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Abstract: Over the past 50 years, the space race has potentially grown due to the development of
sophisticated mechatronic systems. One of the most important is the bio-inspired mobile-planetary
robots, actually for which there is no reported one that currently works physically on the Moon.
Nonetheless, significant progress has been made to design biomimetic systems based on animal mor-
phology adapted to sand (granular material) to test them in analog planetary environments, such as
regolith simulants. Biomimetics and bio-inspired attributes contribute significantly to advancements
across various industries by incorporating features from biological organisms, including autonomy,
intelligence, adaptability, energy efficiency, self-repair, robustness, lightweight construction, and
digging capabilities-all crucial for space systems. This study includes a scoping review, as of July
2024, focused on the design of animal-inspired robotic hardware for planetary exploration, supported
by a bibliometric analysis of 482 papers indexed in Scopus. It also involves the classification and
comparison of limbed and limbless animal-inspired robotic systems adapted for movement in soil
and sand (locomotion methods such as grabbing-pushing, wriggling, undulating, and rolling) where
the most published robots are inspired by worms, moles, snakes, lizards, crabs, and spiders. As
a result of this research, this work presents a pioneering methodology for designing bio-inspired
robots, justifying the application of biological morphologies for subsurface or surface lunar explo-
ration. By highlighting the technical features of actuators, sensors, and mechanisms, this approach
demonstrates the potential for advancing space robotics, by designing biomechatronic systems that
mimic animal characteristics.

Keywords: aerospace robotics; bio-inspired systems; space exploration; ISRU; moon

1. Introduction

The Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Inter-
action with the Sun (ARTEMIS) mission proposed by NASA aims to explore the Moon and
beyond. As outlined in the strategic plan [1,2], there are two important goals: (1) expand
human presence on the Moon for sustainable long-term exploration and development;
and (2) investigate the lunar surface. These could provide chances to extract lunar re-
sources, resulting in safer and more efficient operations that are less reliant on supplies
from Earth. As a result, NASA has projects related to in-situ resource utilization (ISRU)
through partnerships with industry and academia [3]. Extraction and mining initiatives
enhance the ability to find and exploit lunar rock resources from the regolith. Moreover,
the development of chemical and thermal processes may provide options for breaking
down natural minerals and compounds found on the Moon and turning them into items
for human consumption [4]. Therefore, NASA will begin establishing the ARTEMIS Base
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Camp [5] on the lunar surface, allowing for long-term stays and unsupervised scientific
activities [6]; it also serves as a valuable platform for technical advancement. Other mission-
enhancing capabilities include sophisticated solar and fission power systems [7] and even
automated manufacturing technologies, like 3D printing, using regolith-based construction
materials [8].

The ARTEMIS mission is focused on the lunar south pole, an area with more extreme
environments than any other location humans have encountered. The landscape is heavily
cratered, with portions drenched in sunlight and others in darkness. The craters are frigid,
but the elevated parts can become exceedingly heated. These characteristics increase risk
while providing bigger scientific rewards. Experiments will yield fresh insights about the
nature and genesis of polar volatiles [9]. The south pole region is reported to have reserves
of water ice that future explorers could utilize for drinking, cooling, oxygen production, and
rocket fuel [10]. The advancement of ISRU technologies enables longer-duration human
missions to distant destinations [11], which can begin with a pilot plant based on the
Volatiles Investigating Polar Exploration Rover (VIPER) [12] and the Polar Resources Ice
Mining Experiment (PRIME-1) [13] missions. These missions could assist process selection
and operations [14], aiming to validate the fundamental capabilities and subsystems for
producing water and/or oxygen from indigenous materials [15].

Therefore, the Lunar and Planetary Institute (LPI) has identified two specific objectives
for ISRU operations [16]: (1) To track environmental changes caused by human activi-
ties(sensors will be installed at various distances from an outpost or settlement). Lunar
exploration provides a valuable chance to assess the effects of human presence on biological
and organic contamination and to develop mitigation strategies [17]. By creating techniques
to test and reduce contamination, this activity will aid in the preparation of human mis-
sions to Mars [18]; (2) To examine and understand each phase of the impact process. The
following fundamental discoveries are crucial to this interpretation: (i) the distribution
of primary ejecta from craters and basins [19]; (ii) the geochemical deconvolution of the
megaregolith to determine the bulk composition of the crust [20]; and (iii) the utilization
of the basin, larger crater ejecta, and central peak compositions to deduce crustal stratig-
raphy [21]. Moreover, intact lunar craters can serve as a natural laboratory for studying
the impact process across a wide variety of sizes [22]. There are three types of soils on the
lunar surface [7], lunar mare, highlands, and mixing zones [8], which can be reproduced
as a simulant using low-Ti mare basalt and high Ca highland anorthosites [9]. These are
under manufactured to test the capabilities of robots in extracting resources [10] such as
oxygen, iron, titanium, or chromium (structural elements), and helium (fuel) [11].

Deep space exploration, extravehicular activities, and the expansion of space science
research depend on the development of planetary robots [23]. There is ample evidence
that the use of these technologies minimizes the expense and danger associated with space
activities. A growing number of countries have declared that their next phase of space
missions will involve exploring the Moon and Mars. Thus, robots in space must overcome
huge challenges caused by extreme temperatures, radiation, microgravity, and ultrahigh
vacuum [24]. In addition, using an intelligent robot to explore extraterrestrial regolith (ER)
offers several benefits and may be the most important path to enable long-term survival.
An emerging trend in ER exploration will be human–robot cooperation, in which robots
perform tasks that are challenging for humans to accomplish, whereas robots handle
simpler or riskier ones. When astronauts arrive at celestial bodies, this trend will become
a powerful reinforcement [25]. According to Tao Zhang et al. [26], the planetary regolith
sampler (PRS) is a kind of equipment that is typically mounted on a lander or rover during
planetary exploration [27]. It is thought to expand the range of applications for planetary
robots. The PRS can penetrate, gather, transport, and store regolith samples. The design
and development of such multifunctional devices have caught the interest of scientists
and engineers worldwide due to their enormous potential for application in deep space
exploration. However, it is difficult to establish a fully functional PRS due to the enormous
environmental changes among celestial bodies [28].
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Finally, for decades, engineers have employed biomimetics and bio-inspiration to
improve products and procedures across many industries [29,30]. Thus, several features
shared by biological organisms, such as autonomy and intelligence, response-stimuli adapt-
ability, energy efficiency, ability to self-repair, robustness, lightweight construction, and
digging tasks could be essential for space systems. Those features fit into the “Biomimetics”
research field explored by the Advanced Concepts Team [31] of the European Space Agency
(ESA) [32], and also by Innovative Advanced Concepts led by NASA [33]. In extraterrestrial
environments, many challenges and irregular surface textures pose significant issues and
limitations for traditional wheeled robotic vehicles [34]. Therefore, this paper presents a
framework based on a wide range of bionic technology concepts, each with unique features
based on particular specifications. Therefore, the main contribution of this manuscript lies
in the proposal of foundations for the design and development of bio-inspired planetary
space robots for applications on the Moon [35,36]; in addition, it depicts a literature review
oriented to the sand locomotion of animals that can be replicated to design biomimetic
systems, classified by subsurface and surface exploration tasks. We have identified two
types of mechatronic systems, that can be reproduced based on animals [37] and adapted to
sand environments: (1) limbed robots bio-inspired on crabs, moles, lizards, and spiders; and
(2) limbless robots bio-inspired by snakes and sandworms. Biomimetics has demonstrated
its capacity to offer numerous beneficial insights and enhance traditional space systems by
introducing innovative and creative principles, even when facing space’s extremely harsh
environmental conditions [38].

The manuscript is structured as follows: Section 2 describes the materials and methods
used for data search. Section 3 shows the selected animal species according to their morpho-
logical adaptations, followed by an analysis of robotic systems that mimic anatomical and
locomotion features of the animals mentioned above, resulting in a novel design method-
ology. Section 4 discusses the advantages of bio-inspired robotics for lunar applications,
focusing on (i) mechanics and materials science and (ii) mechatronics and control systems.
The paper concludes with a summary of findings and future works.

2. Materials and Methods

This section presents the research methodology (Figure 1), which has been inspired
by the trending topic in robotics that is related to biomimetics. Therefore, the Kitchenham
guidelines [39] were applied in the formulation process of this literature review to classify
the published articles about underground sand-living animal morphologies (described
in Section 3) that can be replicated as a bio-inspired systems. The search was designed
according to the Population, Intervention, Comparison, Outcomes, and Context (PICOC)
criteria [40] and adapted for bio-inspired systems (Table 1).

This study examined scientific contributions published up to July 2024. EndNote was
used to store and manage references. To begin, the most appropriate literature databases
(DBs) were chosen to increase the chances of discovering highly relevant articles. This
database includes Scopus (www.scopus.com, accessed on 1 July 2024) because it covers
the most important publishers, such as Nature (www.nature.com, accessed on 3 July
2024), Springer (www.springer.com, accessed on 5 July 2024), Elsevier (www.elsevier.com,
accessed on 7 July 2024), Wiley (www.wiley.com, accessed on 8 July 2024), SAGE (www.
sagepub.com, accessed on 11 July 2024), IOP Science (www.iopscience.iop.org, accessed
on 13 July 2024), Science (www.science.org, accessed on 14 July 2024), Taylor & Francis
(www.tandfonline.com, accessed on 16 July 2024), MDPI (www.mdpi.com, accessed on
17 July 2024), IEEE Xplore (ieeexplore.ieee.org, accessed on 19 July 2024), and Aerospace
Research Central (arc.aiaa.org, accessed on 20 July 2024). So, Table A1—Appendix A depicts
the search protocol’s structure for the paper’s identification stage, which is divided into
2 blocks and 5 parts.

www.scopus.com
www.nature.com
www.springer.com
www.elsevier.com
www.wiley.com
www.sagepub.com
www.sagepub.com
www.iopscience.iop.org
www.science.org
www.tandfonline.com
www.mdpi.com
ieeexplore.ieee.org
arc.aiaa.org
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Table 1. Summary of PICOC.

Population The literature on biorobotic animal-shape morphologies that improve
grabbing-pushing, undulating, rolling, or wriggling tasks on the sand.

Intervention Biomimetic systems with semi-autonomous or autonomous animal-like
locomotion.

Comparison Limbed and limbless animal species

Outcomes Adaptive morphologies considering subsurface and surface locomotion

Context Studies in industry and academia, small and large data sets

In the screening and eligibility stage, articles published in journals, books, research
reports, and conference proceedings from the aforementioned DB were included. Addi-
tionally, at the beginning, the articles were examined by reading the title and abstract. The
following eligibility criteria are shown in Table 2 as follows:

Table 2. Eligibility Selection Criteria of Published Papers.

Inclusion
Criteria

Full text of the article is available

The publication year is up to July 2024

Article is about a mobile robot with an animal’s shape and morphology

Article is about hardware design

Article is about a manufacturing/prototyping process

Article is about robot animal’s locomotion

Article is written in English

Exclusion
Criteria Article is a review paper

Additionally, the anatomy and physiology features related to the biomechanics of
sand-animals’ musculoskeletal systems during locomotion activities [41] are described,
such as (a) grabbing-pushing: the teeth destroy the substrate, while the forelimbs compact
it to both sides, thus enabling dig caves [42], (b) wriggling: it can produce stable reverse
force in the non-linear and unconstructed environment, and the animal does not be affected
by the substrate pressure [43], (c) undulating: the body undergoes large-amplitude axial
fluctuations and uses the fluid characteristics of the substrate to produce propulsion [44],
and (d) rolling: the animal moves along a surface by revolving or turning over and over to
perform a fast motion [45].

Consequently, the locomotion-gait and engineering design of each biomimetic robot
has been described and classified as species of subsurface and surface exploration (see
Table 3). These systems cover a wide area of land, expanding the regions explored by
humans. While exploring, they are capable of collecting many different types of data,
such as geological composition, atmospheric measurements, terrain mapping, etc. A space
planetary robot mainly covers these features [46,47], such as (i) can move forward in the
soil, although the body is buried, (ii) lightweight, and (iii) enough autonomy to explore
by itself.
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Table 3. Selected Sand-Adapted Animals Replicated by Biomimetic Robots.

Exploration
/Locomotion

Animal
(Species)

Scientific
Name Robot # Authors Citation YP

SU
B

SU
R

FA
C

E

GRABBING-
PUSHING

CRAB
(Pacific Mole

Crab)

Emerita
analoga

1 L. K. Treers et al. [48] 2022
2

B
IO

-I
N

SP
IR

ED
M

EC
H

A
T

R
O

N
IC

SY
ST
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S

2 R. A. Russell et al. [49] 2011

MOLE
(Grant’s

Golden Mole)

Eremitalpa
granti

1 Z. Liang et al. [50] 2023

6

2 J. Lee, J. Kim et al. [51] 2020

3 H. Zheng et al. [52] 2023

4 J. Lee et al. [53–56] 2019, 2020,
2022

5 C. Tirtawardhana
et al. [57] 2020

6 J. Kim et al. [58] 2018

WRIGGLING
WORM

(Bobbit worm)
Eunice

aphroditois

1 T. Nakamura
et al. [59–64]

2009,
2017–2019,
2021, 2022

7

2 P. Zhang et al. [65] 2024

3 B. Liu et al. [66] 2019

4 H. Fang et al. [67] 2017

5 A. A. Calderón
et al. [68] 2019

6 R. Das et al. [69,70] 2023

7 Y. Ozkan-Aydin
et al. [71] 2021
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Table 3. Cont.

Exploration
/Locomotion

Animal
(Species)

Scientific
Name Robot # Authors Citation YP

SU
R

FA
C

E

UNDULATING

LIZARD
(Sandfish

Lizard)

Scincus
scincus

1
R. D. Maladen

et al.; and J.
Urquhart

[72–76] 2010, 2011

4

B
IO

-I
N

SP
IR

ED
M

EC
H

A
T

R
O

N
IC

SY
ST

EM
S

2 A. A. M. Faudzi
et al. [77] 2017

3 B. Chong et al. [78] 2022

4 G. Chen et al. [79,80] 2024

SNAKE
(Western

Shovelnose
Snake)

Sonora
occipitalis

1 C. Wright et al. [81] 2007

5

2 H. Yoshida et al. [82] 2023

3 L. Huang et al. [83] 2023

4 W. Zhao et al. [84] 2021

5 C. Branyan et al. [85,86] 2017, 2018

ROLLING
SPIDER

(Golden Wheel
Spider)

Carparachne
aureoflava

1 R. Elara Mohan
et al. [87–89] 2015–2017

2
2 A. Western et al. [90] 2023

3. Results

In summary, for decades, engineers have employed biomimetics and bio-inspiration to
improve products and procedures across a wide range of industries. Thus, several features
shared by biological organisms, such as autonomy and intelligence, response-stimuli adapt-
ability, energy efficiency, ability to self-repair, robustness, lightweight construction, and
digging tasks, are essential for space systems. Many challenges and irregular surface tex-
tures are common in extraterrestrial environments, which cause problems and constraints
for traditional wheeled robotic vehicles [34]. Hence, a wide range of bionic technology
concepts exist, each with unique qualities based on particular specifications. Based on
a thorough analysis of the literature presented in Section 2, we can state a proposal to
standardize the methodology (following the VDI 2221 [91] and VDI 6220 [92] guidelines)
for designing robots that are able to perform exploration activities on the subsurface and
surface of the Moon (based on ISO 49.140—Space systems and operations [93], AIAA-92-
1515—Standards for space automation and robotics [94], and AIAA S-066-1995—Standard
vocabulary for space automation and robotics [95]), ISO/TC 299—Robotics [96], and ISO
18458:2015—Biomimetics: Terminology, concepts and methodology [97]. As depicted in
Figure 2, the concept starts with the observation of the soil/sand-adapted animal behavior,
and then, it can be replicated using mathematics to explain the biomechanics. After that, the
limbed or limbless option must be selected, and then, a computer (CPU) model combined
with control techniques can be created until the design of the prototype is achieved, taking
into account mechanisms, materials, sensors, and actuators, managed by microcontrollers.

This section shows a technical summary of the included/selected documents after the
search methodology was performed in July 2024 (Figure 1). It started with the identification
stage according to the use of research protocol (Table A1—Appendix A) in Scopus Database,
and then the results were screened using the analysis criteria mentioned in Table 2.
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3.1. Subsurface Exploration

It requires specialized systems capable of penetrating the regolith and navigating
underground tunnels and lava tubes [98]. Bio-inspired burrowing robots are particularly
well-suited for this task, reaching depths and providing access to subsurface ice deposits
and geological formations [99,100]. Equipped with temperature and moisture sensors,
these robots can map subsurface ice deposits with accuracy [101]. Navigating underground
environments is critical for studying lunar lava tubes, and potential habitats for future
lunar bases. Robots inspired by burrowing animals can traverse these tubes, providing
real-time data on their structure and stability [102]. They can navigate tunnels with small
diameters and cover long distances per deployment, offering invaluable data for assessing
the feasibility of using lava tubes as protective shelters [103].

3.1.1. Crab

Starting with the search methodology (Table A2—Appendix B), in the identification
stage, 45 matching articles were found in the Scopus database. Subsequently, in the
screening stage, 43 articles were excluded as they did not meet the study analysis criteria
(Table 2), leading to 2 articles (Figure 1 and Table A3—Appendix C). Summarizing the
information contained in the selected articles, the robot designs report 2-leg pair systems,
each of them is driven by a slider-crank linkage with a freely rotating linear bearing, and
then, the resulting trajectories of each leg pair create a cycle of insertion, a rapid sweeping
or rotation of the central rod, and subsequent retraction. Thus, two robots are described.

The design of Robot 1 covers each leg pair linkage, which is driven by a single brushed
DC gearmotor. Besides, a cuticle component of the robot was designed to emulate the
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function of the arthrodial membrane. These cuticles are made of latex rubber sheeting and
clamped between two rigid layers on both the baseplate and bearing housing. Also, the
four triangular legs are stretched and retracted in a plane throughout the legs’ sweeping
trajectory [48]. In addition, the prototype of Robot 2 with vanes and uropods is presented.
The burrowing vanes are actuated by internal E381 radio control servos. Metalized anti-
static film was tested and found to have an appropriate combination of flexibility and
toughness. The anti-static film used in this project is 0.079 mm thick, consisting of a
0.013 mm polyester layer and a 0.066-mm layer of polyethylene [49].

After studying bio-inspired robotics based on “Crabs” that perform subsurface explo-
ration, we select a particular specie called Pacific Mole Crab (Emerita analoga) [104], which
is able to develop these steps for underground locomotion as follows: using anterior legs
and rear-facing uropods, can quickly burrow backward, (tail first), into the soil, excavating
the substrate as it digs underground [105]. The limbs are organized into two main groups.
Group 1 consists of the uropods and second leg pair, and Group 2 being pairs 3–5. Group
1 moves with a counterclockwise power stroke, excavating material above the body fol-
lowed by a clockwise recovery stroke with the appendages folded in Group 2 rotates in the
reverse direction propelling the body forward with a clockwise power stroke followed by a
clockwise recovery stroke and excavates material below the body. Furthermore, Group 1
operates at twice the frequency of Group 2, completing twice the amount of strokes in low
depths [106].

3.1.2. Mole

Starting with the search methodology (Table A2—Appendix B), in the identification
stage, 30 matching articles were found in the Scopus database. Subsequently, in the
screening stage, 21 articles were excluded as they did not meet the study analysis criteria
(Table 2), leading to 9 articles (Figure 1 and Table A3—Appendix C). Summarizing the
information presented in the selected articles, the robot designs report two types of systems
based on forelimbs and mandibles that perform burrowing tasks, which permits efficient
digging locomotion. Thus, six robots are described.

Applications of two mechanisms are presented based on forelimbs: Robot 1 presents a
design of a single-DOF forelimb system called cable-driven burrowing force amplification
mechanism (BFAM) based on Stephenson’s six-link mechanism, which connects the claw
toe to the steering engine [50]. Also, Robot 2 works with a digging sequence structured
as follows: (1) pull the front body, (2) impact force, (3) excavation, and (4) gather both
paws [51].

Additionally, there are mole’s mandible-based designs. Robot 3 shows a single-drive
linkage mechanism related to the occlusal pattern and skeletal-muscular structure of mole
incisors that expand, contact, and bite [52]. Robot 4 presents an excavation system, which
is a combined drill bit and forelimbs structure [53,54]. The body section is composed of
three parts in total, a fixed body, a rotating body, and a shaft [55]. The shaft and the rotating
body rotate simultaneously when the motor operates. The fixed body and the rotating body
have screw patterns that mesh with each other like bolts and nuts [56]. Besides, Robot 5
performs the excavation sequence structured as follows: (1) blade expansion and drill bit
forward, (2) excavation, (3) blade folding and drill bit reverse, (4) forelimb forward-moving
and spread, (5) forelimb backward and debris removal [57]. Consequentially, Robot 6
presents a shaft and rotating body that are simultaneously rotated by the motor. The
rotating body moves up and down by the screw pattern of the fixed body [58].

After studying bio-inspired robotics based on “Moles” that perform subsurface explo-
ration, we select a particular specie called Grant’s Golden Mole (Eremitalpa granti) [107],
which is able to develop these steps for underground locomotion as follows: digging with
front claws, pushing sand backward under abdomen, which is retracted forward and
upward. Then, the head and shoulders press forward and upward, sustained by front legs
trailing occasionally used to promote forward motion [108].
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3.1.3. Worm

Starting with the search methodology (Table A2—Appendix B), in the identification
stage, 56 matching articles were found in the Scopus database. Subsequently, in the screen-
ing stage, 43 articles were excluded as they did not meet the study analysis criteria (Table 2),
leading to 13 articles (Figure 1 and Table A3—Appendix C). Summarizing the information
contained in the selected articles, the robot designs show a peristaltic locomotion gait
pattern, which starts with (1) anchoring the robot tail, (2) elongating the middle segment,
(3) anchoring the head while releasing the tail, (4) releasing the middle segment, and then
return to Step 1; the cycle ends with all segments released. Thus, seven robots are described.

Also, it is observed that there are autonomous driller-like systems with flexible-rigid
morphologies. Robot 1 [59] is composed of an excavation unit with two universal joints,
enabling it to perform curved excavation. The goal is to excavate boreholes for placing
environmental sensors, and collecting samples from a particular layer [60,61]. Additionally,
it is made up of a propulsion unit (it has pneumatic actuators) [62], and a discharging unit
(the soil in the back of the robot is discharged out of the borehole using small DC motors
giya-domo-ta RS—/775 gm Series Round Shaft) [63,64]. Additionally, Robot 2 is made
of rigid material (316 stainless steel). It consists of five units: the drill unit, front support
anchor unit, steering unit, propulsion unit, and rear support anchor unit, and all sections
are hydraulically driven. Also, it can achieve two degrees of freedom of steering motion
through the extension or contraction, working in the coordination of the four cylinders [65].

In addition, there are systems made of soft materials. Robot 3 presents a Kirigami struc-
ture, which pops up when an actuator is radially expanded, forming bristle-like spikes that
are perpendicular to the surface and folds back down when deflated, forming a smoother
skin structure. It exhibits a greater maximum drag force (improved from 2.1 ± 0.3 N to
5.5 ± 0.5 N in 25 mm hole diameter condition), greater forward displacement, and higher
traction (e.g., with a 40 g payload, the 3.7 ± 2.8 cm improved to a 12.5 ± 0.1 cm in six gait
cycles). To generate peristaltic motion, the robot needs at least three actuated segments, two
radially expanding actuators at each end for anchoring, and one longitudinally expanding
actuator at the center for elongation along the direction of locomotion. The contractile actu-
ators (thickness 3 mm) are built in the same way as the extensile actuator without a Kevlar
thread. The contractile actuators can both extend longitudinally and radially, depending on
the pressure around the body. The three segments are connected to each other by press-fit
rigid rings, and very flexible Tygon tubes are routed inside the actuators. A conic shape
3D printed rigid nose to reduce the resistant force in the direction of locomotion. The
earthworm robot is actuated pneumatically by using the air from a stationary source [66].

Robot 4 has an origami-shape, constructed by connecting identical cells in series; each
cell is an origami ball (with axial and radial deformations). Hence, a linkage structure is
designed to provide push and pull forces to actuate the origami ball. Under servomotor
actuation, the linkage is able to deform axially from 78 mm to 5 mm and simultaneously de-
form radially from 0 mm to 85.5 mm. Regarding the material, a polyethylene terephthalate
(PETE) film (0.05 mm in thickness) is employed for fabrication because it is an inexpensive,
safe, non-toxic, strong, lightweight, and flexible that is 100% recyclable [67]. Likewise,
Robot 5 has perceptive artificial skins composed of stretchable electric circuits, which can
enable the development of pressure and strain sensors made of deformable micro-channels
filled with conductive liquid metal eutectic alloys (EGaIn5 and Galinstan6). It is composed
of two pneumatically driven radial soft actuators, located at the front and back (extremes)
of the robot (made of silicone materials), and a pneumatically driven central axial actuator.
This structural configuration enables the linear extension, or contraction, of the actuator by
varying its internal air pressure while preventing, to a significant extent, deformations along
the radial dimension. A radial actuator replicates the main features of earthworms’ circular
muscles. Also, the shape enables the radial expansion, or contraction, of the actuator by
varying its internal air pressure while preventing, to some extent, deformations along the
axial dimension. Regarding the fabrication methods for both types of actuators, 3D-printed
acrylonitrile butadiene styrene (ABS) molds were used, silicone elastomer (Ecoflex 00-50,



Biomimetics 2024, 9, 693 10 of 30

Smooth-On), butadiene rubber o-rings, sheets of fiberglass, and pneumatic components. Its
length is 130 mm and 35 mm in diameter, with an approximately constant wall-thickness
of all the components of 2 mm [68].

Furthermore, Robot 6 demonstrates two active configurations from a neutral state
by switching the input source between positive and negative pressure. The peristaltic-
soft actuator (PSA) generates a longitudinal force for axial penetration and a radial force
for anchorage, through bidirectional deformation of the central bellows-like structure,
which demonstrates its versatility and ease of control [70]. The central actuator elongates
with positive pressure, causing the elastomeric skin to stretch longitudinally and produce
radial compression by pushing the encapsulated fluid inward. Once the pressure has been
released, the actuator returns to its neutral position and maintains the shape predefined
by the elastomeric skin. To achieve full radial expansion, negative pressure is applied,
which compresses the actuator along the longitudinal axis and pushes the fluid radially
outward [69]. Robot 7 presents similar features [71].

After studying bio-inspired robotics based on “Sandworms” that perform surface
exploration, we select a particular species called Bobbit worm (Eunice aphroditois) [109],
which is able to develop these steps for above-ground locomotion. It moves using circular
and longitudinal muscles, as well as bristles called chaetae. It can push the chaetae out of
its body to grab the sand around it. To move forward, the animal uses its chaetae to anchor
the front of its body and contracts the longitudinal muscles to shorten its body, which
measures up to 3 m (1500 segments), gradually tapering towards the pygidium [110].

3.2. Surface Exploration

It requires essential tasks for detailed mapping of the lunar surface. Equipped with
advanced LIDAR and hyperspectral imaging systems [111], these systems can generate
high-resolution topographical maps with optimized accuracies, identifying potential land-
ing sites and areas of scientific interest [112]. Covering areas up to 10 km2 per day they
could enhance the scope and speed of lunar reconnaissance missions [47,113]. Bio-inspired
robots can excavate and transport lunar regolith to processing units, converting it into
essential resources like oxygen, water, and building materials [114,115], with operational
efficiency allowing continuous excavation cycles over a 24-h period [116].

3.2.1. Lizard

Starting with the search methodology (Table A2—Appendix B), in the identification
stage, 28 matching articles were found in the Scopus database. Subsequently, in the
screening stage, 19 articles were excluded as they did not meet the study analysis criteria
(Table 2), leading to 9 articles (Figure 1 and Table A3—Appendix C). Summarizing the
information contained in the selected articles, the robot designs report a non- and 4-legged
systems that performs a waving locomotion (tripod gait), which permits that the body-
weight distribution will affect how much a traveling wave contributes to thrust [117]. Thus,
four robots are described.

Robot 1 presents a bio-inspired lizard-vertebral, which is composed of six motors. This
allows angular excursions in the body plane and is connected via identical links [72]. The
design employs six servomotors and a passive segment (the head), being a total of seven
segments [73,74]. Regarding the used material that covers the system, the best option was
a two-layer encasement consisting of an outer Lycra spandex sleeve with a single seam
enclosing an inner, thin latex sleeve that fit tautly [75,76].

In addition, it is observed that there are 4-legged systems, where Robot 2 has soft-
amphibious features, and it has 4.0 mm diameter thin and soft McKibben actuators that are
light, small, and suitable for a simple system. It uses a sprawling posture to support its
body. The upper limbs are typically held horizontally, while the lower limbs are vertical.
The combination of multi-actuators bending motion of the leg and body through the crawl
gait provides flexible locomotion to produce forward or backward motion [77]. Robot 3
describes a similar mechanical configuration related to Robot 2, but this is a rigid-bodied
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system composed of 10 servomotors [78]. Finally, Robot 4 has multi-degrees of freedom
that covers 24 servomotors [79,80].

After studying bio-inspired robotics based on “Lizards” that perform surface explo-
ration, we select a particular species called the Sandfish Lizard (Scincus scincus) [118],
which is able to develop these steps for above-ground locomotion: it generates thrust to
overcome drag by propagating an undulatory traveling wave down the body [119]. It uses
the limbs in a paddling motion as a propulsion motion where the body and tail follow the
high-amplitude sinusoidal curve adopted by the head. Its anatomy revealed 26 vertebrae
in the trunk and 13 anterior caudal vertebrae in the tail [120].

In addition, we can mention that another interesting quadruped-reptile animal that
has similar leg-pattern motion is the Turtle, but it is slower than Lizards; thus, its mor-
phology covers a larger supporting polygon that greatly improves its motion stability.
Regarding the bionic design process, the Turtle is represented in a robotic system using
a multistage topology optimization process. The resulting soft leg structure attained an
ideal balance between bending flexibility and standing stiffness; moreover, the proposed
leg demonstrated superior performance compared to rigid-link legs with motors at the
rotational joints. The flexible beams within the soft leg structure effectively redistributed the
load throughout the leg, thereby providing enhanced protection to the servomotor against
concentrated forces [121]. The other robot shows a reconfigurable structure designed to
seamlessly transition between wheeled, legged, and paddle swimming locomotion modes.
This system accomplishes three distinct modes of movement: wheeled locomotion on land,
limb-crawling on land, and paddle swimming in water. These capabilities are achieved
through composite locomotion strategies, including wheel-arm integration, leg-arm transi-
tioning, broad paddling on the wide side, and precise arm shifts [122].

3.2.2. Snake

Starting with the search methodology (Table A2—Appendix B), in the identification
stage, 261 matching articles were found in the Scopus database. Subsequently, in the
screening stage, 255 articles were excluded as they did not meet the study analysis criteria
(Table 2), leading to 6 articles (Figure 1 and Table A3—Appendix C). Summarizing the
information contained in the selected articles, five robots are described.

Robot 1 is presented as a modular system, which is composed of sixteen aluminum
modules made of laser-cut plastic with parallel joint axes, restricting the snake’s movement
to only two dimensions. It is covered by multi-material skin that includes nylons, polyester,
vinyl, mesh, and microfiber [81]. Also, there is a Robot 2 with fins and a drill (made of
3D-printed PLA) to excavate and move underground. The fins attached to the side of the
body are anchored into the tunnel wall by rolling; meanwhile, the diameter of the drill bit is
45 mm relative to the width of the body 75 mm. The motors for the joints were Dynamixel
XM430-W350R, while those for the drilling unit were XM540-W270R [82].

In addition, Robot 3, a soft-helix bodied system with more than 35 degrees of freedom
at 35 cm in length, is actuated by a single rotary DC-motor to achieve the sidewinding,
lateral undulation, accordion, linear movement gait [83]. Robot 4 performs multi-modal
locomotion of side-winding (lateral undulation), concertina (the motors rotate in opposite
directions to twist or untwist the spring), and side-pishing (the motors at both ends untwist
the spring according to different rotation directions) using two rotary-motors [84]. There is
also a two-degree-of-freedom system, Robot 5, with fiber-reinforced actuators connected in
series. Each actuator has two chambers for bidirectional bending and an elliptical cross-
section to prevent rolling. It is 20 cm in length, 3 cm in width, 2 cm in height and weighs
70 g [85,86].

After studying bio-inspired robotics based on “Snakes” that perform surface ex-
ploration, we select a particular species called Western Shovelnose Snake (Sonora occipi-
talis) [123], which is able to develop these steps for above-ground locomotion: it stretches
out and anchors the front section of its body and then pulls up the rear, bunching itself into
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an ‘S’ pattern by propagating traveling waves down the body, head to tail [124]. It moves
using a sideways swaying motion while it is either on or under the sand or loose soil [125].

3.2.3. Spider

Starting with the search methodology (Table A2—Appendix B), in the identification
stage, 62 matching articles were found in the Scopus database. Subsequently, in the
screening stage, 58 articles were excluded as they did not meet the study analysis criteria
(Table 2), leading to 4 articles (Figure 1 and Table A3—Appendix C). Summarizing the
information presented in the selected articles, the robot designs present legged systems
that perform rolling locomotion, which has the potential for increasing speed and agility
compared to traditional wheeled rovers. Thus, two robots are described.

Robot 1 has a reconfigurable mechanism, which has four legs that are separated
by an optimum distance from the body to ensure a smooth transformation from rolling
and crawling [87]. The whole prototype is 3D manufactured using PLA material 3D
printing [88]. Each limb has three servo motors that can deliver rotational motion on the
pitch, yaw, and roll axis [89]. In addition, Robot 2 shows a 12-legged system driven by a
pendulum combined with a flywheel, which served as the primary driving mechanism,
while the flywheel was used for stability and as a means of supplying a propulsive forward
force by releasing rotational kinetic energy. Additionally, simple radial legs powered by
torsional springs were added to increase the effectiveness of long-distance travel over
rugged terrain [90].

After studying bio-inspired robotics based on “Spiders” that perform surface ex-
ploration, we select a particular species called Golden Wheel Spider (Carparachne aure-
oflava) [126], which is able to develop these steps for above-ground locomotion; it recon-
figures its body structures, like wheels taking the “tumbleweed” shape that ensures its
ability to roll by fixing its legs into constant positions after a short runup and goes down
sand-dunes. It resumes walking with its legs straight as rotational speed reduces [127].

4. Discussion

Bio-inspired robotics are prepared to revolutionize lunar exploration, particularly
through designs inspired by terrestrial animals adapted to sand and soil environments [128].
These systems leverage advancements in mechanics and material science, and mechatronics
and control systems to navigate and operate efficiently on the Moon’s surface and subsur-
face [129,130]. Such innovations promise to enhance our understanding of lunar geology,
facilitate resource extraction, and support long-term human presence [131,132].

The exploration and utilization of space require advanced robotic systems capable of
operating in harsh and unpredictable environments. Two prominent approaches in the
design of space robots are “bio-inspired robots” and “conventional robots”. So, this section
provides a comparison between these two types, examining their respective advantages
and disadvantages (Table 4). By understanding the unique attributes of each, we can better
determine their applicability in various space missions. The challenges of operating in
the vacuum of space, dealing with extreme temperatures, and navigating uneven terrains
necessitate sophisticated robotic designs. Bio-inspired robots, which draw design principles
from nature, and conventional robots rely on traditional engineering techniques. Regarding
robotics design and prototype integration, it is observed the potential of two fields:

(I) Mechanics and Materials Science: robots inspired by terrestrial animals adapted to
sand and soil exhibit exceptional mechanical properties that facilitate efficient loco-
motion in granular media [133,134]. The incorporation of mechanical design using
digital twins [135] related to compliant limbs and flexible spines [136], as seen in soft
robotics, reduces ground reaction forces, improving stability and efficiency when
navigating uneven terrains [137,138]. Burrowing robots that employ digging and
peristaltic motions to move through sand [139], could achieve penetration depths
in simulated lunar regolith [140], also innovative digging mechanisms inspired by
origami-shaped bio-systems [141,142] can rotate the head modules with coupled
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soil-cutting blades [67], this behavior can improve energy efficiency compared to
traditional drilling techniques, crucial for subsurface exploration [143,144].
Moreover, modular [145,146] and reconfigurable [147,148] segments combined with
sensors and actuators [149] provide redundancy and resilience against mechanical fail-
ures [150], ensuring continuous operation even under challenging conditions [151,152].
In addition, materials applications with the use of shape-memory alloys (SMAs)
and other smart materials [153] enable robots to adapt their morphology to differ-
ent tasks [154]. These can change their stiffness or shape in response to tempera-
ture variations, maintaining optimal performance under the Moon’s extreme condi-
tions [155,156]. SMAs, for example, can recover pre-defined shapes with strain recov-
ery, providing versatility in navigating tight spaces or overcoming obstacles [157,158].
Robots incorporating these soft materials [159] demonstrate increased adaptability
and reduced mechanical failures [160,161]. Additionally, lightweight composite ma-
terials, such as carbon fiber-reinforced polymers [162], offer high strength-to-weight
ratios, essential for minimizing launch costs and maximizing payload capacity [163].
These materials exhibit tensile strengths while maintaining low densities [164].

(II) Mechatronics and Control Systems: sensors [165] and actuators [166] designed to
mimic the sensory and motor capabilities of terrestrial animals are crucial [167,168].
For example, some systems use micro-electromechanical systems (MEMS) [169,170]
to replicate the adhesive properties on feet provided by adhesion forces [171]. Also,
lightweight and high-torque actuators based on piezoelectric materials [172] provide
precise and powerful movements [173,174], essential for both surface navigation and
subsurface operations on Moon’s rugged topography [175]. In addition, artificial
intelligence [176,177] and machine learning [178] define the autonomy and adaptabil-
ity of bio-inspired robots [179,180]. Deep reinforcement algorithms [181,182] enable
real-time decision-making and path planning [183], essential for navigating the unpre-
dictable lunar terrain [184] and reducing energy consumption [185,186], while deep
learning models [187,188] analyze sensor data to optimize locomotion and improve
obstacle avoidance [189], enhancing overall mission success rates [190,191]. This
capability enhances the efficiency and scope of lunar exploration missions, allowing
for more comprehensive data collection and analysis [192]. In addition, convolu-
tional neural networks (CNNs) can be employed for terrain classification of regolith
types [193]. Additionally, AI-driven fault detection systems [194] enhance the reliabil-
ity of robotic operations by predicting and mitigating failures before they occur [195].
Predictive maintenance algorithms have reduced downtime in terrestrial testing en-
vironments [196]. Furthermore, decentralized control systems [197], inspired by the
collective behavior of insect colonies [198], allow for robust multi-robot coopera-
tion (swarm systems) [199,200], facilitating large-scale exploration missions. These
systems are being developed to improve task completion in simulated lunar environ-
ments [201,202].
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Table 4. Space Planetary Robotics Comparison.

Bio-Inspired Systems Conventional Systems

Mobility
[150,203–205]

A
D

V
A

N
TA

G
ES

They exhibit superior adaptability to
varying and unpredictable
environments. For instance, legged
robots inspired by animals can traverse
rough terrains more effectively than
wheeled robots. It is associated with
modularity, reconfigurability, and
flexibility.

Those with wheels or tracks may
struggle with uneven terrains and
obstacles that bio-inspired robots
can navigate more easily.

D
IS

A
D

V
A

N
TA

G
ES

Energy
[206–209]

They are focused on energy-efficient
locomotion. For example, robots that
emulate the movement of fish or birds
use less energy for propulsion
compared to conventional thrusters.

Conventional propulsion and
locomotion methods often consume
more energy, which is a critical
concern in the energy-limited space
environment.

Size and Weight
[35,210–212]

Mimicking the structure of small
organisms can lead to the development
of highly miniaturized robots. These
micro-robots can perform tasks in tight
spaces that larger robots cannot access.

They can be bulkier and heavier,
making them less suitable for
missions requiring compact and
lightweight equipment.

Development
[213–217]

D
IS

A
D

V
A

N
TA

G
ES

The intricate designs of bio-inspired
robots often result in increased
mechanical complexity. This can lead to
higher production costs and more
challenging maintenance.

They are often simpler in design and
easier to manufacture. This
simplicity can translate to lower
costs and more reliable performance.

A
D

V
A

N
TA

G
ESControl

Systems
[218–221]

They replicate accurate biological
behaviors that require advanced
complex algorithms and significant
computational power.

They are less complex and more
intuitive, making them easier to
operate and program.

Proven Technology [222–225]
and TRL [226,227]

There is a lack of mobile robots that
have been created to be used on the
Moon. However, some space robots
have proven inherently robust and
capable of self-repair to some extent.
They often incorporate these traits,
leading to more resilient and
long-lasting systems.

The technologies used in these
robots are well-established, reducing
the risk of failures. This makes them
suitable for critical missions where
reliability is paramount.

Note: TRL (Technology Readiness Levels).

Finally, according to the aforementioned information described in this section, we can
state a bio-robot design proposal that covers the minimum optimized requirements related
to the morphology of the animal species replicated in the mechatronic systems presented
in Section 3. In summary, our robot would have the following characteristics based on the
type of exploration in sandy substrates: (1) Subsurface: the front legs of the crab to initiate
submersion (Figure 3(IA)), and then, the mole’s arms positioned in parallel to dig and clear
the path (Figure 3(IIB.1)); in addition, the main body that mimics the worm anatomy (which
serves for sample collection, and then analyzes it in-situ using biosensors [228,229]) will
contain the excavation and propulsion unit (Figure 4(IA.1)); (2) Surface: the fastest option
for locomotion is the wheel-type system, so the best option is the geometry of the spider
leg’s structure (Figure 5(IIB.2)). Finally, we can conclude that our robot will be capable
of grabbing, pushing, and wriggling for subsurface exploration, followed by rolling for
surface exploration.
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of an earthworm. Moreover, the propulsion unit allows LEAVO to excavate deep underground by supporting the reaction torque/force of the excavation by gripping
the wall of the borehole. The excavation unit mainly includes an excavation instrument, namely, an “earth auger”, and a casing pipe covering the earth auger. The
excavation unit excavates soil and transports it to the back of the robot. The soil in the back of the robot is discharged out of the borehole using the discharging
unit. Reprinted from [59], Copyright (2018), with permission from IEEE. (A.2) Bio-inspired PSA modules are assembled in series using interconnections to form a
soft robot with passive setae-like friction pads on its ventral side. (A.3) Working principle of the actuator with positive and negative pressure compared to the
muscular motion observed in earthworm segments. Reproduced from [69]. CC BY 4.0. Surface Exploration: (II) Snake, Sonora Occipitalis (Standard Copyright
License transferred to the authors) Adapted with permission from Matt Jeppson(86483413)/Shutterstock.com (accessed on 8 July 2024).—(B.1) An overview of the
snake robot locomotion experiment. The snake robot is moving on granular terrain. A single DC motor drives the robot to generate sidewinding locomotion. The
motion capture system captures the motion data through five reflective markers on the snake robot. (B.2) Fabrication of the continuous snake robot with a single
rotary motor. Different mounting holes on the head anchor are used to adjust the slope angle. Basins assemble the body shells. (B.3) A cylindrical helix rod with two
coils is made by 3D printing. (B.4) 3D printed body shells are linked to form a robot snake shell. (B.5) the helix rod is put into the body shells to form the snake robot
body. (B.6) The snake robot body is filmed with silicone elastomers to improve the friction coefficient; (B.7) Prototype of snake robot after painting. Reprinted
from [83], Copyright (2023), with permission from IEEE. Note: The left column shows the animal, while the right column represents the bio-inspired robot.
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5. Conclusions

There is no known bio-inspired robot that currently works on the Moon that has been
published at any conference, journal, or book; however, there are very interesting de-
velopments related to animal morphology biomimicry that have been tested in analog
environments that replicate some planetary conditions, such as regolith simulant. Biomimet-
ics and bio-inspiration improve products and procedures across a wide range of indus-
tries. Thus, several features shared by biological organisms, such as autonomy and intel-
ligence, response-stimuli adaptability, energy efficiency, ability to self-repair, robustness,
lightweight construction, and digging tasks, are essential for space systems. Therefore,
the highlights of this study cover: (I) A scoping review oriented to the design of animal
bio-inspired robotic hardware that could be used for planetary exploration (Until July
2024). It was based on bibliometric analysis, where papers were reviewed from Scopus.
Thus, a total of 482 studies were selected. (II) Classification and comparison of limbed
and limbless systems for subsurface or surface exploration derived from the morphology
of soil/sand-adapted animals, where the most published types of robots are based on
the knowledge from worms (7), moles (6), snakes (5), lizards (4), crabs (2), and spiders
(2). The most published articles were included in the International Conference on Ad-
vanced Intelligent Mechatronics (AIM) by IEEE/ASME Publisher, and Bioinspiration &
Biomimetics Journal by IOP Science Publisher. (III) Propose a pioneering methodology
to design bio-inspired robots, justifying the application of biological principles for lunar
exploration, due to technical features related to actuators, sensors, and mechanisms shown
in Figures 3–5. Finally, space robotics are constantly growing with findings that can inspire
new methods to design animal-morphing biomechatronic systems.

Author Contributions: Conceptualization, J.C., C.E.G.C. and J.B.; Data curation, J.C.; Formal analysis,
J.C., C.E.G.C. and J.B.; Investigation, J.C., C.E.G.C. and J.B.; Methodology, J.C.; Project administration,
J.C., C.E.G.C. and J.B.; Validation, J.C., C.E.G.C. and J.B.; Writing—original draft, J.C.; Writing—review
and editing, J.C., C.E.G.C. and J.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This article is supported by the R&D Project with ID Ref. PID2023-147965NB-I00 with
financial support from the Spanish Government, Ministry of Science, Innovation and Universities
MICIU/AEI/10.13039/501100011033.

Data Availability Statement: The original contributions presented in the study are included in the
article. Further inquiries can be directed to the corresponding authors.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ABS Acrylonitrile Butadiene Styrene
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SF-X Surface Exploration
SSF-X Subsurface Exploration
TRL Technology Readiness Levels
VIPER Volatiles Investigating Polar Exploration Rover
YP Year of Publication

Appendix A

Table A1. Search Protocol.

Structure Keyword–Queries/Search String

BLOCK 1
PART 1

(Common Name)

TITLE-ABS

OR

(Scientific name)

(Family name)

AND

PART 2 (“robot”)

AND

BLOCK 2

PART 3 (“Excavation” OR “Digging” OR “Drilling”
OR “Burrowing”) ABS

OR

PART 4 (“Sand” OR “Subsurface” OR “Underground”
OR “Subterranean” OR “Subterrestrial”) ABS

OR

PART 5 (“Terrain” or “Sand”) ABS

Appendix B

Table A2. Search string used in Scopus for each animal.

Key-Words Animal

TITLE-ABS

((crab OR “emerita analoga” OR “hippidae”) AND robot) AND (ABS (excavation OR
digging OR drilling OR burrowing) OR ABS (subsurface OR underground OR
subterranean OR subterrestrial) OR ABS (terrain OR sand))

CRAB

((mole OR “eremitalpa granti” OR “ chrysochloridae”) AND robot) AND (ABS
(excavation OR digging OR drilling OR burrowing) OR ABS (subsurface OR
underground OR subterranean OR subterrestrial) OR ABS (terrain OR sand))

MOLE

(((earthworm OR “lumbrineris latreilli” OR “lumbrineridae”) OR (“bobbit worm” OR
“Eunice aphroditois”)) AND robot) AND (ABS (excavation OR digging OR drilling
OR burrowing) OR ABS (subsurface OR underground OR subterranean OR
subterrestrial) OR ABS (terrain OR sand)))

WORM

((lizard OR “scincus scincus” OR “scincidae”) AND robot) AND (ABS (excavation OR
digging OR drilling OR burrowing) OR ABS (subsurface OR underground OR
subterranean OR subterrestrial) OR ABS (terrain OR sand))

LIZARD

((snake OR “sonora occipitalis” OR “colubridae”) AND robot) AND (ABS (excavation
OR digging OR drilling OR burrowing) OR ABS (subsurface OR underground OR
subterranean OR subterrestrial) OR ABS (terrain OR sand))

SNAKE

((spider OR “Carparachne aureoflava” OR “sparassidae”) AND robot) AND (ABS
(excavation OR digging OR drilling OR burrowing) OR ABS (subsurface OR
underground OR subterranean OR subterrestrial) OR ABS (terrain OR sand))

SPIDER
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Appendix C

Table A3. List of conferences, journals, and book publications regarding selected articles of biorobotics
that could be used for subsurface and surface exploration on the Moon. (#: number of papers).

Animal PUBLICATION MEDIA TYPE PUBLISHER #

SO
IL

/S
A

N
D

A
D

A
PT

ED

SU
B

SU
R

FA
C

E
EX

PL
O

R
A

T
IO

N

CRAB
Frontiers in Robotics and AI Journal Frontiers 1

Advanced Robotics Journal Taylor & Francis 1

MOLE

International Conference on Advanced Robotics and
Mechatronics (ICARM) Conference IEEE 1

International Conference on Robot Intelligence
Technology and Applications (RiTA) Conference Springer 4

International Conference on Mechatronics and
Automation (ICMA) Conference IEEE 1

International Conference on Control, Automation and
Systems (ICCAS) Conference IEEE 1

International Conference on Intelligent Robots and
Systems (IROS) Conference IEEE 1

IEEE Access Journal IEEE 1

WORM

International Conference on Advanced Intelligent
Mechatronics (AIM) Conference IEEE/ASME 3

International Conference on Soft Robotics (RoboSoft) Conference IEEE 2

Active and passive smart structures and integrated
systems Conference SPIE 1

Climbing and Walking Robots Conference (CLAWAR) Conference Springer 1

IEEE Access Journal IEEE 1

Industrial Robot: An International Journal Journal Emerald 1

Marine Georesources & Geotechnology Journal Taylor & Francis 1

Bioinspiration & biomimetics Journal IOP Science 2

Scientific Reports Journal Nature 1

SU
R

FA
C

E
EX

PL
O

R
A

T
IO

N

LIZARD

International Conference on Robotics and Automation Conference IEEE 1

International Conference on Advanced Intelligent
Mechatronics (AIM) Conference IEEE/ASME 1

Proceedings of the National Academy of Sciences Conference NAS 1

MIT Press Direct Book Chapter MIT 1

The International Journal of Robotics Research Journal SAGE 1

New Scientist Journal DMGT 1

Journal of The Royal Society Interface Journal Royal Society 1

Bioinspiration & Biomimetics Journal IOP Science 2

SNAKE

International Conference on Intelligent Robots and
Systems, Conference IEEE 2

International Conference on Advanced Intelligent
Mechatronics (AIM) Conference IEEE/ASME 1

International Conference on Robotics and Biomimetics
(ROBIO) Conference IEEE 1

IEEE/ASME Transactions on Mechatronics Journal IEEE/ASME 1

Advanced Robotics Journal Taylor & Francis 1

SPIDER

International Conference on Engineering Design (ICED) Conference The Design
Society 1

International Journal of Advanced Robotic Systems Journal SAGE 1

Applied Sciences Journal MDPI 1

Acta Astronautica Journal Elsevier 1
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