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Abstract: The Lunarminer framework explores the use of biomimetic swarm robotics, inspired by
the division of labor in leafcutter ants and the synchronized flashing of fireflies, to enhance lunar
water ice extraction. Simulations of water ice extraction within Shackleton Crater showed that the
framework may improve task allocation, by reducing the extraction time by up to 40% and energy
consumption by 31% in scenarios with high ore block quantities. This system, capable of producing
up to 181 L of water per day from excavated regolith with a conversion efficiency of 0.8, may allow for
supporting up to eighteen crew members. It has demonstrated robust fault tolerance and sustained
operational efficiency, even for a 20% robot failure rate. The framework may help to address key
challenges in lunar resource extraction, particularly in the permanently shadowed regions. To refine
the proposed strategies, it is recommended that further studies be conducted on their large-scale
applications in space mining operations at the Extraterrestrial Environmental Simulation (EXTERRES)
laboratory at the University of Adelaide.

Keywords: off-earth mining; nature-inspired behavior; water ice extraction; Lunarminer; biomimetics;
bio-inspired robot; robot mechanism; swarm robotics; robot control

1. Introduction

The Moon has become the focus of extraterrestrial exploration due to its rich mineral
resources (iron, titanium, uranium, rare earth elements, and water ice in permanently
shadowed craters) [1]. These resources are essential for long-term crewed missions and
for producing propellants through in situ resource utilization (ISRU) for deep space mis-
sions [2]. Lunar exploration began with the Luna program conducted by the Soviet Union,
and NASA’s Apollo 11 mission to the Moon in 1969 was a landmark step in human space
exploration [3,4]. The 21st century missions, such as NASA’s Lunar Reconnaissance Orbiter
(LRO), have confirmed the presence of water ice at lunar poles, highlighting the Moon’s po-
tential as a launch pad for deep space missions [5,6]. In addition, the lunar regolith contains
helium-3 and rare earth elements, which are essential for clean energy and cutting-edge
technologies [7].

The Moon holds great potential, but also presents challenges due to its harsh environ-
ment. Extreme temperatures, vacuum, and abrasive regolith are factors that have caused
wear, tear, and technical difficulties for Apollo missions and China’s Yutu lunar rover [8,9].
The high cost of transporting water to the lunar surface, estimated at USD 35k to USD 70k
per kilogram [10], further complicates lunar exploration. The rover technology available
today is not suitable for extensive space mining [8]. The ISRU research has made progress
in areas such as oxygen production, water ice extraction, and habitat construction; however,
deep excavation and large-scale space mining remain underexplored [6]. The difficult
terrain, communication issues, extreme temperature fluctuations, abrasive regolith, and
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low gravity on the Moon make terrestrial mining technologies unsuitable for applications
on it [11,12].

Numerous technologies have been developed for the extraction of lunar water ice in-
cluding NASA’s mobile in situ water extractor (MISWE) and the regolith advanced surface
systems operation robot (RASSOR). However, these technologies are susceptible to failure,
due to their high energy consumption and reliance on single large units. For example,
MISWE’s extraction rate of 4.8 L per day with 12 units is much less than the proposed
Lunarminer framework’s potential of 181 L per day, which is enhanced by a distribution of
smaller robots that are optimized for fault tolerance and energy efficiency [13]. A similar
drum-based excavation system is used by NASA’s RASSOR, which depends on constant
operation and is energy-intensive and prone to mechanical failures [14]. In contrast, the
Lunarminer framework uses biomimetic swarm robotics which are motivated by the syn-
chronized flashing behavior of fireflies and the division of labor seen in leafcutter ants. This
allows for improved fault tolerance, energy efficiency, and adaptability in the demanding
lunar environment. Opportunity, Sojourner, and Curiosity are examples of Mars’s explo-
ration rovers that have shown limitations in harsh environments, due to mechanical failures
and mobility problems over time [15–17]. On the other hand, the Lunarminer’s distributed
swarm methodology provides improved adaptability and resilience for mining activities
on challenging lunar terrain. Therefore, the Lunarminer framework may be a good fit for
future ISRU missions, since it provides a more effective, scalable, and fault-tolerant method
of extracting lunar water ice.

The proposed Lunarminer framework investigates the application of swarm robots in
lunar mining. The framework uses biomimicry, drawing inspiration from the collective
behavior of insects and animals, to develop a coordination method for collaboration,
decision-making, and task execution among swarm robots. This framework developed
for lunar mining may have the potential to transform the terrestrial mining industry by
improving its efficiency, sustainability, automation, and safety.

2. Related Work

The Lunarminer framework aims to contribute to enhancing ISRU missions, particu-
larly in water ice extraction, by employing a bio-inspired approach to autonomous resource
extraction. This framework draws inspiration from the division of labor observed in leaf-
cutter ants for efficient task allocation and utilizes synchronized flashing behavior from
fireflies for fault tolerance and recruitment.

2.1. State-of-the-Art in ISRU Technology

As space exploration progresses, ISRU becomes more essential for reducing the reliance
on Earth’s resources. ISRU seeks to use resources from Mars and the Moon to produce
fuel, oxygen, and water [18]. Significant progress has been made in extracting water
and oxygen from the regolith and lunar ice, with the development of technologies such
as carbothermal reduction and molten salt electrolysis [19]. The Moon is an ideal place
for a space refueling station, because its regolith contains 40% oxygen [20]. Currently,
water ice has been discovered in the permanently shadowed regions (PSRs) of the Moon,
creating more opportunities for ISRU. NASA uses laser technology to map ice deposits,
such as Lunar Flashlight and LunaH-MAP [21]. Future missions, such as NASA’s Lunar
Crater Observing and Sensing Satellite (LCROSS) and the Volatiles Investigating Polar
Exploration Rover (VIPER), are expected to provide important information about water
and volatiles present in the lunar regolith [22]. Extraction methods such as sublimation and
microwave heating are currently being developed [23]. If water can be efficiently extracted
from the lunar ice, thus reducing the need for Earth-based supplies, more sustainable
long-term crewed missions could become possible [24]. ISRU is also investigating regolith-
based in-space manufacturing, particularly through 3D printing, to produce building
materials and spacecraft components from lunar or Martian regolith [23,25]. For example,
mixing magnesium oxide with lunar regolith and solidifying it with binding salts could
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produce printable materials for lunar habitats [26,27]. There are still risks in designing
reliable systems for the harsh lunar environment, such as extreme temperature fluctuations,
abrasive regolith, and high energy demands in the PSR [19]. To address these issues,
NASA’s Lunar Surface Innovation Initiative is focusing on long-term resource extraction
and construction technologies [28].

2.2. Comparative Analysis of ISRU Technologies and the Lunarminer Framework

With its decentralized swarm-based methodology, the Lunarminer framework en-
hances scalability, fault tolerance, and energy efficiency over other current ISRU tech-
nologies. NASA’s RASSOR system [14], for instance, is vulnerable to mechanical failure,
because it depends on continuous operation and employs a drum-based excavation tech-
nique. Lunarminer, in contrast, employs several small robots, each of which performs a
specific task that is modeled after the leafcutter ant’s division of labor. Because the system
is not compromised by the failure of a single robot, this allows for more resilient operations
and dynamic resource allocation. Comparably, the MISWE system [13] from NASA also
has issues with relatively low extraction rates and high energy consumption. The MISWE
is intended to extract water from lunar regolith with a single unit; however, with 12 units,
it only produces 4.8 L per day. By providing a more scalable solution, Lunarminer’s bio-
inspired swarm of robots surpasses the MISWE, in terms of daily water production reaching
up to 181 L. Reduced downtime and greater adaptability to the lunar environment result
from the decentralized approach and increased flexibility in resource allocation. Current
rover-based technologies like Opportunity [15], Sojourner [16], and Curiosity [17] have
advanced our understanding of planetary exploration, but they are not designed to extract
large amounts of resources. Over time, these rovers have experienced mechanical wear
and restricted mobility, especially in harsh environments like on the Moon. Furthermore,
because of their larger mechanical components, rovers require more energy compared to
Lunarminer, which distributes tasks among smaller and more efficient robots to minimize
energy consumption. Also, Lunarminer’s dispersed swarms of smaller robots are designed
for lunar mining tasks, can adapt to harsh environments, and can lessen the effects of
individual robot failures. By addressing the shortcomings of the conventional systems, the
Lunarminer framework may advance the ISRU’s objectives for resource extraction, making
it more independent, effective, and scalable.

3. Theoretical Framework

This study aims to develop a swarm robotic system for lunar water ice extraction. Key
challenges included creating a simulated lunar environment and designing robotic swarms.
The Robot Operating System (ROS) was chosen for its scalability and adaptability, enabling
the development of a complex system where robots collaborate, communicate, navigate,
and make decisions to extract water ice under lunar conditions.

3.1. Mining Site Selection: Case Study of Shackleton Crater

Lunar craters, e.g., Shackleton Crater, located at the lunar poles, are considered to
have a high probability of forming permanent ice at the crater bottom, with permanently
shadowed areas acting as “cold traps” capturing volatiles such as hydrogen in the form
of water ice [29]. The age of Shackleton Crater ranges from 1.1 billion to 3.3 billion years,
belonging to the Eratosthenes period [30], and the crater has a diameter of 21 km and a
depth of 4.2 km [31]. The crater walls have an average slope of 31◦, and the floor diameter
is 6.8 km [32]. The crater floor is flat [33], with minimal thermal fluctuations [34]. The
frozen lunar regolith in Shackleton Crater, situated at the lunar south pole, contains water
exceeding 5.6 ± 2.9 wt%, as determined from analyses of the regolith at the LCROSS impact
site [35]. According to the LRO Mini-RF orbital radar report, an upper limit of 5 wt%
to 10 wt% of water ice deposits (up to 30 vol.%) is present in the uppermost 1 m to 2 m
section of the silicate regolith, and this is consistent with the observations obtained from
the Clementine bistatic experiment [36].
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This study focuses on extracting water ice from the floor of Shackleton Crater. For
the considered case, the lunar regolith with the 8.4% water ice composition is projected to
have uniaxial compressive strength ranging from 31 MPa to 43 MPa and relative density
between 84 Dr% and 90 Dr% [37]. This regolith can be effectively excavated using surface
bucket-drum excavation mining methods, similar to the methods employed for extracting
moderate-strength limestones, sandstones, and shales [37,38]. According to Haruyama’s
(2008) study, Shackleton Crater could be used for both surface and underground mining
because its denser formation and the shallow layer of lunar dust above make accessing the
water ice mineral easier [31]. Studies showed that it has a stable and uniform topography
with very low rim height fluctuations, allowing for safer and easier landings [39,40]. The
geological structures of Shackleton Crater and the landing site near it have been studied
and taken from the LROC Quick Map as shown in Figure 1 [41].
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3.2. Water Ice Extraction Process

In lunar craters at the south pole, ice exists in two forms: solid, where it binds
regolith into rock-hard formations, and granular, as loose or loosely bound particles that
can be excavated by scooping [42]. The regolith in Shackleton Crater contains between
5 wt% and 30 wt% ice, as indicated by the Lunar Propellant Outpost (LUPO) mission and
Chandrayaan-1 M3 data [43,44]. In this study, we assume the regolith is granular and
mixed with silicates [36]. Excavation robots will scoop the icy regolith, store it in block
capsules, and transport it using hauler robots equipped with robotic arms. Water extraction
will utilize low-power microwave heating, and its potential losses due to sublimation,
system inefficiencies, and material transport must be considered [45]. A recent study by
Liu et al. (2023) using drilling-based thermal extraction achieved only 80% water recovery,
reinforcing the need for a conservative efficiency factor of 0.8 in our calculations [46].
Alternative extraction methods include reactive gas (hydrogen reduction, fluorination, and
solid state and molten reduction), electrolysis reduction (molten regolith or molten salt
electrolysis, e.g., the Fray, Farthing, and Chen (FFC) Cambridge process) and vapor-phase
pyrolysis [19]. Solar energy from the rim of Shackleton Crater [47] will power the base
station, processing plant, and maintenance site. It is worth noting that the specifics of the
further processing of the regolith after water extraction are outside the scope of this study.
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3.3. Constraints and Assumption

The development of the Lunarminer framework required addressing a number of
technical limitations to ensure its efficiency and feasibility. One limitation is the disrupted
communications within Shackleton Crater due to the lack of atmosphere and polarization
effects [47,48], leading to the assumption that robots manage communications indepen-
dently. In PSRs, limited visualization necessitates reliance on long-term planning and
short-term management for navigation [49,50]. Energy efficiency is critical, as solar panel
installation within the crater is not feasible, requiring optimized energy consumption and
recharging strategies, similar to the approach for the tethered permanently shadowed
region explorer (T-REX) [47]. Extreme temperatures and fine, loose regolith pose additional
risks, such as traction loss and path deviations, necessitating path-tracking sensors and
autonomous self-repair capabilities. These constraints underscore the need for a robust and
adaptable framework to tackle the challenges of lunar water ice extraction.

4. Bio-Inspired Strategies and System Design

Swarm robotics leverages biomimicry, using behaviors of social animals like fish, ants,
and bees to create small, collaborative robots capable of performing tasks in harsh envi-
ronments, including in space [51,52]. Traditional large mining machinery would struggle
to operate in lunar and Martian terrains due to mobility and maintenance challenges [53],
as demonstrated by failures in rovers like Opportunity, Sojourner, and Curiosity [15–17].
Swarm robots mitigate these risks by distributing tasks across multiple agents, enhancing
system reliability. The Lunarminer framework aims to optimize lunar exploration by in-
tegrating biomimetic principles from firefly synchronization and leafcutter ant division
of labor.

4.1. Biomimicry in Swarm Robotics: Case Study
4.1.1. Leafcutter Ants—Division of Labor

Leafcutter ants, especially from the Atta and Acromyrmex genera, utilize a division of
labor in foraging that segregates tasks between leaf cutting and transporting, enhancing
efficiency by reducing the energy spent climbing trees [54–56]. This behavior has inspired
the development of energy-efficient swarm robotics systems [52]. Studies have imple-
mented similar divisions of labor strategies in robotics, using designated roles to improve
productivity and reduce task-switching [57–59]. Further simulations by Lee [60] and Tan
et al. [61] demonstrate how dynamic task allocation in robots can significantly enhance
performance in tasks, with Tan’s study showing a 27% increase in harvesting speed by
dividing robots into specialized roles. Several case studies have applied leafcutter ants’
behaviors to swarm robotics [62–64].

4.1.2. Fireflies—Synchronized Flashing Behavior

Fireflies in the Lampyridae family use synchronized bioluminescent flashing to attract
mates, enhancing signal visibility over distances [65,66]. This behavior has inspired studies
in swarm robotics for fault tolerance and recruitment tasks [52]. Christensen’s study
applied firefly-like synchronization to detect failures in robotic swarms [67,68], while
Prignano’s [69] and Wang’s studies [70,71] achieved faster synchronization with higher
robot density using LEDs and cameras [72]. The discrete firefly algorithm (DFA) has
been used in robotic mine clearance to improve task efficiency [73]. Maxseiner’s study
demonstrated visible light communications in robotic swarms for reliable communication
in challenging environments [74]. Tan’s [61] study showed that firefly-inspired flashing
improved recruitment efficiency, increasing harvesting speed by 44% compared to the
baseline model.
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4.2. Lunarminer Bio-Inspired Concept

The Lunarminer framework is a biomimetic approach to extracting lunar water ice,
leveraging the natural behaviors of leafcutter ants and fireflies to increase the efficiency,
resilience, and adaptability of a robotic swarm at Shackleton Crater, as shown in Figure 2.
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4.2.1. Leafcutter Ants: Division of Labor and Task Allocation

The Lunarminer framework replicates the division of labor observed in leafcutter
ant colonies, where ants specialize in tasks such as cutting leaves, gathering food, and
transporting it to the nest. In these colonies, leaves are often cut and dropped at a cache,
from which another group of ants collects and transports them to the nest [56]. Similarly,
the Lunarminer framework assigns robots to specialized tasks like mapping the lunar
surface, extracting water ice deposits, and transporting the extracted materials. To address
the challenge of long-distance transport between the mine site and the processing plant, the
framework mirrors the ants’ strategy by splitting the transportation task; namely, the robots
first move ore blocks to a central hub near the mining site (analogous to the leaf cache),
from where another group of robots transports the ore to the processing plant (analogous
to the nest). This strategy reduces travel distances, conserves energy, and improves overall
mining efficiency by effectively adapting the ants’ natural behavior to meet the demands of
lunar mining.

4.2.2. Firefly Bioluminescence: Recruitment Task and Fault-Tolerance Protocol

The Lunarminer framework draws inspiration from the bioluminescent communi-
cation of fireflies, which use light signals to navigate and coordinate in darkness. This is
particularly crucial for lunar exploration in PSRs like Shackleton Crater, where sunlight is
absent, rendering traditional visual aids ineffective [47]. In this framework, optical beacons
and LiDAR technologies are employed for recruitment tasks, providing precise navigation
and positioning by serving as fixed reference points. These beacons help the operating
robots coordinate their movements and accurately locate mining sites in low-light environ-
ments. Additionally, the framework incorporates a recovery protocol modeled after the
synchronous flashing behavior of fireflies [67,68]. When a robot experiences mechanical
failure or runs out of energy, it emits a fault signal, prompting its replacement. This protocol
ensures the resilience, robustness, reliability, and automation of the robotic swarm, allowing
for continuous operation even if a robot fails.
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4.3. Applicability of Other Social Animal Behavaiors

Apart from the coordinated behavior of fireflies and the division of labor among
leafcutter ants, there exist other social animals that display actions that could potentially
motivate different methods for extracting water ice from the moon. Honeybees, for instance,
demonstrate sophisticated collective decision-making and resource allocation behaviors
during foraging [75], which may be advantageous for robotic swarms looking to maximize
resource extraction and minimize energy consumption [61]. Because atmospheric signals
are impractical in hostile environments like the lunar vacuum, their reliance on a central
communication scheme may prove challenging to implement. Similarly, large groups of
social fish also exhibit smooth locomotion, which could be useful for group navigation in
challenging lunar terrain [75]. Robots may move more effectively in challenging terrain,
if they can stay close to one another without colliding. However, the application of
fish swarms to multi-stage mining tasks like excavation, transportation, and resource
exploration are limited, due to their lack of task specialization. These tasks require a more
organized delegation of responsibilities. After analyzing these various tactics, we conclude
that although each has its own advantages, the fault tolerance and synchronization of
fireflies along with the division of labor and task specialization of leafcutter ants offer the
most practical solution to the lunar mining problem. Leafcutter ants’ highly organized
task management is especially helpful for organizing various phases of lunar mining and
the firefly-inspired synchronization ensures robust fault tolerance, which is a necessary
component for autonomous operation in such a remote location.

4.4. Swarm Robotic System Development

Transporting materials into space is prohibitively expensive, making the development
of swarm robotic systems, which require large numbers of robots, a critical challenge.
The Lunarminer framework addresses this by carefully optimizing the number of robots
necessary for effective water ice resource extraction on the Moon. The specifications for
these robots are based on NASA’s regolith advanced surface systems operation robot
(RASSOR) 2.0, a planetary excavator with a technology readiness level (TRL) of 4. RASSOR
2.0 is 1.93 m long, 0.85 m wide, 0.43 m high, and weighs 67 kg with a 1410 Whr lithium
battery [76], and with a power consumption of 4 W per kg of regolith excavation. It has a
standard moving speed of 20 cm/s and a top speed of 56.5 cm/s [14,77]. The RASSOR 2.0
computer-aided design is illustrated in Figure 3 [14].
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Figure 3. RASSOR 2.0 computer-aided design [14].

Based on the parameters of RASSOR 2.0, the Lunarminer framework defines the use
of four explorer robots in the swarm design. Each of these robots has a movement speed of
0.72 km/h (20 cm/s), a sensor range of 10 m, and an 80% availability rate, enabling them to
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cover 0.46 km2 per day. This setup allows the entire 32.7 km2 floor of Shackleton Crater to
be fully explored within 72 Earth days.

For excavation tasks, the framework specifies the deployment of two excavator robots,
each capable of excavating 2.7 metric tons of regolith per day. This output can yield
1232 kg of oxygen through 45% molten salt electrolytic oxygen extraction [14,78]. Combined,
these two excavator robots can produce approximately 2465 kg of oxygen daily, sufficient
for 2770 people based on NASA’s estimate of 0.89 kg of oxygen consumption per astronaut
per day [79]. To ensure continuous operation and to maximize efficiency, the Lunarminer
framework incorporates a terrestrial mining method, where two hauler robots follow
each excavator to maintain continuous frozen regolith harvesting and loading without
downtime. Additionally, four hauler robots are included to maximize operational efficiency,
while two transporter robots reduce transport times by moving the ore from the mine to
the processing plant, collecting the ore deposits midway from the central hub [19].

5. Virtual Environment and Simulation
5.1. Virtual Lunar Environment Development

The proposed Lunarminer simulations were conducted in a ROS running Ubuntu
Linux version 18.04 with a built-in Gazebo system and graphical user interface (GUI) for
controlling and monitoring water ice extraction in a virtual lunar environment. The entire
system was run on an HP Zen2 G5 TWR system with Intel(R) Core (TM) i7-10700 CPU,
16 GB RAM, and a 64-bit operating system. Built in ROS’s unified robot description format
(URDF), the robot GUI was developed to be 0.15 m tall and 0.1 m long, and to weigh 60 kg.
It was also equipped with a battery, advanced LiDAR sensors, automatic control systems,
and decision-making algorithms. ROS functions such as Rviz and OpenCV were used to
visualize specific robots and sensor data in the swarm to evaluate the effectiveness of the
swarm robots for lunar water ice extraction and to lay the foundation towards practical
implementation of the proposed autonomous lunar mining system.

A simulated virtual lunar environment was developed to mine water ice deposits,
with a focus on mining over large areas rather than increasing the depth of excavation.
This approach was based on LRO Mini-RF orbital radar reports that water ice deposits
are located within the top 1 m to 2 m, eliminating the need for deeper excavation [36].
According to NASA Innovative Advanced Concepts (NIAC), when water vapor enters
the Moon’s PSR from sources such as comet impacts, interplanetary dust, or space plasma
interactions, it freezes in the coldest surface layers, forming a water vapor barrier that
prevents deeper migration. This results in the accumulation of pure ice on the surface of the
regolith, where fine powders of pure ice mix with soil during surface disturbance, which is
supported by Hurley’s observations and models [80], and further supports excavation on
the surface only, rather than in the subsurface. In addition, the limited power supply on
the Moon requires optimizing energy consumption for surface operations. The microrobots
designed for this mission further emphasize the need for energy efficiency, making deep
excavation less feasible and less cost effective for the reasons stated above.

In addition, water ice deposits were found on the floor of Shackleton Crater, where the
wall areas were not considered due to the need for advanced techniques such as grabbing
or hanging that consume more energy and increase mining complexity. Therefore, the floor
of Shackleton Crater was chosen for this case study. A virtual lunar environment of the
floor of Shackleton Crater was simulated in ROS, with a flat gray surface (6.6 m × 6.6 m)
representing the entire mining area. In the simulation, black circles represent collection
points, yellow squares represent maintenance points, green squares represent base stations,
blue squares represent processing points, green areas represent mining points, and blue
areas represent transportation points. Robot teams are distinguished by different colors:
four orange explorer robots are used for exploration, two green excavator robots are used
for mining, four yellow hauler robots are used for collection, and two blue transporter
robots are used for transporting minerals. Due to the limitations of ROS, 15 robots have
been used to form a team, as shown in Figure 4.
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areas) with a central hub for collection (black circles), maintenance (yellow squares), base stations
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robot fleet includes 4 orange explorers, 2 green excavators, 4 yellow haulers, and 2 blue transporters.

5.2. Lunarminer Mining Lifecycle

The Lunarminer framework aims to propose a cutting-edge, bio-inspired approach
to lunar water ice extraction, employing swarm robotics to navigate and operate in the
challenging lunar environment. The framework’s mining lifecycle is governed by a finite
state machine (FSM), which orchestrates the coordinated actions of the robots through each
phase of the mining process. The framework is broken down into three key phases: resource
prospecting and localization, mineral excavation and transportation, and maintenance and
sustainability, as shown in Figure 5.
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5.2.1. Resource Prospecting and Localization

The resource prospecting and localization phase initiates the mining lifecycle, where
exploration robots are deployed to explore the lunar surface, particularly targeting regions
like Shackleton Crater. These robots are equipped with advanced LiDAR sensors for precise
mapping and navigation, as well as specialized instruments such as neutron spectrometers
and ground-penetrating radar (GPR) to detect and confirm the presence of water ice
deposits beneath the lunar regolith. To effectively navigate the harsh and GPS-devoid lunar
environment, the framework employs an advanced strip search strategy integrated with a
piecewise tracking function:

P = f(L − x) + p

where L represents the total length of the search path, x is the distance traveled by the robot
along the path, and p is an offset to correct any deviations from the intended trajectory.
This function ensures that exploration robots maintain a linear search pattern, preventing
trajectory deviations and achieving precise area coverage. The adaptive navigation strategy
is inspired by the bioluminescent behavior of fireflies, where the exploration robots mimic
the light attraction behavior to guide their navigation in permanently shadowed regions of
the lunar surface.

After detecting the water ice deposits, the exploration robot employs behavioral algo-
rithms inspired by fireflies to strategically place light beacons, facilitating the recruitment of
other robots for subsequent missions. This approach is similar to the recruitment strategies
observed in DFA algorithms [73]. These beacons serve as recruitment signals for excavator
and hauler robots, guiding them to the identified sites. The placement and influence of
these beacons are governed by the following recruitment equations:

R(x, y, t) =
n

∑
i=1

(
I(xi, yi)× e−

D(xi,yi)
Dmax × S(t)

)
where R (x, y, t) represents the recruitment potential at a given location and time, I (xi, yi) is
the intensity of the light beacon, D (xi, yi) is the distance from the robot to the beacon, Dmax
is the maximum effective recruitment distance, and S(t) is the temporal signal strength of
the beacon. This model ensures that excavator and hauler robots are efficiently guided to
the light beacon location for the subsequent phases of the operation. The simulation of this
process is presented in Figure 6.
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5.2.2. Mineral Excavation and Transportation

During the excavation and transportation phases, the Lunarminer framework lever-
ages firefly-inspired behavioral algorithms to enable the autonomous decision-making
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of the excavator robot. Similar to how fireflies are attracted to brighter light sources, as
discussed in Fister et al. (2013) and demonstrated in the case studies [61,73], these robots
determine their target locations depending on the intensity and proximity of the light
beacons. The mathematical model for this behavior is as follows:

TP(x, y) = γ × β(D(xb, yb))×
I(xb, yb)

D(xb, yb)
2 × (xb − xr, yb − yr)√

(xb − xr)
2 + (yb − yr)

2

where TP (x, y) is the movement vector towards the target position, and β(D(xb, yb)) is
the attractiveness function, which typically decreases with distance. The common form is
β(D) = β0 × e – mD2, where β0 is the attractiveness at distance D = 0, and m is a constant
controlling the rate of decrease in attractiveness with distance. I(xb, yb) represents the
intensity of the light beacon at coordinates (xb, yb). D(xb, yb) is the distance between the
robot’s current position (xr, yr) and the beacon at (xb, yb), and γ is a constant that determines
the speed of movement. This equation models the movement of an excavator robot toward
the most favorable excavation site, and this movement is affected by the strength of the
beacon and its distance from the robot’s current position.

The excavation process begins with the excavator robot rotating its bucket drum to
dig the frozen regolith from the ground, storing it in ore block capsules for subsequent
transportation. The hauler robot’s positioning system is seamlessly integrated into the
excavation and collection phases, allowing for continuous mining and loading. Hauler
robots, equipped with ore block sensors, locate the extracted water ice blocks and transport
them to the designated collection site. To optimize this process, a division of labor mecha-
nism inspired by leafcutter ants is employed, as observed in Labella’s studies [57,58]. The
hauler robots are divided into two groups in a 50:50 ratio. The first group transports ore
blocks from the mine site to the central hub, while the second group, known as transporter
robots, carries the ore blocks from the central hub to the processing plant. This 50:50 split
was selected based on the results of Labella [57,58] and earlier research by Tan et al. [61],
indicating that in comparable task allocation scenarios a 50:50 division of labor works best.
These earlier results imply that a 50:50 ratio is ideal for balanced resource transport tasks.
This sequential handover system shortens the overall transportation distance and signifi-
cantly enhances the efficiency and speed of material transportation to the processing plant.
While one hauler robot collects the extracted water ice blocks, the other positions itself for
subsequent loading, ensuring an efficient and uninterrupted workflow. The simulation of
this process is presented in Figure 7.
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from the mine site to the central hub, and green arrows show paths from the central hub to the
processing plant.
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It is worth noting that other ratios have not been investigated in this study. With the
aim to further improve the performance of the proposed framework, future research will
examine various ratios under operating conditions unique to the Moon.

5.2.3. Maintenance and Sustainability

The maintenance and sustainability phase ensures the long-term viability of mining
operations by implementing fault-tolerance mechanisms inspired by the synchronized
flashing behavior of fireflies. When the robot malfunctions or runs out of energy, the LED
light on top of the robot emits a red-light signal. The replacement robot detects this signal
and activates the fault-tolerance protocol. This approach is based on methods presented in
earlier studies [67–71]. The process is controlled by comprehensive fault-tolerance and task
replacement algorithms:

Tr =
Si
Dr

×
(

θ ×
(

1 − Ei
Emin

)
+ ∅ × Mi

)
Among them, Tr is the task replacement signal strength detected by the replacement

robot r, Si is the status indicator light of the robot i (1 means there is a fault, and the
red light is on; 0 means running), and Dr is the distance between the faulty robot i and
the replacement robot r. The value η is the scaling factor to adjust the sensitivity of the
replacement robot to the signal, Ei is the current energy level of the faulty robot i, and Emin
is the minimum operating energy threshold for the robot to operate. Mi is the fault indicator
of robot i (1 if the robot is faulty and 0 if the robot is running), and θ and ϕ are weighting
factors that balance the impact of energy consumption and fault conditions. Once a red
signal is detected, a replacement robot moves to the location of the faulty robot and takes
over its tasks. The malfunctioning robot automatically returns to the repair site for repairs.
The system ensures continuous operations and enhances the resilience and sustainability of
the mining process by minimizing downtime and maintaining operational efficiency. The
simulation of this process is presented in Figure 8.
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6. Results and Discussion

The simulation results offer a thorough assessment of the Lunarminer framework,
specifically evaluating its navigation capabilities, material handling efficiency, and swarm
automation processes. The space mining operation via the Lunarminer framework is
illustrated in Figure 9.
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6.1. Simulation Outcomes

The Lunarminer framework was tested in a simulated Gazebo lunar environment to
investigate the operational coverage and exploration efficiency of four exploration robots.
The primary objective was to evaluate the speed, coverage, and effectiveness of the search
strategies employed when surveying and extracting water ice within Shackleton Crater.
Operating at a standard speed of 14 cm/s, each exploration robot successfully covered
6.6 m in 46 s. This is equivalent to covering an area of 32.7 m2 in 4.6 min, or about 0.011 km2

of exploration space per day. Based on simulations, it was estimated that it would take nine
Earth years for the four exploration robots to fully survey the 36 km2 floor of Shackleton
Crater. This estimate does not consider potential downtime, or the time required to replace
a robot, suggesting that while the framework is effective, further optimization will be
required to accelerate the exploration process.

The water ice extraction capabilities of the Lunarminer framework were evaluated
at five mining sites, each extracting four regolith blocks with a total weight of 320 kg per
operating cycle. To accelerate the process, exploration started at X = 0, and the mining was
confined to the area of 3.3 m × 6.6 m. The simulation set the extraction time per regolith
block to 2 s to focus on transportation efficiency, applied a 20% failure rate to mirror the
terrestrial mining industry-standard of 80% equipment utilization, and included a failure
protocol. The simulation was tested 10 times, showing that it took an average of 23 min
to deliver 20 regolith blocks from the mine site to the processing plant. Although the
simulation employed a rapid 2 s extraction rate, under realistic conditions, the RASSOR
2.0 excavator extracts 80 kg (one regolith block) in 42 min [19]. This means that extracting
20 regolith blocks would take 830 min for excavation and 23 min for transportation. This is
equivalent to extracting about 33 blocks of regolith, or 2640 kg of regolith, per Earth day.
With a water ice concentration of 5.6 ± 2.9 wt% and a conversion efficiency of 80%, the
daily water production is estimated to be 118 L. According to NASA’s Human Integrated
Design Manual, this daily water production could support up to eighteen crew members,
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as sustainable space habitats with regenerative life support systems require 6.47 kg of water
per crew member per day [79].

6.2. Comparative Analysis

The Lunarminer framework has demonstrated superior water production efficiency
compared to both the mobile in situ water extractor (MISWE) and the system reported
by Battsengel et al. (2023) [81]. According to Zacny et al. (2012), a single MISWE rover,
equipped with a 1 m deep auger and a 5 cm diameter drill, recovered 0.2 L of water per
hour, totaling 4.8 L per day [18]. Deploying 12 MISWE units, equivalent to the number
of robots in the Lunarminer framework, would yield 57.6 L per day. In contrast, the
Lunarminer framework nearly doubles this output, producing 118 L per day. Additionally,
the research of Battsengel et al. [81], involving 10 robots extracting icy regolith in Shoemaker
Crater at a speed of 152 m/h across two shifts per day, achieved an annual extraction of
146 tons of regolith, translating to an extraction of 22.4 L of water per day. Scaling this to
12 robots would result in an extraction of 26.9 L per day, which is significantly lower than the
118 L per day achieved by the Lunarminer framework. The comparison of the Lunarminer
framework with alternative technologies is shown in Table 1.

Table 1. Comparison of Lunarminer Framework with Alternative Technologies.

Technology
Water (L)/Regolith
(kg) Extraction
Rate

Energy Efficiency
(Watts/Liter or
Regolith)

Fault Tolerance Scalability Notes

Lunarminer
Framework

181 L/day
2640 kg/day 4.2 watts/L Up to 20% robot

failure

High
(Decentralized
control)

Achieves superior
water extraction with
significant energy
savings and fault
tolerance.

RASSOR 800 kg/day 4.1 watts/kg
Limited
mechanical
resilience

Medium (Single
unit)

Designed primarily for
regolith excavation, it
consumes more energy
for large-scale
excavation.

MISWE 4.8 L/day Not specified
High energy
consumption per
unit

Low (Single unit,
low tolerance)

Limited by low
extraction rates,
scaling to 12 units
yields 57.6 L/day.

The comparative analysis of energy usage and extraction efficiency between swarm
robots with DoL and non-DoL strategies in lunar mining operations has demonstrated
the significant benefits of task allocation inspired by leafcutter ants. The simulations were
conducted across three different setups, each with five mine sites containing two, four,
and six ore blocks, respectively. Two strategies were tested: (1) a 100:0 ratio without DoL,
where six haulers delivered ore directly to the processing plant, and (2) a 50:50 ratio with
DoL, where four haulers transported ore to a central hub, and two transporters completed
the delivery. The energy consumption trends were derived from assumptions based on
NASA’s RASSOR 2.0 bucket-drum excavator [19] and a parametric review by Just et al.
(2020) [82]. Key estimates included 320 W for excavating an 80 kg ore block [14,83,84],
90 W for fully loaded haulage per minute [84,85], 10 W for unloaded haulage per minute,
and 5 W for mineral detection. The light beacon power was excluded to focus on the
overall energy trend from the DoL strategy implementation. The analysis of extraction
efficiency and energy usage for DoL and non-DoL strategies is illustrated in Figure 10a and
Figure 10b, respectively.
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Figure 10. (a) Resource extraction time and (b) energy distribution across different scenarios.

As shown in Figure 10a, the DoL strategy has reduced the extraction time by 25%,
30%, and 40% for 10, 20, and 30 ore block scenarios, respectively. This reduction was
due to optimized workload distribution, reduced travel distances, and minimized idle
times. Energy consumption data have further supported the efficiency of the DoL strategy.
As depicted in Figure 10b, the total energy usage in the DoL setup peaked at around
1600 watts between 6 and 8 min and then declined, stabilizing at about 600 watts by the
end of the operation. In contrast, the non-DoL setup peaked at 1800 watts and remained
high for longer, reflecting the energy-intensive nature of hauling ore directly over greater
distances. Additionally, the energy graph shows that the DoL strategy has resulted in a
more stable energy distribution compared to the non-DoL strategy, where energy usage
was more erratic and prolonged. This stability in energy distribution has indicated a more
controlled and efficient use of resources, reduced the overall energy demand, and enhanced
operational efficiency. The primary factor driving these differences was the reduced travel
distance in the DoL setup, where specialized roles for haulers and transporters have
optimized the energy usage. In contrast, the non-DoL approach, requiring robots to cover
the full distance from mine to processing plant, resulted in prolonged energy consumption,
with energy peaks lasting nearly twice as long. These results have highlighted the DoL
strategy’s effectiveness in improving operational efficiency, shortening extraction times
by up to 9 min, and reducing total energy consumption by approximately 31%, making it
particularly advantageous for lunar mining where energy efficiency is crucial.

The comparative analysis of fault tolerance and system robustness within the Lun-
arminer framework was evaluated by implementing a protocol inspired by the synchro-
nized flashing behavior of fireflies. The evaluation was carried out under three distinct
scenarios: (1) a normal scenario with no failures, where all robots operated at full efficiency;
(2) a failure scenario with a 50% failure rate, where half the robots malfunctioned after
12 min of operation; and (3) a recovery scenario, where a recovery protocol was imple-
mented to replace malfunctioning robots, also beginning at the 12 min setup. The simula-
tions were conducted on a standardized mine setup consisting of five sites, each containing
four ore blocks, resulting in a total of twenty ore blocks to be harvested. The analysis of
recovery efficiency is illustrated in Figure 11.
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Figure 11. Fault tolerance and system robustness across three scenarios, i.e., normal, with failure, and
with recovery settings.

As Figure 11 shows, the results highlight the critical role of the recovery protocol in
maintaining system robustness, automation, and resilience within the Lunarminer frame-
work. In the normal scenario, all 20 ore blocks were harvested in approximately 19 min,
reflecting full operational efficiency. In contrast, the failure scenario extended harvesting
time to 35 min, an 84% increase due to the reduced number of operational robots, which
slowed the ore collection rate. The recovery scenario completed the harvesting process
in 22 min, showing a 15.8% increase compared to normal operations but significantly
outperforming the failure scenario. The recovery protocol has proved to be effective by
quickly replacing malfunctioning robots, with production temporarily stalling between the
13th and 16th minutes during robot replacement in 12 min. After the recovery, the system
rapidly restored efficient operation, as indicated by the sharp decline in remaining ore
blocks after 16 min. Although production efficiency briefly dropped during the recovery
period, the system quickly returned to a collection rate close to normal operations. In
contrast, the failure scenario experienced a steady decline in efficiency, demonstrating the
recovery protocol’s importance in improving operational efficiency by 37.1% compared
to the failure scenario. This analysis has underscored the recovery protocol’s ability to
significantly mitigate the impact of robot failures and to maintain performance levels close
to optimal conditions.

6.3. Environmental Condition Analysis

Temperatures in the PSR region will continue to drop as lunar mining advances, and
under extreme circumstances, the lunar surface may see significant temperature fluctuation
from up to 127 degrees Celsius during the day to −173 degrees Celsius at night [19]. Robotic
systems are severely affected by these variations, particularly in terms of battery efficiency
and electronics performance. The robotic swarm is distributed, which offers robustness
even though the current Lunarminer framework does not specifically include sophisticated
thermal management systems. Should an extreme environment cause a failure of robots, the
loss of one robot will not have an impact on the system, enabling the remaining functional
units to carry on with their work. To further improve resilience in harsh environments,
future research should examine modifications to thermal management. Moreover, visual
navigation is challenging in the PSR, due to limited sunlight. The Lunarminer robots
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use non-visual sensors like radar and LiDAR for obstacle detection and terrain mapping.
The robot swarm uses synchronized light signals inspired by fireflies to coordinate the
movements of the robots in the absence of light. With this method, robots can continue to
carry out their missions and communicate effectively even in areas that are dark.

6.4. System Performance Within Current Robot Limitations

Since the ROS simulation environment has limitations, the current paper considers a
swarm of 15 robots. For this number of robots, the system is optimized for task distribution
and fault tolerance. Although the performance of larger swarms is not tested in this
study, it is expected that the decentralized architecture of the framework, where each robot
independently plans tasks and communicates with the rest of the swarm robots, would
allow the system to scale effectively. Future research will try to evaluate this scalability
with more robots, investigating the effects of more robots on overall performance, task
coordination, and energy efficiency.

6.5. Lunarminer Framework Integration

The proposed Lunarminer framework integrates collective behaviors inspired by
nature, namely the division of labor observed in leafcutter ants’ foraging behavior and the
synchronized flashing of fireflies, to create an autonomous, efficient, and resilient swarm
robotic system. Drawing from the swarm robotics behavior classification [52,75,86], the
Lunarminer framework can be categorized as shown in Figure 12.
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The Lunarminer framework classifies the proposed swarm robotics behaviors by in-
corporating strategies inspired by both leafcutter ants and fireflies. Through the division
of labor modeled after leafcutter ants, the system has achieved spatial organization via
self-assembly, object clustering, and assembly, with navigation for collective transportation,
while also facilitating decision-making for consensus, task allocation, and collective percep-
tion. Additionally, the synchronized flashing behavior of fireflies has contributed to the
system’s self-healing capabilities, enhanced consensus-based decision-making, synchro-
nization, collective perception, and fault detection. This approach also supports navigation
through collective exploration, coordinated motion, and collective localization.
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The Lunarminer framework has incorporated nature-inspired strategies to optimize
various aspects of lunar mining operations [75]. The division of labor, modeled after leafcut-
ter ants, has enhanced transportation efficiency, leading to reduced times in mine planning
and operation. The synchronized flashing behavior of fireflies has facilitated navigation and
ore detection in dark regions, which is essential for exploration and operational efficiency.
Additionally, this behavior has contributed to the system’s self-healing capabilities, thereby
improving reliability during mining activities. While mine closure and rehabilitation are
not within the scope of this framework, the focus was placed on minimizing environmental
impact throughout the mining process. The application of these nature-inspired behaviors
across the mining lifecycle is presented in Table 2.

Table 2. Lunarminer Mining Lifecycle.

Mining Lifecycle Phase Leafcutter Ants Fireflies

Mine Exploration and Assessment No Yes

Mine Planning and Design Yes Yes

Mine Operation and Construction Yes Yes

6.6. Validation of the Lunarminer Framework

The performance metrics used to evaluate the efficacy of the Lunarminer framework
have been defined through the quantitative outcomes of the system’s operation in a simu-
lated lunar environment. The realistic environment of Shackleton Crater was replicated
using the robot operating system (ROS). Important metrics like water extraction rate (181 L
per day), energy efficiency (31% reduction), time efficiency (up to 40% reduction in extrac-
tion time), and fault tolerance (20% robot failure tolerance) are summarized in Table 3.

Table 3. Lunarminer Framework Performance Metrics for Each Mining Phase.

Mining Phase Metric Value Notes

Mine Exploration Area covered per robot per
Earth day 0.46 km2

A total of 15 robots were used
to fully explore Shackelton
crater’s 32.7 km2 floor in
72 Earth days.

Regolith Excavation

Total blocks excavated per day 33 blocks (2640 kg of regolith) Daily excavation of 2640 kg of
regolith.

Time per block excavation 42 min Time to excavate one block of
80 kg regolith.

Water Extraction Water extraction rate 181 L/day

Water produced per day from
excavated regolith with
5.6 wt% water ice
composition.

Energy Efficiency Energy savings 31% energy reduction Energy savings in high ore
block quantities.

Operational Time Efficiency Time reduction in extraction Up to 40% reduction
Time savings achieved
through optimized task
allocation.

System Resilience Robot failure tolerance Up to 20% failure rate
The system operates
efficiently even with a 20%
robot failure rate.

By comparing the framework’s performance directly to that of current technologies,
these metrics show how resilient, scalable, and operationally efficient the Lunarminer
system is. The findings in Table 3 confirm that the system can function well on the Moon,
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outperforming competing technologies in terms of extraction rate, energy efficiency, and
system resilience. The simulations also show that the Lunarminer framework is a reliable
option for lunar resource extraction, because it can continue to function effectively even in
the face of difficult circumstances like a 20% robot failure rate.

7. Conclusions

The Lunarminer framework was developed to test the hypothesis that biomimetic
swarm robotics, inspired by the division of labor in leafcutter ants and the synchronized
flashing behavior of fireflies, may significantly enhance the automation, efficiency, relia-
bility, and sustainability of lunar water ice extraction. The simulations conducted within
Shackleton Crater demonstrated that the proposed framework may effectively improve
operations through optimized task allocation, increased energy efficiency, and enhanced
system resilience, thereby supporting the initial hypothesis proposed by the authors. Specif-
ically, the division of labor modeled after leafcutter ants may enable the robotic swarm
to optimize ore transportation, resulting in a reduction in the extraction time by up to
40% and in energy consumption by approximately 31% in scenarios with high ore block
quantities. Additionally, the firefly-inspired recovery protocols may enhance the fault
tolerance of the Lunarminer system, maintaining near-optimal operational efficiency even
in the presence of robot failures. The framework’s capability to produce up to 181 L of
water from excavated regolith with an overall conversion efficiency of 0.8 allows for further
validating its potential as a possible reliable solution for sustained lunar mining operations,
ISRU, and supporting Moon habitation supplies for up to 18 crew members. These findings
demonstrate the potential effectiveness of the Lunarminer framework in addressing the
challenges of lunar resource extraction, particularly in permanently shadowed regions like
Shackleton Crater. The integration of nature-inspired behaviors not only may allow for
optimizing production and swarm operations but also may provide a scalable and resilient
approach to ISRU for future space missions. Although the results of the simulation show
real-world applications, the system will face other challenges like severe temperature fluc-
tuation, lunar dust, and communication lags which should be resolved before deployment.
In order to further validate the framework’s performance, physical testing under conditions
that more closely resemble the lunar environment in facilities such as the EXTERRES labo-
ratory will be essential. In this study, a cluster of only 15 robots was issued for simulation,
because of the ROS version’s limitations. Future research should aim to overcome this
constraint, because larger robot clusters might offer more profound understanding of the
system’s robustness and scalability. By contributing to the development of sustained opera-
tions for long-term lunar exploration, these real-world validations will assist in converting
the simulation results into useful applications for lunar mining. To assess how well this
framework performs with larger clusters, future studies will investigate more sophisticated
computing frameworks or distributed simulation environments. It is recommended that
further research on optimizing the framework for large-scale deployment in space mining
operations be conducted and the proposed strategies be further refined using rover systems
and regolith thermal vacuum chambers (RTVACs) available at the EXTERRES laboratory at
the University of Adelaide.
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