segmentation Based on MobileNetv3 Convolutional Neural Network" Biomimetics 9, no. 10: 637. https://doi.org/10.3390/biomimetics9100637
APA StyleChen, Y., Liu, Z., Meng, Y., & Li, J. (2024). Lightweight Optic Disc and Optic Cup Segmentation Based on MobileNetv3 Convolutional Neural Network. Biomimetics, 9(10), 637. https://doi.org/10.3390/biomimetics9100637