Mechanical Properties of Cocoon Silk Derivatives for Biomedical Application: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources
2.3. Search Strategy
2.4. Selection Process
2.5. Data Extraction
2.6. Data Items
2.7. Statistical Analysis
2.8. NIH Quality Assessment
3. Results
3.1. Study Selection
Database | Search |
---|---|
PubMed/ MEDLINE (AB = 111) | (“cocoon silk” [Title/Abstract] OR “silk fibroin” [Title/Abstract] OR “sericin” [Title/Abstract] OR “silkworm silk” [Title/Abstract] OR “Bombyx mori silk” [Title/Abstract] OR “spider silk” [Title/Abstract] OR “spider dragline silk” [Title/Abstract] OR “spidroin” [Title/Abstract]) AND (“medical application” [Title/Abstract] OR “surgical application” [Title/Abstract] OR “biomedical application” [Title/Abstract] OR “medical devices” [Title/Abstract] OR “surgical devices” [Title/Abstract] OR “biomedical devices” [Title/Abstract] OR “translational science” [Title/Abstract] OR “translational medicine” [Title/Abstract]) |
Web of Science (AB = 139) | (AB = (“cocoon silk” OR “silk fibroin” OR “sericin” OR “silkworm silk” OR “Bombyx mori silk” OR “spider silk” OR “spider dragline silk” OR “spidroin”)) AND AB = (“medical application” OR “surgical application” OR “biomedical application” OR “medical devices” OR “surgical devices” OR “biomedical devices” OR “translational science” OR “translational medicine”) |
Web of Science (TI = 14) | (TI = (“cocoon silk” OR “silk fibroin” OR “sericin” OR “silkworm silk” OR “Bombyx mori silk” OR “spider silk” OR “spider dragline silk” OR “spidroin”)) AND TI = (“medical application” OR “surgical application” OR “biomedical application” OR “medical devices” OR “surgical devices” OR “biomedical devices” OR “translational science” OR “translational medicine”) |
Cochrane Central Register (AB + TI + AK = 0) | (“cocoon silk” OR “silk fibroin” OR “sericin” OR “silkworm silk” OR “Bombyx mori silk” OR “spider silk” OR “spider dragline silk” OR “spidroin”) AND (“medical application” OR “surgical application” OR “biomedical application” OR “medical devices” OR “surgical devices” OR “biomedical devices” OR “translational science” OR “translational medicine”) |
3.2. Studies Characteristics
Title of Publication | First Author, Country | Year | Study Type | Product |
---|---|---|---|---|
Polyvinylidene Fluoride/Silk Fibroin-Based Bio-Piezoelectric Nanofibrous Scaffolds for Biomedical Application [24]. | Chen, K.; Korea | 2022 | In vitro | Polyvinylidene flouride (PVDF/SF) |
Preparation and Characterization of a Silk Fibroin/Polyurethane Fiber Blend Membrane Containing Actinomycin X2 with Excellent Mechanical Properties and Enhanced Antibacterial Activities [23]. | Tariq, Z.; China | 2023 | In vitro | Polyurethane fiber (PUF) and silk-fibroin-containing sctinomycin X2 (Ac.X2) |
Cross-Linking of Dialdehyde Carboxymethyl Cellulose with Silk Sericin to Reinforce Sericin Film for Potential Biomedical Application [19]. | Wang P.; China | 2019 | In vitro | Dialdehyde carboxymethyl cellulose (DCMC) |
Biocompatible Silk/Polymer Energy Harvesters Using Stretched Poly (Vinylidene Fluoride-co-Hexafluoropropylene) (PVDF-HFP) Nanofibers [22]. | Najjar, R.; USA | 2017 | In vitro | Polyvinylidene flouride Hexafluropropylene nanofibers with glycerol |
Superb Silk Hydrogels with High Adaptability, Bioactivity, and Versatility Enabled by Photo-Cross-Linking [21]. | Huang, R.; China | 2024 | In vitro, in vivo | Riboflavin and H2O2 |
Modification of Sericin-Free Silk Fibers for Ligament Tissue Engineering Application [18]. | Liu, H.; Singapore | 2007 | In vitro, in vivo | SF replaced by gelatin |
A Multi-Layered Nerve Guidance Conduit Design Adapted to Facilitate Surgical Implantation [25]. | Belanger, K.; France | 2018 | In vitro, in vivo | Tri-layered nanofiber |
Characterization of Direct Ink Write Pure Silk Fibroin Based on Alcohol Post-Treatments [26]. | Casanova-Batllle, E.; Spain | 2022 | In situ | Natural SF vs. EtOH SF |
Silk and Silk Composite Aerogel-Based Biocompatible Triboelectric Nanogenerators for Efficient Energy Harvesting [20]. | Mi, HY.; China | 2020 | In situ | SF aerogel-based triboelectric nanogenerator (STENG) |
Total | % | |
---|---|---|
No. of Publications Included | 9 | 100 |
Year range | 2007–2024 | |
Countries Publications Drawn From (%) | ||
USA | 1 | 11 |
Europe | 2 | 22 |
Asia | 5 | 56 |
Other | 1 | 11 |
Experimental Approach (%) | ||
In situ | 2 | 22 |
In vitro | 4 | 44 |
In vivo | 0 | 0 |
In vivo and in vitro mix | 3 | 33 |
Silk Development Protocol (%) | ||
Additive manufacturing method | 1 | 11 |
Cross-linking | 2 | 22 |
Electrospinning | 3 | 33 |
Freeze-drying with compression | 1 | 11 |
Schiff’s base reaction | 1 | 11 |
Solution casting method | 1 | 11 |
Cocoon Silk Component (%) | ||
Fibroin | 8 | 89 |
Sericin | 1 | 11 |
Journal Category (%) | ||
Tissue engineering | 1 | 11 |
Chemistry | 5 | 56 |
Medicine and health | 1 | 11 |
Nanoscience | 1 | 11 |
Biomedical materials | 1 | 11 |
3.3. Mechanical Properties
Cocoon-Silk-Derivative Composition | n | % |
---|---|---|
Cross-linked gelatin replacement for sericin | 1 | 11 |
Dialdehyde carboxymethyl cellulose (DCMC) | 1 | 11 |
Silk-fibroin-aerogel-based triboelectric nanogenerator | 1 | 11 |
Natural silk fibroin vs. EtOH-treated silk fibroin | 1 | 11 |
Polyvinylidene fluoride (PVDF) | 1 | 11 |
Polyvinylidene fluoride (PVDF) and hexafluoropropylene (HFP) | 1 | 11 |
Polyurethane fiber (PUF) and actinomycin X2 (Ac.X2) | 1 | 11 |
Riboflavin and H2O2 | 1 | 11 |
Tri-layered nanofibers | 1 | 11 |
Biomedical Applications * | n | % |
Number of studies with biomedical applications reported | 9 | 100 |
Cell proliferation and tissue engineering | 6 | 30 |
Energy-harvesting devices | 4 | 20 |
Antimicrobial hydrogels | 3 | 15 |
Orthopedic screws | 1 | 5 |
Microneedles and microcarriers | 2 | 10 |
Drug delivery | 2 | 10 |
Nerve guidance conduit | 1 | 5 |
Cardiovascular stents | 1 | 5 |
Complications | n | % |
Number of studies with reported complications | 7 | 78 |
Fragility | 4 | 57.1 |
Cytotoxicity | 1 | 14.3 |
Sensitivity to temperature and humidity | 1 | 14.3 |
Fast degradation | 1 | 14.3 |
Rare inflammatory reaction | 1 | 14.3 |
Mechanical Properties of Cocoon Silk Derivatives * | n | % |
Primary Outcomes: | 9 | 100 |
Tensile strength | ||
Elongation at break | ||
Secondary Outcomes: | ||
Number of studies with secondary outcomes reported | 98 | 100 |
Young’s compressive modulus (GPa) | 8 | 89 |
Surface descriptors | 8 | 89 |
Fiber diameter (mm) | 2 | 89 |
Piezoelective (V) | 2 | 22 |
Crystallinity (%) | 8 | 22 |
FT-IR (cm−1) | 2 | 89 |
Porosity (%) | 2 | 22 |
Pore size (nm) | 5 | 22 |
Swelling ratio (%) | 56 |
3.4. Biomedical Applications of Cocoon Silk Derivatives
3.5. Complications
3.6. Analysis of Individual Studies
3.6.1. Cross-Linked Gelatin Replacement for Sericin
3.6.2. Dialdehyde Carboxymethyl Cellulose (DCMC)
3.6.3. Silk-Fibroin-Aerogel-Based Triboelectric Nanogenerator
3.6.4. Riboflavin and H2O2
3.6.5. Polyvinylidene Fluoride (PVDF) and Hexafluoropropylene (HFP)
3.6.6. Polyurethane Fiber (PUF) and Actinomycin X2 (Ac.X2)
3.6.7. Polyvinylidene Fluoride (PVDF)
3.6.8. Tri-Layered Nanofibers
3.6.9. Natural Silk Fibroin vs. EtOH-Treated Silk Fibroin
4. Discussion
4.1. Tensile Strength and Elongation at Break as Mechanical Properties
4.2. The Mechanical Properties of Natural Cocoon Silk
4.3. Biomechanical Applications of Cocoon Silk Derivatives
4.4. Complications and Limitations of Cocoon Silk Derivatives
4.4.1. Fragility
4.4.2. Sensitivity to Environmental Factors
4.4.3. Cytotoxicity
4.4.4. Swelling
4.4.5. Variability in Silk Derivatives
4.5. Clinical Applications of Cocoon Silk Derivatives
4.6. Environmental Impact of Cocoon Silk Production
4.7. Future Directions Discussion Conclusion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Giorgio, G.; Matera, B.; Vurro, D.; Manfredi, E.; Galstyan, V.; Tarabella, G.; Ghezzi, B.; D’angelo, P. Silk Fibroin Materials: Biomedical Applications and Perspectives. Bioengineering 2024, 11, 167. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kundu, B.; Rajkhowa, R.; Kundu, S.C.; Wang, X. Silk fibroin biomaterials for tissue regenerations. Adv. Drug Deliv. Rev. 2013, 65, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Edlund, A.M.; Jones, J.; Lewis, R.; Quinn, J.C. Economic feasibility and environmental impact of spider silk production from Escherichia coli. New Biotechnol. 2018, 42, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Guo, C.; Yang, Q.; Li, C.; Zhao, P.; Xia, Q.; Kaplan, D.L. Protein composites from silkworm cocoons as versatile biomaterials. Acta Biomater. 2021, 121, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Doblhofer, E.; Heidebrecht, A.; Scheibel, T. To spin or not to spin: Spider silk fibers and more. Appl. Microbiol. Biotechnol. 2015, 99, 9361–9380. [Google Scholar] [CrossRef]
- Andersson, M.; Johansson, J.; Rising, A. Silk Spinning in Silkworms and Spiders. Int. J. Mol. Sci. 2016, 17, 1290. [Google Scholar] [CrossRef]
- DeBari, M.K.; King, C.I., III; Altgold, T.A.; Abbott, R.D. Silk Fibroin as a Green Material. ACS Biomater. Sci. Eng. 2021, 7, 3530–3544. [Google Scholar] [CrossRef]
- Guidetti, G.; d’Amone, L.; Kim, T.; Matzeu, G.; Mogas-Soldevila, L.; Napier, B.; Ostrovsky-Snider, N.; Roshko, J.; Ruggeri, E.; Omenetto, F.G. Silk materials at the convergence of science, sustainability, healthcare, and technology. Appl. Phys. Rev. 2022, 9, 011302. [Google Scholar] [CrossRef]
- Janani, G.; Kumar, M.; Chouhan, D.; Moses, J.C.; Gangrade, A.; Bhattacharjee, S.; Mandal, B.B. Insight into Silk-Based Biomaterials: From Physicochemical Attributes to Recent Biomedical Applications. ACS Appl. Bio Mater. 2019, 2, 5460–5491. [Google Scholar] [CrossRef]
- Sahoo, J.K.; Hasturk, O.; Falcucci, T.; Kaplan, D.L. Silk chemistry and biomedical material designs. Nat. Rev. Chem. 2023, 7, 302–318. [Google Scholar] [CrossRef]
- Dong, Z.; Xia, Q.; Zhao, P. Antimicrobial components in the cocoon silk of silkworm, Bombyx mori. Int. J. Biol. Macromol. 2023, 224, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Rocha, L.K.H.; Favaro, L.I.L.; Rios, A.C.; Silva, E.C.; Silva, W.F.; Stigliani, T.P.; Guilger, M.; Lima, R.; Oliveira, J.M., Jr.; Aranha, N.; et al. Sericin from Bombyx mori cocoons. Part I: Extraction and physicochemical-biological characterization for biopharmaceutical applications. Proc. Biochem. 2017, 61, 163–177. [Google Scholar] [CrossRef]
- Lu, H.; Xia, K.; Jian, M.; Liang, X.; Yin, Z.; Zhang, M.; Wang, H.; Wang, H.; Li, S.; Zhang, Y. Mechanically Reinforced Silkworm Silk Fiber by Hot Stretching. Research 2022, 2022, 9854063. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef]
- Covidence: A Systematic Review Software. Covidence. Available online: https://www.covidence.com/ (accessed on 1 June 2024).
- Adams, A.J.; Escobar-Domingo, M.J.; Foppiani, J.A.; Posso, A. Properties of Spider Silk vs Cocoon Silk for Medical Application. PROSPERO 2024; CRD42024557379. ProSPERO: International Prospective Register of Systematic Reviews. ProSPERO. Available online: https://www.crd.york.ac.uk/prospero/ (accessed on 1 June 2024).
- Liu, H.; Ge, Z.; Wang, Y.; Toh, S.L.; Sutthikhum, V.; Goh, J.C. Modification of sericin-free silk fibers for ligament tissue engineering application. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 82, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; He, H.; Cai, R.; Tao, G.; Yang, M.; Zuo, H.; Umar, A.; Wang, Y. Cross-linking of dialdehyde carboxymethyl cellulose with silk sericin to reinforce sericin film for potential biomedical application. Carbohydr. Polym. 2019, 212, 403–411. [Google Scholar] [CrossRef]
- Mi, H.Y.; Li, H.; Jing, X.; He, P.; Feng, P.-Y.; Tao, X.; Liu, Y.; Liu, C.; Shen, C. Silk and Silk Composite Aerogel-Based Biocompatible Triboelectric Nanogenerators for Efficient Energy Harvesting. Ind. Eng. Chem. Res. 2020, 59, 12399–12408. [Google Scholar] [CrossRef]
- Huang, R.; Hua, J.; Ru, M.; He, P.; Feng, P.-Y.; Tao, X.; Liu, Y.; Liu, C.; Shen, C. Superb Silk Hydrogels with High Adaptability, Bioactivity, and Versatility Enabled by Photo-Cross-Linking. ACS Nano 2024, 18, 15312–15325. [Google Scholar] [CrossRef]
- Najjar, R.; Luo, Y.; Jao, D.; Brennan, D.; Xue, Y.; Beachley, V.; Hu, X.; Xue, W. Biocompatible Silk/Polymer Energy Harvesters Using Stretched Poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) Nanofibers. Polymers 2017, 9, 479. [Google Scholar] [CrossRef]
- Tariq, Z.; Zhu, Z.; Tariq, M.H.; Wang, Y.; Liu, J.; Hai, A.M.; Khan, A.; Wang, X. Incorporation of nanoparticles in silk fibroin solution: Toward water-stable silk fibroin films possessing silk I structure. Polym. Adv. Technol. 2024, 35, e6392. [Google Scholar] [CrossRef]
- Chen, K.; Li, Y.; Li, Y.; Pan, W.; Tan, G. Silk Fibroin Combined with Electrospinning as a Promising Strategy for Tissue Regeneration. Macromol. Biosci. 2022, 23, 202200380. [Google Scholar] [CrossRef] [PubMed]
- Belanger, K.; Schlatter, G.; Hébraud, A.; Marin, F.; Testelin, S.; Dakpé, S.; Devauchelle, B.; Egles, C. A multi-layered nerve guidance conduit design adapted to facilitate surgical implantation. Health Sci. Rep. 2018, 1, e86. [Google Scholar] [CrossRef] [PubMed]
- Casanova-Batlle, E.; Guerra, A.J.; Ciurana, J. Characterization of direct ink write pure silk fibroin based on alcohol post-treatments. Polymer Test. 2022, 116, 107784. [Google Scholar] [CrossRef]
- Deshmukh, K.; Kovářík, T.; Muzaffar, A.; Ahamed, M.B.; Pasha, S.K. Mechanical analysis of polymers. In Polymer Science and Innovative Applications; Al Maadeed, M.A., Ponnamma, D., Carignano, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 117–152. [Google Scholar] [CrossRef]
- Palomba, D.; Vazquez, G.E.; Díaz, M.F. Prediction of elongation at break for linear polymers. Chemom. Intell. Lab. Syst. 2014, 139, 121–131. [Google Scholar] [CrossRef]
- Pinto, D.; Bernardo, L.; Amaro, A.; Lopes, S. Mechanical properties of epoxy nanocomposites using titanium dioxide as reinforcement: A review. Constr. Build. Mater. 2015, 95, 506–524. [Google Scholar] [CrossRef]
- Shao, Z.; Vollrath, F. Surprising strength of silkworm silk. Nature 2002, 418, 741. [Google Scholar] [CrossRef]
- Babu, P.J.; Suamte, L. Applications of silk-based biomaterials in biomedicine and biotechnology. Eng. Regen. 2024, 5, 56–69. [Google Scholar] [CrossRef]
- Jones, J.A.; Harris, T.I.; Tucker, C.L.; Berg, K.R.; Christy, S.Y.; Day, B.A.; Gaztambide, D.A.; Needham, N.J.C.; Ruben, A.L.; Oliveira, P.F.; et al. More Than Just Fibers: An Aqueous Method for the Production of Innovative Recombinant Spider Silk Protein Materials. Biomacromolecules 2015, 16, 1418–1425. [Google Scholar] [CrossRef]
- Yan, S.; He, L.; Hai, A.M.; Hu, Z.; You, R.; Zhang, Q.; Kaplan, D.L. Controllable Production of Natural Silk Nanofibrils for Reinforcing Silk-Based Orthopedic Screws. Polymers 2023, 15, 1645. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adams, A.J.; Escobar-Domingo, M.J.; Foppiani, J.; Posso, A.N.; Schonebaum, D.I.; Garbaccio, N.; Smith, J.E.; Foster, L.; Mustoe, A.K.; Tobin, M.; et al. Mechanical Properties of Cocoon Silk Derivatives for Biomedical Application: A Systematic Review. Biomimetics 2024, 9, 675. https://doi.org/10.3390/biomimetics9110675
Adams AJ, Escobar-Domingo MJ, Foppiani J, Posso AN, Schonebaum DI, Garbaccio N, Smith JE, Foster L, Mustoe AK, Tobin M, et al. Mechanical Properties of Cocoon Silk Derivatives for Biomedical Application: A Systematic Review. Biomimetics. 2024; 9(11):675. https://doi.org/10.3390/biomimetics9110675
Chicago/Turabian StyleAdams, Alynah J., Maria J. Escobar-Domingo, Jose Foppiani, Agustin N. Posso, Dorien I. Schonebaum, Noelle Garbaccio, Jade E. Smith, Lacey Foster, Audrey K. Mustoe, Micaela Tobin, and et al. 2024. "Mechanical Properties of Cocoon Silk Derivatives for Biomedical Application: A Systematic Review" Biomimetics 9, no. 11: 675. https://doi.org/10.3390/biomimetics9110675
APA StyleAdams, A. J., Escobar-Domingo, M. J., Foppiani, J., Posso, A. N., Schonebaum, D. I., Garbaccio, N., Smith, J. E., Foster, L., Mustoe, A. K., Tobin, M., Lee, B. T., & Lin, S. J. (2024). Mechanical Properties of Cocoon Silk Derivatives for Biomedical Application: A Systematic Review. Biomimetics, 9(11), 675. https://doi.org/10.3390/biomimetics9110675