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Abstract: Human muscles can generate force and stiffness during contraction. When in contact
with objects, human hands can achieve compliant grasping by adjusting the grasping force and
the muscle stiffness based on the object’s characteristics. To realize humanoid-compliant grasping,
most prosthetic hands obtain the stiffness parameter of the compliant controller according to the
environmental stiffness, which may be inconsistent with the amputee’s intention. To address this
issue, this paper proposes a compliant grasp control method for an underactuated prosthetic hand that
can directly obtain the control signals for compliant grasping from surface electromyography (sEMG)
signals. First, an estimation method of the grasping force is established based on the Huxley muscle
model. Then, muscle stiffness is estimated based on the muscle contraction principle. Subsequently,
a relationship between the muscle stiffness of the human hand and the stiffness parameters of the
prosthetic hand controller is established based on fuzzy logic to realize compliant grasp control for
the underactuated prosthetic hand. Experimental results indicate that the prosthetic hand can adjust
the desired force and stiffness parameters of the impedance controller based on sEMG, achieving a
quick and stable grasp as well as a slow and gentle grasp on different objects.

Keywords: prosthetic hand; grasping stiffness; surface electromyographic; fuzzy logic; compliant grasp

1. Introduction

When grasping an object, humans can generate grasping intentions based on the
characteristics of the object and send corresponding signals to the muscles through the
nervous system [1]. These signals can control the grasping of the human hand and can be
observed as sEMG signals [2]. Therefore, sEMG signals can effectively reflect the grasping
intentions of humans and can be used as control signals to realize the grasping action of a
prosthetic hand [3]. Particularly for upper-limb amputees, myoelectric prosthetic hands
can help them regain the basic operational abilities needed for daily life [4,5]. In the early
stages, D. Engeberg proposed a proportional control method to estimate the magnitude
of grasping force, which is also widely used in commercial prostheses [6]. At the same
time, nonlinear functions can also be used to fit the relationship between grasping force
and sEMG signal amplitude more accurately than the proportional relationship [7]. To
further improve the accuracy of sEMG decoding, Ruyi Ma adopted the CNN classification
method to estimate the grasping force levels from sEMG signals [8]. However, this method
can only obtain the range of grasping force. To improve the precision of sEMG signal
decoding, Hang Su used deep learning methods to estimate grasping force [9]. Due to the
lack of biological models, machine learning methods are prone to overfitting and other
issues [10,11]. To describe the biological characteristics of muscles, Hill and Huxley models
have received widespread attention [12]. The Huxley model, a dynamic biological model,
can use a kinetic model to better describe the myofilament binding reaction, which can
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more accurately achieve continuous estimation of grasping force, further improving the
level of prosthetic hand grasping force decoding [13,14]. However, the grasping action of
the human hand includes not only the grasping force but also the muscle stiffness [15]. To
avoid damaging objects, the human hand often uses lower muscle stiffness when contacting
objects [15]. Therefore, to achieve a compliant grasp of objects, it is necessary to further
estimate the muscle stiffness during grasping on the basis of estimating the grasping force.

To better simulate the human hand and avoid damaging the grasped objects, it is
necessary to control the prosthetic hand for compliant grasping based on the grasping
information obtained from the sEMG signal. Compliant grasping control is mainly di-
vided into passive compliant grasping and active compliant grasping. Passive compliance
achieves compliant grasping by adding elastic elements such as springs to the prosthetic
hand structure and adaptively adjusting the elastic elements when grasping objects [16].
However, directly adding elastic elements makes it difficult to adjust the grasping stiffness.
Therefore, elastic elements are often accompanied by adjustment mechanisms, requiring
additional structures to change parameters such as finger stiffness or damping [17]. This
approach is unsuitable for prosthetic hands with high weight and volume requirements.
With the development of robot control technology, active compliant control technology has
attracted widespread attention because it can achieve compliant control by controlling force
and position without adding mechanical structure [18]. Active compliance converts the
desired compliance into the desired force and position signals, does not rely on a specific
mechanical structure, and has a more flexible control method. Active compliant control is
mainly divided into force–position hybrid control and impedance control. In the operation
process, hybrid position–force control requires frequent switching between position control
and force control due to changes in contact state, which may damage the stability of the
control system [19,20]. Impedance control requires virtual impedance mass stiffness damp-
ing to enable the robot’s motion to exhibit the desired response characteristics when it is
affected by the environment. The system can exhibit compliant characteristics to adapt to
complex environments by adjusting the stiffness and damping parameters.

The parameter of impedance control often relies on engineering experience, and
has poor adaptability when encountering unknown environments, which easily leads
to large control errors and instability. To improve the stability of impedance control,
adaptive impedance control with a damping adjustment strategy was proposed, and
the stiffness parameter was set to zero to ensure zero force tracking error [21]. Since
the stiffness parameter in the controller has a greater impact on task performance, its
adjustment can easily cause instability. To address this, Vahid employed FSR contact sensors
to classify the object’s stiffness and adjust the impedance parameters accordingly [22].
However, the stiffness characteristics of objects are not completely related to the fragile
characteristics of objects, which may result in damage to objects. Virginia judged the
required grasping stiffness based on the gestures of a prosthetic hand [23]. However, this
method requires the grasping gesture and grasping stiffness to be correlated, resulting in
inconvenient stiffness adjustment. Additionally, Miao learned manipulation stiffness from
human demonstrations [24]. However this method depends on human demonstrations and
requires relearning when the object changes. Therefore, to achieve compliant grasp control
of a prosthetic hand, it is necessary to adjust the grasping force and stiffness based on a
human hand’s grasping intentions. To achieve compliant grasping control of a prosthetic
hand based on the grasping intention from a human hand, it is necessary to establish a
connection between the stiffness of the human hand muscles and the stiffness parameters
of the prosthetic hand’s controller.

In general, current research mainly focuses on estimating grasping force, while ignor-
ing the estimation of grasping stiffness. Because of the lack of consideration of the complete
human hand grasping intention, the prosthetic hand may exhibit significant stiffness pa-
rameters that result in faster convergence when grasping deformable objects, potentially
causing damage. Moreover, the parameter selection in existing compliant control methods
relies on engineering experience, which results in poor adaptability when in contact with
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the environment and may cause damage to objects due to large control errors. Most existing
commercial prosthetic hands focus on obtaining grasp modes and grasp force without grasp
stiffness, which is also an important parameter during contact [25]. In current research,
there are machine learning-based methods for decoding stiffness from EMG signals, but
machine learning has the issue of overfitting [11]. Additionally, in the compliant control of
prosthetic hands, the selection of impedance parameters is often based on environmental
stiffness, which may lead to inconsistency with the user’s grasp intention [18]. Therefore,
obtaining the grasping force and muscle stiffness from an sEMG signal and incorporating
these values in a compliant control method to comprehensively adjust the desired force
and stiffness parameters of a prosthetic hand’s controller can better reflect the grasping
intention of a human hand and further expand the usage scenarios of a prosthetic hand.

In this study, a novel compliant grasp control method based on the estimation of
grasping force and muscle stiffness with sEMG is proposed for an underactuated prosthetic
hand. The main innovations are as follows. (1) A method of estimating the grasping
force and muscle stiffness of the human hand using sEMG signals is introduced based
on the Huxley muscle model. The estimation results possess characteristics that indicate
their suitability for application in compliance grasp control. (2) A fuzzy logic relationship
between the muscle stiffness of a human hand based on sEMG and the stiffness parameters
of the controller is proposed based on the characteristics of human hands grasping different
objects. (3) A compliant grasping control method for the underactuated prosthetic hand
is proposed to achieve the desired force and stiffness parameters obtained from sEMG.
In particular, when grasping an object that is not easily damaged, greater expected force
and stiffness will be applied to achieve a fast and stable grasp. On the contrary, a smaller
expected force and lower stiffness parameter will be used to achieve a slow and gentle
grasp, avoiding damaging the object. Experimental results show that this method can
effectively adjust the desired force and stiffness parameters of the controller according to the
estimated results from sEMG, thereby achieving compliant grasping of the prosthetic hand.

2. Problem Formulation

When grasping an object, we adjust our hand’s grasping force and muscle stiffness
based on the type of object and life experience. Typically, we use lower grasping force
and muscle stiffness to avoid damaging the object. To simulate this grasping method with
a prosthetic hand, the controller must be able to adjust the desired force and stiffness
parameters based on the grasping information estimated by sEMG when grasping different
types of objects, achieving anthropomorphic compliant grasping. As shown in Figure 1,
during the grasping process of the prosthetic hand, the grasping intention of the human
hand needs to be converted to the objective of the prosthetic hand. When grasping the
object, the controller of the prosthetic hand can use lower force and muscle stiffness to
achieve compliant grasping of the object, thereby avoiding damage to it. To achieve these
goals, it is necessary to estimate the grasping force and muscle stiffness of the human hand
based on the sEMG signal, and then design a compliant controller based on the estimated
information from sEMG to achieve compliant grasping.
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3. Estimation of Grasping Force and Muscle Stiffness Based on Reduced-Dimension
Muscle Model

To simulate the grasping method of the human hand with the prosthetic hand and
achieve anthropomorphic compliant grasping control, it is first necessary to estimate the
grasping force and muscle stiffness of the human hand. When grasping an object, the
human brain calculates the appropriate grasping force based on the characteristics of the
object and sends corresponding instructions to the muscles through the nervous system.
These instructions can control the contraction of skeletal muscles and are observed in the
form of sEMG signals. During the dynamic contraction of skeletal muscles, some of their
properties are governed by the Huxley model. One of the main assumptions of the Huxley
model is that the binding reactions of muscle filaments follow first-order kinetics, which
is described by a nonlinear partial differential equation. The model parameters in the
equation are related to the biological properties of muscle contraction. By solving and
reducing the dimensionality of this equation, a low-order nonlinear dynamic model can be
obtained, which is used for estimating the grasping force of the human hand.

According to Huxley’s skeletal muscle contraction model [12,26], the actin–myosin
binding reaction obeys the kinetic equation:

dp(x, t)
dt

− v(t)
∂p(x, t)

∂x
= r(t) f (x, t)[1 − p(x, t)]− g(x, t)p(x, t) (1)

r(t) = (eγ − 1)−1(eγα(t) − 1) (2)

where v(t) represents the rate of myofilament slippage, x represents the normalized value
of the distance between the cross-bridge binding site and the equilibrium position, p(x, t)
is the distribution function of the number of cross-bridge binding sites, f (x, t) represents
the separation rate function, g(x, t) represents the combination rate function, r(t) represents
the activation function of the muscle, α(t) is the filtered sEMG signal, and γ is a constant
parameter of the nonlinear shape factor.

To obtain a practical muscle model for a prosthetic hand, the following three steps are
employed, as in [14]. First, the spectral method is applied to reduce the model’s dimensions.
Second, the balanced truncation method is used to further reduce the dimensions and
obtain an extremely low-dimensional skeletal muscle dynamic model. Finally, the time
variable is integrated and a low-dimensional muscle mechanical model is obtained based
on the relationship between muscle force and speed:

.
ãk(t) = Ãk(t)ãk(t) + B̃kr(t), k = 1, 2, 3 (3)

F(t) =
3

∑
k=1

Ck ãk(t) (4)

where ãk(t) is the system variable after the model’s dimensional reduction, Ãk(t) is the
time-varying system coefficient after dimensional reduction, B̃k is the sEMG signal related
coefficient, and Ck is the muscle force-related coefficient.

Muscle stiffness can be defined as the change in grasping force per unit length of
muscle contraction:

K(t) =
∆F
∆X

(5)

Muscle contraction speed can be approximately related to grasping force [26]:

(F + Fa)(v(t) + vb) = (F0 + Fa)vb (6)

where F0 is the maximum isometric contraction force of the muscle, and Fa and vb are
fixed coefficients.
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Equation (6) can be reorganized as follows:

v(t) =
vb(F0 + Fa)

Fa + F(t)
− vb (7)

Considering the muscle contraction length in time T:

∆X =
∫ T

0
v(t)dt (8)

the following result can be obtained by substituting (7) into (8):

∆X = vb

∫ T

0

F0 − F(t)
Fa + F(t)

dt (9)

Then, the stiffness of the muscle in this interval can be calculated as the change in
grasping force per unit length of muscle contraction:

K(t) =
∆F

vb
∫ t

t−T
F0 − F(t)
Fa + F(t)

dt
(10)

The normalized stiffness parameter is defined according to the maximum measured
stiffness of the muscle (Kmax) as:

Ka(t) =
K(t)
Kmax

(11)

The identification method in [14] was used to estimate the muscle parameters. Then, a
myoelectric wristband was used to collect sEMG signals and estimate the grasping force
and muscle stiffness of the human hand when grasping different objects, as shown in
Figure 2. The experimental results are shown in Figure 3 that for the harder and less
vulnerable metal cup, the grasping force of the human hand finally reached 4.702 N and the
muscle stiffness reached 26.676%. For the softer double-layer paper cup, the grasping force
of the human hand finally reached 1.712 N and the muscle stiffness reached 7.617%. From
the above experimental results, it can be observed that for harder objects, the grasping
force and muscle stiffness of the human hand are greater and the grasping speed is faster.
Conversely, for softer objects, the grasping force and muscle stiffness of the human hand
are smaller and the grasping speed is slower. Therefore, there are significant differences
in the grasping force and muscle stiffness estimated from sEMG when the human hand
grasps different objects. These different grasping characteristics can enable the prosthetic
hand to achieve compliant control for different objects.
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4. Kinematic and Dynamic Model of the Linkage-Based Underactuated Prosthetic Hand

After obtaining the grasping force and muscle stiffness of the human hand, it is
necessary to be able to control the prosthetic hand to realize the grasping intentions of the
human hand. Therefore, to realize control of the prosthetic hand, it is also necessary to
establish kinematic and dynamic models of the prosthetic hand.

A linkage-based underactuated prosthetic hand was adopted in this study. Due to its
flexibility and strong driving capability, a linkage-based underactuated prosthetic hand can
better imitate the grasping action of the human hand. The prosthetic hand has fingers with
two degrees of freedom. The coupling and adaptive grasping motions between joints are
achieved through the linkage structure and passive degree-of-freedom structure. Its finger
consists of six rods, as shown in Figure 4. Among them, rod 4 has an extension degree
of freedom. When the proximal end contacts the object and the clamping force is greater
than the preload of rod 4, rod 4 will extend and deform. At this time, the movement of the
thumb will change from the coupled motion of rods 5 and 6 to adaptive motion.
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Figure 4. Schematic diagram of the mechanical structure of the finger on the prosthetic hand.

When the motor drives pull rod 1 through the reducer, a closed-chain structure is
formed. The proximal phalanx rod (5) and the distal phalanx rod (6) of the thumb produce
coupled motion. Assume that the geometric center coordinates of rod n are (xn, yn), the
length is ln, the x-axis is used as a reference, and the rotation angle is θn. According to
the geometric relationship [27], the Lagrangian method is used to establish the dynamic
equation of the thumb hand:

L =
5

∑
n=1

[
1
2

In
.
θ

2
n +

1
2

mn(
.
x̃

2
n +

.
ỹ

2
n)− mngỹn

]
(12)
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d
dt

(
∂L

∂
.
θ1

)
− ∂L

∂θ1
= τ1 − J−1F − f (13)

where In represents the moment of inertia of the nth connecting rod, mn represents the
mass of the nth connecting rod, (x̃n, ỹn) represents the center-of-mass coordinate of the nth
connecting rod, g represents the acceleration of gravity, τ1 represents the driving force of
connecting rod 1, F represents the grasping force, and f represents the friction force.

The relationship between the geometric center and the centroid can be obtained:

x̃n + iỹn = xn + iyn + l̃nei(θn+θ̃n), n = 1, 2, 3, 4, 5 (14)

where l̃n represents the distance offset of connecting rod n and θ̃n represents the rotation
offset of the connecting rod n.

When the prosthetic fingertip contacts an object, let the contact point be p. At this time,
the contact point equation is:

xp + iyp = x3 + iy3 + 0.5l3eiθ3 + lpeiθp (15)

After combining (14) with the contact point Equation (15), the Jacobian matrix can be
obtained according to the velocity relationship:[ .

xp,
.
yp

]T
= J

.
θ1 (16)

Finally, the fingertip contact dynamic model of the prosthetic hand can be obtained
as follows:

M
..
θ1 + C

.
θ

2
1 + G = τ1 − JT F − f (17)

where M is the mass matrix, C is the velocity-related term, and G is the gravity matrix.

5. The Compliant Grasp Control Method for the Underactuated Prosthetic Hand

After obtaining the dynamic model of the underactuated prosthetic hand, a compliant
grasping control algorithm should be designed based on the grasping information from the
sEMG signal. The specific control method is as follows. First, the grasping action signal is
generated by decoding the operator’s sEMG signal. Before the prosthetic hand touches the
object, the motor will be adjusted to a lower value to avoid damage when contacting the
object. When the prosthetic hand contacts the object, the prosthetic hand will adjust the
convergence target and stiffness parameters of the controller according to the grasping force
and muscle stiffness of the human hand obtained by the sEMG signal, thereby achieving a
compliant grasp of the object, as shown in Figure 5.
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5.1. The Compliant Grasp Control Method Based on Muscle Stiffness

To achieve compliant grasping, the magnitude of the grasping force and the conver-
gence rate of the force should be adjusted according to the characteristics of the grasped
object. To avoid damaging objects, the grasping force of the prosthetic hand should be
lower and applied more slowly, achieving slow and gentle grasping. For objects that are
less prone to damage, the desired grasping force can be greater and converge quickly to
achieve stable grasping.

According to (17) the prosthetic hand model can be organized as follows:

..
θ1 = M(θ1)

−1
[

τ1 − J−1F − f (
.
θ1)− C(θ1)

.
θ

2
1 − G(θ1)

]
(18)

The error is defined by the desired position θ1d as follows:

e = θ1 − θ1d (19)

To simulate the muscle stiffness of human hands, the following controller can be
designed based on impedance control:

u = M(θ1)Γ1(e) + J−1F + f̃ (
.
θ1) + C(θ1)

.
θ

2
1 + G(θ1) (20)

Γ1(e) =
..
θ1d − M−1

d [Bd
.
e + Kde + (F − Fd)] (21)

where Md, Bd, Kd,
..
θ1d and Fd, are the desired inertia, damping, stiffness, acceleration, and

grasp force, respectively.
When the impedance parameters are set to values similar to those of the human hand,

a natural control feel similar to that of the original limb can be achieved [28]. To achieve
an anthropomorphic muscle stiffness adjustment strategy, the following fuzzy rules in
Table 1 and Figure 6 are used to adjust the stiffness of the object. The standard triangular
membership functions are used as the input and output membership functions. The fuzzy
rule was used as follows: if Ka is Mi and ∆Ka is Ni, then K̃d is Gi+j, where Mi and Ni
denote the input fuzzy sets and Gi+j denotes the output fuzzy set. The details of the rules
are shown in Table 1, where Ka and ∆Ka are defined as five fuzzy sets: very small (VS),
small (SL), medium (ME), relatively large (RL), and large (LE). The output of the fuzzy
estimation is the stiffness parameter K̃d, which is also defined as five fuzzy sets: very
small (VS), small (SL), medium (ME), relatively large (RL), and large (LE). The fuzzy logic
relationship can adjust the controller’s stiffness parameters based on the muscle stiffness
of the human hand. When the muscle stiffness and its variation are high, the controller’s
stiffness parameters are set higher to ensure a quick and stable grasp of the prosthetic
hand on the object. Conversely, when the muscle stiffness and its variation are low, the
controller’s stiffness parameters are set lower, allowing the prosthetic hand to perform a
compliant grasp when in contact with the object.

Table 1. Fuzzy logic relationship of the compliant controller.

~
Kd

∆Ka

LE RL ME SL VS

Ka

LE LE LE RL ME SL

RL LE RL ME ME SL

ME LE RL ME SL SL

SL RL ME ME VS VS

VS RL ME SL VS VS
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5.2. Stability of the Proposed Compliant Grasp Control Method

Substituting into the model, we can obtain the following impedance model:

Md
..
e + Bd

.
e + Kde = −(F − Fd) (22)

When the contact force is calculated by the object stiffness:

Md
..
e + Bd

.
e + Kde = −KJ−1e (23)

(23) can be reorganized as follows:

..
e + Bd M−1

d
.
e + (Kd + KJ−1)M−1

d e = 0 (24)

Considering the following Lyapunov function:

V =
1
2

.
eT .

e +
1
2

eT(Kd + KJ−1)M−1
d e (25)

after derivation: .
V =

.
eT ..

e + eT(Kd + KJ−1)M−1
d

.
e (26)

Substitute (24) into (26), and the following result can be obtained:

.
V = − .

eT Bd M−1
d

.
e (27)

When (Kd + KJ−1)M−1
d > 0 and Bd M−1

d > 0:

.
V ≤ 0 and V ≥ 0 (28)

As a result, Lyapunov stability conditions are satisfied.

6. Experiment on Compliant Grasp Control of Underactuated Prosthetic Hand

To verify the compliant grasping force control method of the underactuated myoelec-
tric prosthetic hand proposed in this paper, grasping experiments of different objects were
designed for verification. During the experiment, the prosthetic hand was used to grasp
four objects: a single-layer paper cup, double-layer paper cup, milk carton, and plastic cup.
Among them, the single-layer paper cup and double-layer paper cup are prone to excessive
deformation during grasping, resulting in irreversible damage to the grasped objects. A
differently shaped milk carton and plastic cup were also used as the comparison group and
were not easily damaged during the grasping process. The grasping experiments on the
above four objects were used to verify the grasping ability of the compliant grasp control
method proposed in this paper.

The instruments used in the experiments were as follows. The prosthetic hand em-
ploys Faulhaber 1028B series brushless servo motors from Germany. The reducer is a
Faulhaber planetary gear reducer with a reduction ratio of 1024:1. The motors are con-
trolled by MCDC3-3002 drivers from Faulhaber with the CAN protocol. The whole system
is controlled by an stm32H750 microcontroller with a main frequency of 480 MHz. The
experimental data are sent to a host computer with LabVIEW for display and recording
through a serial port. The control and signal feedback frequency of the microcontroller is
1 kHz. A FlexiForce force sensor with an optional range of 4.4 N is installed on the finger
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to measure the contact force. Polynomial fitting is used to ensure measurement accuracy,
with a measurement error of less than 3% of full scale. The EMG signals are collected using
a MYO armband from Thalmic Labs, Canada. This armband features eight channels for
EMG signals and can transmit data via Bluetooth, with an overall sampling frequency of
200 Hz. When wearing the armband, the arm is positioned horizontally in front of the chest,
with the armband placed approximately 10 cm from the elbow joint. Then, the armband is
rotated until the first channel is on the outer side of the arm and parallel to the body.

The grasping control experiment process is shown in Figure 7. The operator maintains
a fist gesture to simulate the sEMG signal of amputees when grasping. The prosthetic
hand will enter the compliant grasping control mode when it detects contact with the
object. At this time, the control algorithm will adjust the desired grasping force according
to the grasping force decoded by the sEMG signal. Additionally, the stiffness parameter of
the controller is adjusted by the muscle stiffness estimated from sEMG signals according
to fuzzy logic relationships to achieve the grasping effect expected by the operator. As
illustrated in Figure 8, the experimental process involves controlling the prosthetic hand to
grasp the single-layer soft paper cup, a double-layer paper cup, a milk carton, and a plastic
cup. During this process, the input signals, including the estimated grasping force and
grasping stiffness from sEMG, as well as the control signals of the prosthetic hand, such as
driving voltage, driving current, rotation angle, and grasping force, are recorded.

The experimental results of the first group are shown by the dotted lines in Figures 9 and 10.
When grasping a single-layer paper cup (Object 1), the grasping force estimated from sEMG
is the smallest compared with the other three objects—1.298 N. At this time, the estimated
muscle stiffness is 3.301%, which is the smallest compared with the other three objects.
The stiffness parameter of the controller estimated using fuzzy logic reaches 22.89. This
shows that when the human hand grasps the object, to avoid damage to Object 1, a smaller
grasping force and muscle stiffness are used. At this time, it can be seen from Figure 10a,b
that the final grasping force applied reaches 1.978 N, and the maximum rotation angle of the
motor is 5.685◦. From Figure 10c,d, it can be seen that the grasping speed of the prosthetic
hand is also the slowest under the smaller expected force and stiffness parameters, and the
grasping action is not completed until 481 ms. These results indicate that the prosthetic
hand uses less grasping force and grasping speed to ensure a natural and gentle grasping
action, thereby minimizing the risk of damaging Object 1.
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Figure 10. Experimental results of the compliant grasp control experiment: (a) grasping force applied
by the prosthetic hand, (b) rotation angle of rod 1, (c) motor current, (d) motor voltage.

The results of the second group are shown in the dotted lines in Figures 9 and 10. When
grasping the double-layer paper cup (Object 2), the grasping force decoded by myoelectric
decoding is medium, reaching 2.160 N, and the muscle stiffness decoded by myoelectric
decoding is 7.191%. The stiffness parameter of the controller estimated using fuzzy logic
reached 54.41. This shows that since the object is less susceptible to damage than Object 1,
the human hand will use medium grasping force and muscle stiffness to grasp Object 2.
At this time, it can be seen from Figure 10a,b that the final grasping force applied reached
1.034 N, and the maximum rotation angle of the motor was 5.499◦. It can be seen from
Figure 10c,d that the grasping speed of the prosthetic hand is also moderate under the
medium expected force and stiffness parameter, and the grasping action is completed
at 408 ms. This demonstrates that the prosthetic hand uses medium expected force and
grasping speed to grasp Object 2. What is more, these results highlight the prosthetic
hand’s capability to adjust its control parameters based on the decoded muscle stiffness and
grasping force of the human hand, ensuring a balanced and efficient grasping performance
that aligns with the varying requirements of different objects.

The experimental results of the third group are shown as dotted lines in Figures 9 and 10.
When grasping the milk carton (Object 3), the electromyography (EMG)-decoded grasping
force is greater than that for the double-layer paper cup, reaching 2.632 N. At this time,
the muscle stiffness decoded by EMG is 9.137%. The stiffness parameter of the controller
estimated using fuzzy logic reached 63.60. This indicates that the human hand exerts
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greater grasping force and stiffness when grasping this object compared to the double-layer
paper cup, although the difference is not significant. From Figure 10a,b, it can be seen
that the final applied grasping force reached 2.570 N and the maximum rotation angle of
the motor was 6.178◦. From Figure 10c,d, it can be observed that the increased grasping
stiffness results in a faster grasping speed. Therefore, the final convergence time is shorter
than the third group, at 393 ms. This demonstrates that the prosthetic hand not only has
the greater grasping force but also the faster grasping speed, and can quickly and stably
grasp objects according to the intention of the human hand when grasping Object 3.

The experimental results of the fourth group are shown in the solid lines in Figures 9 and 10.
When grasping the plastic cup (Object 4), the grasping force estimated from sEMG is the
greatest compared with the other three objects, reaching 3.437 N. At this time, the estimated
muscle stiffness is also high, reaching 15.954%. The stiffness parameter of the controller
estimated using fuzzy logic reached 72.69. This shows that the human hand adopts greater
grasping force and muscle stiffness when it grasps Object 4 without concern about the
object being damaged. At this time, it can be seen in Figure 10a,b that the final grasping
force applied by the prosthetic hand reaches 3.278 N and the maximum rotation angle
of the motor is 6.493◦. In Figure 10c,d, it can be observed that with greater desired force
and stiffness, the prosthetic hand also achieved the fastest grasping speed, completing the
grasping action in 367 ms. This demonstrates that the prosthetic hand not only has the
greatest grasping force but also the fastest grasping speed based on the intention of the
human hand when grasping Object 4.

Four groups of experiments showed that when grasping an object, the human hand
can adjust the grasping force and muscle stiffness according to the characteristics of the
object. By setting the stiffness parameters of the controller to values similar to those of
the human hand, the desired force and stiffness parameters of the prosthetic hand can
be controlled based on the person’s judgment of the object’s characteristics to achieve
compliant grasping of different objects.

7. Discussion

To simulate the grasping characteristics of the human hand, compliant control methods
can be used for prosthetic hand control. However, current compliant control methods for
prosthetic hands often require the prosthetic hand to sense the characteristics of the object to
obtain the controller’s stiffness parameters, which not only necessitates additional sensors
but also may be inconsistent with the amputee’s intention. To address this issue, this
paper proposes a compliant grasping control method for an underactuated prosthetic
hand based on the estimation of grasping force and muscle stiffness with sEMG. This
method adjusts the prosthetic hand controller based on the grasping force and muscle
stiffness estimated from sEMG signals, thereby avoiding damage to the object. During
the experiments, the milk carton (Object 3) and the plastic cup (Object 4) exhibited the
greater stiffness, making them less prone to deformation and damage. Therefore, when
grasping the milk carton (Object 3) and the plastic cup (Object 4), the human hand used
greater grasping force and muscle stiffness. In contrast, the single-layer paper cup (Object 1)
and the double-layer paper cup (Object 2) were more susceptible to over-deformation and
damage, prompting the human hand to use relatively lower grasping force and muscle
stiffness. This operational strategy of the human hand is reflected in the prosthetic hand
through sEMG signals. When grasping the milk carton (Object 3) and the plastic cup
(Object 4), the prosthetic hand used greater desired force and stiffness, achieving a quick
and stable grasp. For the single-layer paper cup (Object 1) and the double-layer paper cup
(Object 2), the prosthetic hand adopted less desired force and stiffness, resulting in a slow
and gentle grasp that avoided damaging the objects.

To implement the proposed method, the force sensor and microcontroller can be added
to existing prosthetic hands without replacing the bio-interface, thereby saving costs and
ensuring comfort usage. Moreover, due to the good interactivity of STM32, there is broad
potential for large-scale implementation. Therefore, this method holds promising research
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and application prospects for prosthetic hand grasping. It can achieve human-like grasping
from the sEMG signal, providing a new control method for grasping force in low-cost
prosthetic hands. In addition, the proposed method uses a low-power microcontroller
with limited computational load, which can be easily integrated into commercial prosthetic
hands, offering promising application prospects.

8. Conclusions

In summary, based on the characteristics of a multi-link underactuated prosthetic
hand, this study proposed a compliant grasping control method for an underactuated
prosthetic hand based on the estimation of grasping force and muscle stiffness with sEMG.
This method can estimate the grasping force and muscle stiffness of the human hand using
collected sEMG signals. By further integrating impedance grasping control algorithms, the
prosthetic hand’s controller adjusts the desired force and stiffness parameters to prevent
damage to the object during grasping. Since this method is based on human grasping,
it may result in failures when attempting to grasp unfamiliar objects, requiring multiple
attempts and learning. In the future, we aim to further enhance the grasping ability
and expand the application scenarios of the prosthetic hand by combining grasping and
perception capabilities similar to the human hand.
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